rvu_npc_fs.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTx2 RVU Admin Function driver
 *
 * Copyright (C) 2020 Marvell.
 */

#include <linux/bitfield.h>

#include "rvu_struct.h"
#include "rvu_reg.h"
#include "rvu.h"
#include "npc.h"

#define NPC_BYTESM		GENMASK_ULL(19, 16)
#define NPC_HDR_OFFSET		GENMASK_ULL(15, 8)
#define NPC_KEY_OFFSET		GENMASK_ULL(5, 0)
#define NPC_LDATA_EN		BIT_ULL(7)

static const char * const npc_flow_names[] = {
	[NPC_DMAC]	= "dmac",
	[NPC_SMAC]	= "smac",
	[NPC_ETYPE]	= "ether type",
	[NPC_OUTER_VID]	= "outer vlan id",
	[NPC_TOS]	= "tos",
	[NPC_SIP_IPV4]	= "ipv4 source ip",
	[NPC_DIP_IPV4]	= "ipv4 destination ip",
	[NPC_SIP_IPV6]	= "ipv6 source ip",
	[NPC_DIP_IPV6]	= "ipv6 destination ip",
	[NPC_SPORT_TCP]	= "tcp source port",
	[NPC_DPORT_TCP]	= "tcp destination port",
	[NPC_SPORT_UDP]	= "udp source port",
	[NPC_DPORT_UDP]	= "udp destination port",
	[NPC_SPORT_SCTP] = "sctp source port",
	[NPC_DPORT_SCTP] = "sctp destination port",
	[NPC_UNKNOWN]	= "unknown",
};

const char *npc_get_field_name(u8 hdr)
{
	if (hdr >= ARRAY_SIZE(npc_flow_names))
		return npc_flow_names[NPC_UNKNOWN];

	return npc_flow_names[hdr];
}

/* Compute keyword masks and figure out the number of keywords a field
 * spans in the key.
 */
static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
			     u8 nr_bits, int start_kwi, int offset, u8 intf)
{
	struct npc_key_field *field = &mcam->rx_key_fields[type];
	u8 bits_in_kw;
	int max_kwi;

	if (mcam->banks_per_entry == 1)
		max_kwi = 1; /* NPC_MCAM_KEY_X1 */
	else if (mcam->banks_per_entry == 2)
		max_kwi = 3; /* NPC_MCAM_KEY_X2 */
	else
		max_kwi = 6; /* NPC_MCAM_KEY_X4 */

	if (is_npc_intf_tx(intf))
		field = &mcam->tx_key_fields[type];

	if (offset + nr_bits <= 64) {
		/* one KW only */
		if (start_kwi > max_kwi)
			return;
		field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
					     << offset;
		field->nr_kws = 1;
	} else if (offset + nr_bits > 64 &&
		   offset + nr_bits <= 128) {
		/* two KWs */
		if (start_kwi + 1 > max_kwi)
			return;
		/* first KW mask */
		bits_in_kw = 64 - offset;
		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
					     << offset;
		/* second KW mask i.e. mask for rest of bits */
		bits_in_kw = nr_bits + offset - 64;
		field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
		field->nr_kws = 2;
	} else {
		/* three KWs */
		if (start_kwi + 2 > max_kwi)
			return;
		/* first KW mask */
		bits_in_kw = 64 - offset;
		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
					     << offset;
		/* second KW mask */
		field->kw_mask[start_kwi + 1] = ~0ULL;
		/* third KW mask i.e. mask for rest of bits */
		bits_in_kw = nr_bits + offset - 128;
		field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
		field->nr_kws = 3;
	}
}

/* Helper function to figure out whether field exists in the key */
static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct npc_key_field *input;

	input  = &mcam->rx_key_fields[type];
	if (is_npc_intf_tx(intf))
		input  = &mcam->tx_key_fields[type];

	return input->nr_kws > 0;
}

static bool npc_is_same(struct npc_key_field *input,
			struct npc_key_field *field)
{
	int ret;

	ret = memcmp(&input->layer_mdata, &field->layer_mdata,
		     sizeof(struct npc_layer_mdata));
	return ret == 0;
}

static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
				u64 cfg, u8 lid, u8 lt, u8 intf)
{
	struct npc_key_field *input = &mcam->rx_key_fields[type];

	if (is_npc_intf_tx(intf))
		input = &mcam->tx_key_fields[type];

	input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
	input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
	input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
	input->layer_mdata.ltype = lt;
	input->layer_mdata.lid = lid;
}

static bool npc_check_overlap_fields(struct npc_key_field *input1,
				     struct npc_key_field *input2)
{
	int kwi;

	/* Fields with same layer id and different ltypes are mutually
	 * exclusive hence they can be overlapped
	 */
	if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
	    input1->layer_mdata.ltype != input2->layer_mdata.ltype)
		return false;

	for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
		if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
			return true;
	}

	return false;
}

/* Helper function to check whether given field overlaps with any other fields
 * in the key. Due to limitations on key size and the key extraction profile in
 * use higher layers can overwrite lower layer's header fields. Hence overlap
 * needs to be checked.
 */
static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
			      enum key_fields type, u8 start_lid, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct npc_key_field *dummy, *input;
	int start_kwi, offset;
	u8 nr_bits, lid, lt, ld;
	u64 cfg;

	dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
	input = &mcam->rx_key_fields[type];

	if (is_npc_intf_tx(intf)) {
		dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
		input = &mcam->tx_key_fields[type];
	}

	for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
		for (lt = 0; lt < NPC_MAX_LT; lt++) {
			for (ld = 0; ld < NPC_MAX_LD; ld++) {
				cfg = rvu_read64(rvu, blkaddr,
						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
						 (intf, lid, lt, ld));
				if (!FIELD_GET(NPC_LDATA_EN, cfg))
					continue;
				memset(dummy, 0, sizeof(struct npc_key_field));
				npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
						    lid, lt, intf);
				/* exclude input */
				if (npc_is_same(input, dummy))
					continue;
				start_kwi = dummy->layer_mdata.key / 8;
				offset = (dummy->layer_mdata.key * 8) % 64;
				nr_bits = dummy->layer_mdata.len * 8;
				/* form KW masks */
				npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
						 start_kwi, offset, intf);
				/* check any input field bits falls in any
				 * other field bits.
				 */
				if (npc_check_overlap_fields(dummy, input))
					return true;
			}
		}
	}

	return false;
}

static int npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
			   u8 intf)
{
	if (!npc_is_field_present(rvu, type, intf) ||
	    npc_check_overlap(rvu, blkaddr, type, 0, intf))
		return -EOPNOTSUPP;
	return 0;
}

static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
				  u8 key_nibble, u8 intf)
{
	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
	u8 nr_bits = 4; /* bits in a nibble */
	u8 type;

	switch (bit_number) {
	case 0 ... 2:
		type = NPC_CHAN;
		break;
	case 3:
		type = NPC_ERRLEV;
		break;
	case 4 ... 5:
		type = NPC_ERRCODE;
		break;
	case 6:
		type = NPC_LXMB;
		break;
	/* check for LTYPE only as of now */
	case 9:
		type = NPC_LA;
		break;
	case 12:
		type = NPC_LB;
		break;
	case 15:
		type = NPC_LC;
		break;
	case 18:
		type = NPC_LD;
		break;
	case 21:
		type = NPC_LE;
		break;
	case 24:
		type = NPC_LF;
		break;
	case 27:
		type = NPC_LG;
		break;
	case 30:
		type = NPC_LH;
		break;
	default:
		return;
	};
	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
}

static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct npc_key_field *key_fields;
	/* Ether type can come from three layers
	 * (ethernet, single tagged, double tagged)
	 */
	struct npc_key_field *etype_ether;
	struct npc_key_field *etype_tag1;
	struct npc_key_field *etype_tag2;
	/* Outer VLAN TCI can come from two layers
	 * (single tagged, double tagged)
	 */
	struct npc_key_field *vlan_tag1;
	struct npc_key_field *vlan_tag2;
	u64 *features;
	u8 start_lid;
	int i;

	key_fields = mcam->rx_key_fields;
	features = &mcam->rx_features;

	if (is_npc_intf_tx(intf)) {
		key_fields = mcam->tx_key_fields;
		features = &mcam->tx_features;
	}

	/* Handle header fields which can come from multiple layers like
	 * etype, outer vlan tci. These fields should have same position in
	 * the key otherwise to install a mcam rule more than one entry is
	 * needed which complicates mcam space management.
	 */
	etype_ether = &key_fields[NPC_ETYPE_ETHER];
	etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
	etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
	vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
	vlan_tag2 = &key_fields[NPC_VLAN_TAG2];

	/* if key profile programmed does not extract Ethertype at all */
	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
		goto vlan_tci;

	/* if key profile programmed extracts Ethertype from one layer */
	if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
		key_fields[NPC_ETYPE] = *etype_ether;
	if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
		key_fields[NPC_ETYPE] = *etype_tag1;
	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
		key_fields[NPC_ETYPE] = *etype_tag2;

	/* if key profile programmed extracts Ethertype from multiple layers */
	if (etype_ether->nr_kws && etype_tag1->nr_kws) {
		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
			if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i])
				goto vlan_tci;
		}
		key_fields[NPC_ETYPE] = *etype_tag1;
	}
	if (etype_ether->nr_kws && etype_tag2->nr_kws) {
		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
			if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i])
				goto vlan_tci;
		}
		key_fields[NPC_ETYPE] = *etype_tag2;
	}
	if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
			if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i])
				goto vlan_tci;
		}
		key_fields[NPC_ETYPE] = *etype_tag2;
	}

	/* check none of higher layers overwrite Ethertype */
	start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
	if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf))
		goto vlan_tci;
	*features |= BIT_ULL(NPC_ETYPE);
vlan_tci:
	/* if key profile does not extract outer vlan tci at all */
	if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
		goto done;

	/* if key profile extracts outer vlan tci from one layer */
	if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
		key_fields[NPC_OUTER_VID] = *vlan_tag1;
	if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
		key_fields[NPC_OUTER_VID] = *vlan_tag2;

	/* if key profile extracts outer vlan tci from multiple layers */
	if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
			if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i])
				goto done;
		}
		key_fields[NPC_OUTER_VID] = *vlan_tag2;
	}
	/* check none of higher layers overwrite outer vlan tci */
	start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
	if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf))
		goto done;
	*features |= BIT_ULL(NPC_OUTER_VID);
done:
	return;
}

static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
			   u8 lt, u64 cfg, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	u8 hdr, key, nr_bytes, bit_offset;
	u8 la_ltype, la_start;
	/* starting KW index and starting bit position */
	int start_kwi, offset;

	nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
	start_kwi = key / 8;
	offset = (key * 8) % 64;

	/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
	 * ethernet header.
	 */
	if (is_npc_intf_tx(intf)) {
		la_ltype = NPC_LT_LA_IH_NIX_ETHER;
		la_start = 8;
	} else {
		la_ltype = NPC_LT_LA_ETHER;
		la_start = 0;
	}

#define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)			       \
do {									       \
	if (lid == (hlid) && lt == (hlt)) {				       \
		if ((hstart) >= hdr &&					       \
		    ((hstart) + (hlen)) <= (hdr + nr_bytes)) {	               \
			bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
			npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
			npc_set_kw_masks(mcam, (name), (hlen) * 8,	       \
					 start_kwi, offset + bit_offset, intf);\
		}							       \
	}								       \
} while (0)

	/* List LID, LTYPE, start offset from layer and length(in bytes) of
	 * packet header fields below.
	 * Example: Source IP is 4 bytes and starts at 12th byte of IP header
	 */
	NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
	NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
	NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
	NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
	NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
	NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
	NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
	NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
	NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
	NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
	NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
	NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
	NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
	NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
	NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
	NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
	NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start, 6);
	/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
	NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
}

static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	u64 *features = &mcam->rx_features;
	u64 tcp_udp_sctp;
	int err, hdr;

	if (is_npc_intf_tx(intf))
		features = &mcam->tx_features;

	for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
		err = npc_check_field(rvu, blkaddr, hdr, intf);
		if (!err)
			*features |= BIT_ULL(hdr);
	}

	tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
		       BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP);

	/* for tcp/udp/sctp corresponding layer type should be in the key */
	if (*features & tcp_udp_sctp)
		if (npc_check_field(rvu, blkaddr, NPC_LD, intf))
			*features &= ~tcp_udp_sctp;

	/* for vlan corresponding layer type should be in the key */
	if (*features & BIT_ULL(NPC_OUTER_VID))
		if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
			*features &= ~BIT_ULL(NPC_OUTER_VID);
}

/* Scan key extraction profile and record how fields of our interest
 * fill the key structure. Also verify Channel and DMAC exists in
 * key and not overwritten by other header fields.
 */
static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	u8 lid, lt, ld, bitnr;
	u8 key_nibble = 0;
	u64 cfg;

	/* Scan and note how parse result is going to be in key.
	 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
	 * parse result in the key. The enabled nibbles from parse result
	 * will be concatenated in key.
	 */
	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
	cfg &= NPC_PARSE_NIBBLE;
	for_each_set_bit(bitnr, (unsigned long *)&cfg, 31) {
		npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
		key_nibble++;
	}

	/* Scan and note how layer data is going to be in key */
	for (lid = 0; lid < NPC_MAX_LID; lid++) {
		for (lt = 0; lt < NPC_MAX_LT; lt++) {
			for (ld = 0; ld < NPC_MAX_LD; ld++) {
				cfg = rvu_read64(rvu, blkaddr,
						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
						 (intf, lid, lt, ld));
				if (!FIELD_GET(NPC_LDATA_EN, cfg))
					continue;
				npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
					       intf);
			}
		}
	}

	return 0;
}

static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
{
	int err;

	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
	if (err)
		return err;

	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
	if (err)
		return err;

	/* Channel is mandatory */
	if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
		dev_err(rvu->dev, "Channel not present in Key\n");
		return -EINVAL;
	}
	/* check that none of the fields overwrite channel */
	if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
		dev_err(rvu->dev, "Channel cannot be overwritten\n");
		return -EINVAL;
	}
	/* DMAC should be present in key for unicast filter to work */
	if (!npc_is_field_present(rvu, NPC_DMAC, NIX_INTF_RX)) {
		dev_err(rvu->dev, "DMAC not present in Key\n");
		return -EINVAL;
	}
	/* check that none of the fields overwrite DMAC */
	if (npc_check_overlap(rvu, blkaddr, NPC_DMAC, 0, NIX_INTF_RX)) {
		dev_err(rvu->dev, "DMAC cannot be overwritten\n");
		return -EINVAL;
	}

	npc_set_features(rvu, blkaddr, NIX_INTF_TX);
	npc_set_features(rvu, blkaddr, NIX_INTF_RX);
	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);

	return 0;
}

int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
{
561 562 563 564
	struct npc_mcam *mcam = &rvu->hw->mcam;

	INIT_LIST_HEAD(&mcam->mcam_rules);

565 566
	return npc_scan_verify_kex(rvu, blkaddr);
}
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	u64 *mcam_features = &mcam->rx_features;
	u64 unsupported;
	u8 bit;

	if (is_npc_intf_tx(intf))
		mcam_features = &mcam->tx_features;

	unsupported = (*mcam_features ^ features) & ~(*mcam_features);
	if (unsupported) {
		dev_info(rvu->dev, "Unsupported flow(s):\n");
		for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
			dev_info(rvu->dev, "%s ", npc_get_field_name(bit));
		return -EOPNOTSUPP;
	}

	return 0;
}

/* npc_update_entry - Based on the masks generated during
 * the key scanning, updates the given entry with value and
 * masks for the field of interest. Maximum 16 bytes of a packet
 * header can be extracted by HW hence lo and hi are sufficient.
 * When field bytes are less than or equal to 8 then hi should be
 * 0 for value and mask.
 *
 * If exact match of value is required then mask should be all 1's.
 * If any bits in mask are 0 then corresponding bits in value are
 * dont care.
 */
static void npc_update_entry(struct rvu *rvu, enum key_fields type,
			     struct mcam_entry *entry, u64 val_lo,
			     u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct mcam_entry dummy = { {0} };
	struct npc_key_field *field;
	u64 kw1, kw2, kw3;
	u8 shift;
	int i;

	field = &mcam->rx_key_fields[type];
	if (is_npc_intf_tx(intf))
		field = &mcam->tx_key_fields[type];

	if (!field->nr_kws)
		return;

	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
		if (!field->kw_mask[i])
			continue;
		/* place key value in kw[x] */
		shift = __ffs64(field->kw_mask[i]);
		/* update entry value */
		kw1 = (val_lo << shift) & field->kw_mask[i];
		dummy.kw[i] = kw1;
		/* update entry mask */
		kw1 = (mask_lo << shift) & field->kw_mask[i];
		dummy.kw_mask[i] = kw1;

		if (field->nr_kws == 1)
			break;
		/* place remaining bits of key value in kw[x + 1] */
		if (field->nr_kws == 2) {
			/* update entry value */
			kw2 = shift ? val_lo >> (64 - shift) : 0;
			kw2 |= (val_hi << shift);
			kw2 &= field->kw_mask[i + 1];
			dummy.kw[i + 1] = kw2;
			/* update entry mask */
			kw2 = shift ? mask_lo >> (64 - shift) : 0;
			kw2 |= (mask_hi << shift);
			kw2 &= field->kw_mask[i + 1];
			dummy.kw_mask[i + 1] = kw2;
			break;
		}
		/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
		if (field->nr_kws == 3) {
			/* update entry value */
			kw2 = shift ? val_lo >> (64 - shift) : 0;
			kw2 |= (val_hi << shift);
			kw2 &= field->kw_mask[i + 1];
			kw3 = shift ? val_hi >> (64 - shift) : 0;
			kw3 &= field->kw_mask[i + 2];
			dummy.kw[i + 1] = kw2;
			dummy.kw[i + 2] = kw3;
			/* update entry mask */
			kw2 = shift ? mask_lo >> (64 - shift) : 0;
			kw2 |= (mask_hi << shift);
			kw2 &= field->kw_mask[i + 1];
			kw3 = shift ? mask_hi >> (64 - shift) : 0;
			kw3 &= field->kw_mask[i + 2];
			dummy.kw_mask[i + 1] = kw2;
			dummy.kw_mask[i + 2] = kw3;
			break;
		}
	}
	/* dummy is ready with values and masks for given key
	 * field now clear and update input entry with those
	 */
	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
		if (!field->kw_mask[i])
			continue;
		entry->kw[i] &= ~field->kw_mask[i];
		entry->kw_mask[i] &= ~field->kw_mask[i];

		entry->kw[i] |= dummy.kw[i];
		entry->kw_mask[i] |= dummy.kw_mask[i];
	}
}

#define IPV6_WORDS     4

static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
				 u64 features, struct flow_msg *pkt,
				 struct flow_msg *mask,
				 struct rvu_npc_mcam_rule *output, u8 intf)
{
	u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
	u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
	struct flow_msg *opkt = &output->packet;
	struct flow_msg *omask = &output->mask;
	u64 mask_lo, mask_hi;
	u64 val_lo, val_hi;

	/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
	 * values to be programmed in MCAM should as below:
	 * val_high: 0xfe80000000000000
	 * val_low: 0x2c6863fffe5e2d0a
	 */
	if (features & BIT_ULL(NPC_SIP_IPV6)) {
		be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
		be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);

		mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
		mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
		val_hi = (u64)src_ip[0] << 32 | src_ip[1];
		val_lo = (u64)src_ip[2] << 32 | src_ip[3];

		npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
				 mask_lo, mask_hi, intf);
		memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
		memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
	}
	if (features & BIT_ULL(NPC_DIP_IPV6)) {
		be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
		be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);

		mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
		mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
		val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
		val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];

		npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
				 mask_lo, mask_hi, intf);
		memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
		memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
	}
}

static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
			    u64 features, struct flow_msg *pkt,
			    struct flow_msg *mask,
			    struct rvu_npc_mcam_rule *output, u8 intf)
{
	u64 dmac_mask = ether_addr_to_u64(mask->dmac);
	u64 smac_mask = ether_addr_to_u64(mask->smac);
	u64 dmac_val = ether_addr_to_u64(pkt->dmac);
	u64 smac_val = ether_addr_to_u64(pkt->smac);
	struct flow_msg *opkt = &output->packet;
	struct flow_msg *omask = &output->mask;

	if (!features)
		return;

	/* For tcp/udp/sctp LTYPE should be present in entry */
	if (features & (BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_DPORT_TCP)))
		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
				 0, ~0ULL, 0, intf);
	if (features & (BIT_ULL(NPC_SPORT_UDP) | BIT_ULL(NPC_DPORT_UDP)))
		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
				 0, ~0ULL, 0, intf);
	if (features & (BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP)))
		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
				 0, ~0ULL, 0, intf);

	if (features & BIT_ULL(NPC_OUTER_VID))
		npc_update_entry(rvu, NPC_LB, entry,
				 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
				 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);

#define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)	      \
do {									      \
	if (features & BIT_ULL((field))) {				      \
		npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
				 (mask_lo), (mask_hi), intf);		      \
		memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
		memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
	}								      \
} while (0)

	NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
	NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
	NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
		       ntohs(mask->etype), 0);
	NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
		       ntohl(mask->ip4src), 0);
	NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
		       ntohl(mask->ip4dst), 0);
	NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
		       ntohs(mask->sport), 0);
	NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
		       ntohs(mask->sport), 0);
	NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
		       ntohs(mask->dport), 0);
	NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
		       ntohs(mask->dport), 0);
	NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
		       ntohs(mask->sport), 0);
	NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
		       ntohs(mask->dport), 0);

	NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
		       ntohs(mask->vlan_tci), 0);

	npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
}

static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam,
						    u16 entry)
{
	struct rvu_npc_mcam_rule *iter;

	mutex_lock(&mcam->lock);
	list_for_each_entry(iter, &mcam->mcam_rules, list) {
		if (iter->entry == entry) {
			mutex_unlock(&mcam->lock);
			return iter;
		}
	}
	mutex_unlock(&mcam->lock);

	return NULL;
}

static void rvu_mcam_add_rule(struct npc_mcam *mcam,
			      struct rvu_npc_mcam_rule *rule)
{
	struct list_head *head = &mcam->mcam_rules;
	struct rvu_npc_mcam_rule *iter;

	mutex_lock(&mcam->lock);
	list_for_each_entry(iter, &mcam->mcam_rules, list) {
		if (iter->entry > rule->entry)
			break;
		head = &iter->list;
	}

	list_add(&rule->list, head);
	mutex_unlock(&mcam->lock);
}

static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
					      struct rvu_npc_mcam_rule *rule)
{
	struct npc_mcam_oper_counter_req free_req = { 0 };
	struct msg_rsp free_rsp;

	if (!rule->has_cntr)
		return;

	free_req.hdr.pcifunc = pcifunc;
	free_req.cntr = rule->cntr;

	rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
	rule->has_cntr = false;
}

static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
					 struct rvu_npc_mcam_rule *rule,
					 struct npc_install_flow_rsp *rsp)
{
	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
	int err;

	cntr_req.hdr.pcifunc = pcifunc;
	cntr_req.contig = true;
	cntr_req.count = 1;

	/* we try to allocate a counter to track the stats of this
	 * rule. If counter could not be allocated then proceed
	 * without counter because counters are limited than entries.
	 */
	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
						      &cntr_rsp);
	if (!err && cntr_rsp.count) {
		rule->cntr = cntr_rsp.cntr;
		rule->has_cntr = true;
		rsp->counter = rule->cntr;
	} else {
		rsp->counter = err;
	}
}

static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
				struct mcam_entry *entry,
				struct npc_install_flow_req *req, u16 target)
{
	struct nix_rx_action action;

	npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0,
			 ~0ULL, 0, NIX_INTF_RX);

	*(u64 *)&action = 0x00;
	action.pf_func = target;
	action.op = req->op;
	action.index = req->index;
	action.match_id = req->match_id;
	action.flow_key_alg = req->flow_key_alg;

	if (req->op == NIX_RX_ACTION_DEFAULT && pfvf->def_ucast_rule)
		action = pfvf->def_ucast_rule->rx_action;

	entry->action = *(u64 *)&action;

	/* VTAG0 starts at 0th byte of LID_B.
	 * VTAG1 starts at 4th byte of LID_B.
	 */
	entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
			     FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
			     FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
			     FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
			     FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
			     FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
			     FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
			     FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
}

static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
				struct mcam_entry *entry,
				struct npc_install_flow_req *req, u16 target)
{
	struct nix_tx_action action;

	npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
			 0, ~0ULL, 0, NIX_INTF_TX);

	*(u64 *)&action = 0x00;
	action.op = req->op;
	action.index = req->index;
	action.match_id = req->match_id;

	entry->action = *(u64 *)&action;

	/* VTAG0 starts at 0th byte of LID_B.
	 * VTAG1 starts at 4th byte of LID_B.
	 */
	entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
			     FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
			     FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
			     FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
			     FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
			     FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
			     FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
			     FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
}

static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
			    int nixlf, struct rvu_pfvf *pfvf,
			    struct npc_install_flow_req *req,
			    struct npc_install_flow_rsp *rsp, bool enable)
{
	struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
	u64 features, installed_features, missing_features = 0;
	struct npc_mcam_write_entry_req write_req = { 0 };
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct rvu_npc_mcam_rule dummy = { 0 };
	struct rvu_npc_mcam_rule *rule;
	bool new = false, msg_from_vf;
	u16 owner = req->hdr.pcifunc;
	struct msg_rsp write_rsp;
	struct mcam_entry *entry;
	int entry_index, err;

	msg_from_vf = !!(owner & RVU_PFVF_FUNC_MASK);

	installed_features = req->features;
	features = req->features;
	entry = &write_req.entry_data;
	entry_index = req->entry;

	npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
			req->intf);

	if (is_npc_intf_rx(req->intf))
		npc_update_rx_entry(rvu, pfvf, entry, req, target);
	else
		npc_update_tx_entry(rvu, pfvf, entry, req, target);

	/* Default unicast rules do not exist for TX */
	if (is_npc_intf_tx(req->intf))
		goto find_rule;

	if (def_ucast_rule)
		missing_features = (def_ucast_rule->features ^ features) &
					def_ucast_rule->features;

	if (req->default_rule && req->append) {
		/* add to default rule */
		if (missing_features)
			npc_update_flow(rvu, entry, missing_features,
					&def_ucast_rule->packet,
					&def_ucast_rule->mask,
					&dummy, req->intf);
		enable = rvu_npc_write_default_rule(rvu, blkaddr,
						    nixlf, target,
						    pfvf->nix_rx_intf, entry,
						    &entry_index);
		installed_features = req->features | missing_features;
	} else if (req->default_rule && !req->append) {
		/* overwrite default rule */
		enable = rvu_npc_write_default_rule(rvu, blkaddr,
						    nixlf, target,
						    pfvf->nix_rx_intf, entry,
						    &entry_index);
	} else if (msg_from_vf) {
		/* normal rule - include default rule also to it for VF */
		npc_update_flow(rvu, entry, missing_features,
				&def_ucast_rule->packet, &def_ucast_rule->mask,
				&dummy, req->intf);
		installed_features = req->features | missing_features;
	}

find_rule:
	rule = rvu_mcam_find_rule(mcam, entry_index);
	if (!rule) {
		rule = kzalloc(sizeof(*rule), GFP_KERNEL);
		if (!rule)
			return -ENOMEM;
		new = true;
	}
	/* no counter for default rule */
	if (req->default_rule)
		goto update_rule;

	/* allocate new counter if rule has no counter */
	if (req->set_cntr && !rule->has_cntr)
		rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);

	/* if user wants to delete an existing counter for a rule then
	 * free the counter
	 */
	if (!req->set_cntr && rule->has_cntr)
		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);

	write_req.hdr.pcifunc = owner;
	write_req.entry = req->entry;
	write_req.intf = req->intf;
	write_req.enable_entry = (u8)enable;
	/* if counter is available then clear and use it */
	if (req->set_cntr && rule->has_cntr) {
		rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), 0x00);
		write_req.set_cntr = 1;
		write_req.cntr = rule->cntr;
	}

	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
						    &write_rsp);
	if (err) {
		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
		if (new)
			kfree(rule);
		return err;
	}
update_rule:
	memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
	memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
	rule->entry = entry_index;
	memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
	if (is_npc_intf_tx(req->intf))
		memcpy(&rule->tx_action, &entry->action,
		       sizeof(struct nix_tx_action));
	rule->vtag_action = entry->vtag_action;
	rule->features = installed_features;
	rule->default_rule = req->default_rule;
	rule->owner = owner;
	rule->enable = enable;
	if (is_npc_intf_tx(req->intf))
		rule->intf = pfvf->nix_tx_intf;
	else
		rule->intf = pfvf->nix_rx_intf;

	if (new)
		rvu_mcam_add_rule(mcam, rule);
	if (req->default_rule)
		pfvf->def_ucast_rule = rule;

1068 1069 1070
	if (pfvf->pf_set_vf_cfg && req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
		rule->vfvlan_cfg = true;

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	return 0;
}

int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
				      struct npc_install_flow_req *req,
				      struct npc_install_flow_rsp *rsp)
{
	bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
	int blkaddr, nixlf, err;
	struct rvu_pfvf *pfvf;
	bool enable = true;
	u16 target;

	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
	if (blkaddr < 0) {
		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
		return -ENODEV;
	}

	if (!is_npc_interface_valid(rvu, req->intf))
		return -EINVAL;

	if (from_vf && req->default_rule)
		return NPC_MCAM_PERM_DENIED;

	/* Each PF/VF info is maintained in struct rvu_pfvf.
	 * rvu_pfvf for the target PF/VF needs to be retrieved
	 * hence modify pcifunc accordingly.
	 */

	/* AF installing for a PF/VF */
	if (!req->hdr.pcifunc)
		target = req->vf;
	/* PF installing for its VF */
	else if (!from_vf && req->vf)
		target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
	/* msg received from PF/VF */
	else
		target = req->hdr.pcifunc;

	if (npc_check_unsupported_flows(rvu, req->features, req->intf))
		return -EOPNOTSUPP;

	if (npc_mcam_verify_channel(rvu, target, req->intf, req->channel))
		return -EINVAL;

	pfvf = rvu_get_pfvf(rvu, target);

1119 1120 1121 1122
	/* PF installing for its VF */
	if (req->hdr.pcifunc && !from_vf && req->vf)
		pfvf->pf_set_vf_cfg = 1;

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	/* update req destination mac addr */
	if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
	    is_zero_ether_addr(req->packet.dmac)) {
		ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
		eth_broadcast_addr((u8 *)&req->mask.dmac);
	}

	err = nix_get_nixlf(rvu, target, &nixlf, NULL);

	/* If interface is uninitialized then do not enable entry */
	if (err || (!req->default_rule && !pfvf->def_ucast_rule))
		enable = false;

	/* Packets reaching NPC in Tx path implies that a
	 * NIXLF is properly setup and transmitting.
	 * Hence rules can be enabled for Tx.
	 */
	if (is_npc_intf_tx(req->intf))
		enable = true;

	/* Do not allow requests from uninitialized VFs */
	if (from_vf && !enable)
		return -EINVAL;

	/* If message is from VF then its flow should not overlap with
	 * reserved unicast flow.
	 */
	if (from_vf && pfvf->def_ucast_rule && is_npc_intf_rx(req->intf) &&
	    pfvf->def_ucast_rule->features & req->features)
		return -EINVAL;

	return npc_install_flow(rvu, blkaddr, target, nixlf, pfvf, req, rsp,
				enable);
}

static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
			   u16 pcifunc)
{
	struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
	struct msg_rsp dis_rsp;

	if (rule->default_rule)
		return 0;

	if (rule->has_cntr)
		rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);

	dis_req.hdr.pcifunc = pcifunc;
	dis_req.entry = rule->entry;

	list_del(&rule->list);
	kfree(rule);

	return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
}

int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
				     struct npc_delete_flow_req *req,
				     struct msg_rsp *rsp)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct rvu_npc_mcam_rule *iter, *tmp;
	u16 pcifunc = req->hdr.pcifunc;
	struct list_head del_list;

	INIT_LIST_HEAD(&del_list);

	mutex_lock(&mcam->lock);
	list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
		if (iter->owner == pcifunc) {
			/* All rules */
			if (req->all) {
				list_move_tail(&iter->list, &del_list);
			/* Range of rules */
			} else if (req->end && iter->entry >= req->start &&
				   iter->entry <= req->end) {
				list_move_tail(&iter->list, &del_list);
			/* single rule */
			} else if (req->entry == iter->entry) {
				list_move_tail(&iter->list, &del_list);
				break;
			}
		}
	}
	mutex_unlock(&mcam->lock);

	list_for_each_entry_safe(iter, tmp, &del_list, list) {
		/* clear the mcam entry target pcifunc */
		mcam->entry2target_pffunc[iter->entry] = 0x0;
		if (npc_delete_flow(rvu, iter, pcifunc))
			dev_err(rvu->dev, "rule deletion failed for entry:%d",
				iter->entry);
	}

	return 0;
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
				 struct rvu_npc_mcam_rule *rule,
				 struct rvu_pfvf *pfvf)
{
	struct npc_mcam_write_entry_req write_req = { 0 };
	struct mcam_entry *entry = &write_req.entry_data;
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct msg_rsp rsp;
	u8 intf, enable;
	int err;

	ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);

	npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
			    entry, &intf,  &enable);

	npc_update_entry(rvu, NPC_DMAC, entry,
			 ether_addr_to_u64(pfvf->mac_addr), 0,
			 0xffffffffffffull, 0, intf);

	write_req.hdr.pcifunc = rule->owner;
	write_req.entry = rule->entry;

	mutex_unlock(&mcam->lock);
	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
	mutex_lock(&mcam->lock);

	return err;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
{
	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
	struct rvu_npc_mcam_rule *def_ucast_rule;
	struct npc_mcam *mcam = &rvu->hw->mcam;
	struct rvu_npc_mcam_rule *rule;
	int blkaddr, bank, index;
	u64 def_action;

	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
	if (blkaddr < 0)
		return;

	def_ucast_rule = pfvf->def_ucast_rule;

	mutex_lock(&mcam->lock);
	list_for_each_entry(rule, &mcam->mcam_rules, list) {
		if (is_npc_intf_rx(rule->intf) &&
		    rule->rx_action.pf_func == target && !rule->enable) {
			if (rule->default_rule) {
				npc_enable_mcam_entry(rvu, mcam, blkaddr,
						      rule->entry, true);
				rule->enable = true;
				continue;
			}

1276 1277 1278
			if (rule->vfvlan_cfg)
				npc_update_dmac_value(rvu, blkaddr, rule, pfvf);

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
			if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
				if (!def_ucast_rule)
					continue;
				/* Use default unicast entry action */
				rule->rx_action = def_ucast_rule->rx_action;
				def_action = *(u64 *)&def_ucast_rule->rx_action;
				bank = npc_get_bank(mcam, rule->entry);
				rvu_write64(rvu, blkaddr,
					    NPC_AF_MCAMEX_BANKX_ACTION
					    (rule->entry, bank), def_action);
			}

			npc_enable_mcam_entry(rvu, mcam, blkaddr,
					      rule->entry, true);
			rule->enable = true;
		}
	}

	/* Enable MCAM entries installed by PF with target as VF pcifunc */
	for (index = 0; index < mcam->bmap_entries; index++) {
		if (mcam->entry2target_pffunc[index] == target)
			npc_enable_mcam_entry(rvu, mcam, blkaddr,
					      index, true);
	}
	mutex_unlock(&mcam->lock);
}

void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
{
	struct npc_mcam *mcam = &rvu->hw->mcam;
	int blkaddr, index;

	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
	if (blkaddr < 0)
		return;

	mutex_lock(&mcam->lock);
	/* Disable MCAM entries installed by PF with target as VF pcifunc */
	for (index = 0; index < mcam->bmap_entries; index++) {
		if (mcam->entry2target_pffunc[index] == target)
			npc_enable_mcam_entry(rvu, mcam, blkaddr,
					      index, false);
	}
	mutex_unlock(&mcam->lock);
}