stm32-dma.c 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * Driver for STM32 DMA controller
 *
 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
 *
 * Copyright (C) M'boumba Cedric Madianga 2015
 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
 *
 * License terms:  GNU General Public License (GPL), version 2
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/sched.h>
#include <linux/slab.h>

#include "virt-dma.h"

#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */

/* DMA Stream x Configuration Register */
#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
#define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
#define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
#define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
#define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
#define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
#define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
#define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
#define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Cplete Int Enable*/
#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
					| STM32_DMA_SCR_MINC \
					| STM32_DMA_SCR_PINCOS \
					| STM32_DMA_SCR_PL_MASK)
#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
					| STM32_DMA_SCR_TEIE \
					| STM32_DMA_SCR_DMEIE)

/* DMA Stream x number of data register */
#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))

/* DMA stream peripheral address register */
#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))

/* DMA stream x memory 0 address register */
#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))

/* DMA stream x memory 1 address register */
#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))

/* DMA stream x FIFO control register */
#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
#define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
					| STM32_DMA_SFCR_DMDIS)

/* DMA direction */
#define STM32_DMA_DEV_TO_MEM		0x00
#define	STM32_DMA_MEM_TO_DEV		0x01
#define	STM32_DMA_MEM_TO_MEM		0x02

/* DMA priority level */
#define STM32_DMA_PRIORITY_LOW		0x00
#define STM32_DMA_PRIORITY_MEDIUM	0x01
#define STM32_DMA_PRIORITY_HIGH		0x02
#define STM32_DMA_PRIORITY_VERY_HIGH	0x03

/* DMA FIFO threshold selection */
#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03

#define STM32_DMA_MAX_DATA_ITEMS	0xffff
#define STM32_DMA_MAX_CHANNELS		0x08
#define STM32_DMA_MAX_REQUEST_ID	0x08
#define STM32_DMA_MAX_DATA_PARAM	0x03

enum stm32_dma_width {
	STM32_DMA_BYTE,
	STM32_DMA_HALF_WORD,
	STM32_DMA_WORD,
};

enum stm32_dma_burst_size {
	STM32_DMA_BURST_SINGLE,
	STM32_DMA_BURST_INCR4,
	STM32_DMA_BURST_INCR8,
	STM32_DMA_BURST_INCR16,
};

struct stm32_dma_cfg {
	u32 channel_id;
	u32 request_line;
	u32 stream_config;
	u32 threshold;
};

struct stm32_dma_chan_reg {
	u32 dma_lisr;
	u32 dma_hisr;
	u32 dma_lifcr;
	u32 dma_hifcr;
	u32 dma_scr;
	u32 dma_sndtr;
	u32 dma_spar;
	u32 dma_sm0ar;
	u32 dma_sm1ar;
	u32 dma_sfcr;
};

struct stm32_dma_sg_req {
	u32 len;
	struct stm32_dma_chan_reg chan_reg;
};

struct stm32_dma_desc {
	struct virt_dma_desc vdesc;
	bool cyclic;
	u32 num_sgs;
	struct stm32_dma_sg_req sg_req[];
};

struct stm32_dma_chan {
	struct virt_dma_chan vchan;
	bool config_init;
	bool busy;
	u32 id;
	u32 irq;
	struct stm32_dma_desc *desc;
	u32 next_sg;
	struct dma_slave_config	dma_sconfig;
	struct stm32_dma_chan_reg chan_reg;
};

struct stm32_dma_device {
	struct dma_device ddev;
	void __iomem *base;
	struct clk *clk;
	struct reset_control *rst;
	bool mem2mem;
	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
};

static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
{
	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
			    ddev);
}

static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
{
	return container_of(c, struct stm32_dma_chan, vchan.chan);
}

static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
{
	return container_of(vdesc, struct stm32_dma_desc, vdesc);
}

static struct device *chan2dev(struct stm32_dma_chan *chan)
{
	return &chan->vchan.chan.dev->device;
}

static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
{
	return readl_relaxed(dmadev->base + reg);
}

static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
{
	writel_relaxed(val, dmadev->base + reg);
}

static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs)
{
	return kzalloc(sizeof(struct stm32_dma_desc) +
		       sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT);
}

static int stm32_dma_get_width(struct stm32_dma_chan *chan,
			       enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return STM32_DMA_BYTE;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return STM32_DMA_HALF_WORD;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return STM32_DMA_WORD;
	default:
		dev_err(chan2dev(chan), "Dma bus width not supported\n");
		return -EINVAL;
	}
}

static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
{
	switch (maxburst) {
	case 0:
	case 1:
		return STM32_DMA_BURST_SINGLE;
	case 4:
		return STM32_DMA_BURST_INCR4;
	case 8:
		return STM32_DMA_BURST_INCR8;
	case 16:
		return STM32_DMA_BURST_INCR16;
	default:
		dev_err(chan2dev(chan), "Dma burst size not supported\n");
		return -EINVAL;
	}
}

static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
				      u32 src_maxburst, u32 dst_maxburst)
{
	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;

	if ((!src_maxburst) && (!dst_maxburst)) {
		/* Using direct mode */
		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
	} else {
		/* Using FIFO mode */
		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
	}
}

static int stm32_dma_slave_config(struct dma_chan *c,
				  struct dma_slave_config *config)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);

	memcpy(&chan->dma_sconfig, config, sizeof(*config));

	chan->config_init = true;

	return 0;
}

static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	u32 flags, dma_isr;

	/*
	 * Read "flags" from DMA_xISR register corresponding to the selected
	 * DMA channel at the correct bit offset inside that register.
	 *
	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
	 */

	if (chan->id & 4)
		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
	else
		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);

	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));

	return flags;
}

static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	u32 dma_ifcr;

	/*
	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
	 * DMA channel at the correct bit offset inside that register.
	 *
	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
	 */
	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));

	if (chan->id & 4)
		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
	else
		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
}

static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
	u32 dma_scr, id;

	id = chan->id;
	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));

	if (dma_scr & STM32_DMA_SCR_EN) {
		dma_scr &= ~STM32_DMA_SCR_EN;
		stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);

		do {
			dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
			dma_scr &= STM32_DMA_SCR_EN;
			if (!dma_scr)
				break;

			if (time_after_eq(jiffies, timeout)) {
				dev_err(chan2dev(chan), "%s: timeout!\n",
					__func__);
				return -EBUSY;
			}
			cond_resched();
		} while (1);
	}

	return 0;
}

static void stm32_dma_stop(struct stm32_dma_chan *chan)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	u32 dma_scr, dma_sfcr, status;
	int ret;

	/* Disable interrupts */
	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);

	/* Disable DMA */
	ret = stm32_dma_disable_chan(chan);
	if (ret < 0)
		return;

	/* Clear interrupt status if it is there */
	status = stm32_dma_irq_status(chan);
	if (status) {
		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
			__func__, status);
		stm32_dma_irq_clear(chan, status);
	}

	chan->busy = false;
}

static int stm32_dma_terminate_all(struct dma_chan *c)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&chan->vchan.lock, flags);

	if (chan->busy) {
		stm32_dma_stop(chan);
		chan->desc = NULL;
	}

	vchan_get_all_descriptors(&chan->vchan, &head);
	spin_unlock_irqrestore(&chan->vchan.lock, flags);
	vchan_dma_desc_free_list(&chan->vchan, &head);

	return 0;
}

static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));

	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
}

static int stm32_dma_start_transfer(struct stm32_dma_chan *chan)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	struct virt_dma_desc *vdesc;
	struct stm32_dma_sg_req *sg_req;
	struct stm32_dma_chan_reg *reg;
	u32 status;
	int ret;

	ret = stm32_dma_disable_chan(chan);
	if (ret < 0)
		return ret;

	if (!chan->desc) {
		vdesc = vchan_next_desc(&chan->vchan);
		if (!vdesc)
440
			return -EPERM;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

		chan->desc = to_stm32_dma_desc(vdesc);
		chan->next_sg = 0;
	}

	if (chan->next_sg == chan->desc->num_sgs)
		chan->next_sg = 0;

	sg_req = &chan->desc->sg_req[chan->next_sg];
	reg = &sg_req->chan_reg;

	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);

	chan->next_sg++;

	/* Clear interrupt status if it is there */
	status = stm32_dma_irq_status(chan);
	if (status)
		stm32_dma_irq_clear(chan, status);

	stm32_dma_dump_reg(chan);

	/* Start DMA */
	reg->dma_scr |= STM32_DMA_SCR_EN;
	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);

	chan->busy = true;

	return 0;
}

static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	struct stm32_dma_sg_req *sg_req;
	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;

	id = chan->id;
	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));

	if (dma_scr & STM32_DMA_SCR_DBM) {
		if (chan->next_sg == chan->desc->num_sgs)
			chan->next_sg = 0;

		sg_req = &chan->desc->sg_req[chan->next_sg];

		if (dma_scr & STM32_DMA_SCR_CT) {
			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
		} else {
			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
		}

		chan->next_sg++;
	}
}

static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
{
	if (chan->desc) {
		if (chan->desc->cyclic) {
			vchan_cyclic_callback(&chan->desc->vdesc);
			stm32_dma_configure_next_sg(chan);
		} else {
			chan->busy = false;
			if (chan->next_sg == chan->desc->num_sgs) {
				list_del(&chan->desc->vdesc.node);
				vchan_cookie_complete(&chan->desc->vdesc);
				chan->desc = NULL;
			}
			stm32_dma_start_transfer(chan);
		}
	}
}

static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
{
	struct stm32_dma_chan *chan = devid;
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
530
	u32 status, scr;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

	spin_lock(&chan->vchan.lock);

	status = stm32_dma_irq_status(chan);
	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));

	if ((status & STM32_DMA_TCI) && (scr & STM32_DMA_SCR_TCIE)) {
		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
		stm32_dma_handle_chan_done(chan);

	} else {
		stm32_dma_irq_clear(chan, status);
		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
	}

	spin_unlock(&chan->vchan.lock);

	return IRQ_HANDLED;
}

static void stm32_dma_issue_pending(struct dma_chan *c)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&chan->vchan.lock, flags);
	if (!chan->busy) {
		if (vchan_issue_pending(&chan->vchan) && !chan->desc) {
			ret = stm32_dma_start_transfer(chan);
561
			if ((!ret) && (chan->desc->cyclic))
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
				stm32_dma_configure_next_sg(chan);
		}
	}
	spin_unlock_irqrestore(&chan->vchan.lock, flags);
}

static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
				    enum dma_transfer_direction direction,
				    enum dma_slave_buswidth *buswidth)
{
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
	int src_bus_width, dst_bus_width;
	int src_burst_size, dst_burst_size;
	u32 src_maxburst, dst_maxburst;
	u32 dma_scr = 0;

	src_addr_width = chan->dma_sconfig.src_addr_width;
	dst_addr_width = chan->dma_sconfig.dst_addr_width;
	src_maxburst = chan->dma_sconfig.src_maxburst;
	dst_maxburst = chan->dma_sconfig.dst_maxburst;

	switch (direction) {
	case DMA_MEM_TO_DEV:
		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
		if (dst_bus_width < 0)
			return dst_bus_width;

		dst_burst_size = stm32_dma_get_burst(chan, dst_maxburst);
		if (dst_burst_size < 0)
			return dst_burst_size;

		if (!src_addr_width)
			src_addr_width = dst_addr_width;

		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
		if (src_bus_width < 0)
			return src_bus_width;

		src_burst_size = stm32_dma_get_burst(chan, src_maxburst);
		if (src_burst_size < 0)
			return src_burst_size;

		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
			STM32_DMA_SCR_PSIZE(dst_bus_width) |
			STM32_DMA_SCR_MSIZE(src_bus_width) |
			STM32_DMA_SCR_PBURST(dst_burst_size) |
			STM32_DMA_SCR_MBURST(src_burst_size);

		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
		*buswidth = dst_addr_width;
		break;

	case DMA_DEV_TO_MEM:
		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
		if (src_bus_width < 0)
			return src_bus_width;

		src_burst_size = stm32_dma_get_burst(chan, src_maxburst);
		if (src_burst_size < 0)
			return src_burst_size;

		if (!dst_addr_width)
			dst_addr_width = src_addr_width;

		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
		if (dst_bus_width < 0)
			return dst_bus_width;

		dst_burst_size = stm32_dma_get_burst(chan, dst_maxburst);
		if (dst_burst_size < 0)
			return dst_burst_size;

		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
			STM32_DMA_SCR_PSIZE(src_bus_width) |
			STM32_DMA_SCR_MSIZE(dst_bus_width) |
			STM32_DMA_SCR_PBURST(src_burst_size) |
			STM32_DMA_SCR_MBURST(dst_burst_size);

		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
		*buswidth = chan->dma_sconfig.src_addr_width;
		break;

	default:
		dev_err(chan2dev(chan), "Dma direction is not supported\n");
		return -EINVAL;
	}

	stm32_dma_set_fifo_config(chan, src_maxburst, dst_maxburst);

	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
	chan->chan_reg.dma_scr |= dma_scr;

	return 0;
}

static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
{
	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
}

static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
	struct dma_chan *c, struct scatterlist *sgl,
	u32 sg_len, enum dma_transfer_direction direction,
	unsigned long flags, void *context)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	struct stm32_dma_desc *desc;
	struct scatterlist *sg;
	enum dma_slave_buswidth buswidth;
	u32 nb_data_items;
	int i, ret;

	if (!chan->config_init) {
		dev_err(chan2dev(chan), "dma channel is not configured\n");
		return NULL;
	}

	if (sg_len < 1) {
		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
		return NULL;
	}

	desc = stm32_dma_alloc_desc(sg_len);
	if (!desc)
		return NULL;

	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth);
	if (ret < 0)
		goto err;

	/* Set peripheral flow controller */
	if (chan->dma_sconfig.device_fc)
		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
	else
		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;

	for_each_sg(sgl, sg, sg_len, i) {
		desc->sg_req[i].len = sg_dma_len(sg);

		nb_data_items = desc->sg_req[i].len / buswidth;
		if (nb_data_items > STM32_DMA_MAX_DATA_ITEMS) {
			dev_err(chan2dev(chan), "nb items not supported\n");
			goto err;
		}

		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
	}

	desc->num_sgs = sg_len;
	desc->cyclic = false;

	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);

err:
	kfree(desc);
	return NULL;
}

static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
	unsigned long flags)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	struct stm32_dma_desc *desc;
	enum dma_slave_buswidth buswidth;
	u32 num_periods, nb_data_items;
	int i, ret;

	if (!buf_len || !period_len) {
		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
		return NULL;
	}

	if (!chan->config_init) {
		dev_err(chan2dev(chan), "dma channel is not configured\n");
		return NULL;
	}

	if (buf_len % period_len) {
		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
		return NULL;
	}

	/*
	 * We allow to take more number of requests till DMA is
	 * not started. The driver will loop over all requests.
	 * Once DMA is started then new requests can be queued only after
	 * terminating the DMA.
	 */
	if (chan->busy) {
		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
		return NULL;
	}

	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth);
	if (ret < 0)
		return NULL;

	nb_data_items = period_len / buswidth;
	if (nb_data_items > STM32_DMA_MAX_DATA_ITEMS) {
		dev_err(chan2dev(chan), "number of items not supported\n");
		return NULL;
	}

	/*  Enable Circular mode or double buffer mode */
	if (buf_len == period_len)
		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
	else
		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;

	/* Clear periph ctrl if client set it */
	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;

	num_periods = buf_len / period_len;

	desc = stm32_dma_alloc_desc(num_periods);
	if (!desc)
		return NULL;

	for (i = 0; i < num_periods; i++) {
		desc->sg_req[i].len = period_len;

		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
		buf_addr += period_len;
	}

	desc->num_sgs = num_periods;
	desc->cyclic = true;

	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}

static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
	struct dma_chan *c, dma_addr_t dest,
	dma_addr_t src, size_t len, unsigned long flags)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	u32 num_sgs;
	struct stm32_dma_desc *desc;
	size_t xfer_count, offset;
	int i;

	num_sgs = DIV_ROUND_UP(len, STM32_DMA_MAX_DATA_ITEMS);
	desc = stm32_dma_alloc_desc(num_sgs);
	if (!desc)
		return NULL;

	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
		xfer_count = min_t(size_t, len - offset,
				   STM32_DMA_MAX_DATA_ITEMS);

		desc->sg_req[i].len = xfer_count;

		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
		desc->sg_req[i].chan_reg.dma_scr =
			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
			STM32_DMA_SCR_MINC |
			STM32_DMA_SCR_PINC |
			STM32_DMA_SCR_TCIE |
			STM32_DMA_SCR_TEIE;
		desc->sg_req[i].chan_reg.dma_sfcr = STM32_DMA_SFCR_DMDIS |
			STM32_DMA_SFCR_FTH(STM32_DMA_FIFO_THRESHOLD_FULL) |
			STM32_DMA_SFCR_FEIE;
		desc->sg_req[i].chan_reg.dma_spar = src + offset;
		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
	}

	desc->num_sgs = num_sgs;
	desc->cyclic = false;

	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}

static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
				     struct stm32_dma_desc *desc,
				     u32 next_sg)
{
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	u32 dma_scr, width, residue, count;
	int i;

	residue = 0;

	for (i = next_sg; i < desc->num_sgs; i++)
		residue += desc->sg_req[i].len;

	if (next_sg != 0) {
		dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
		width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
		count = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));

		residue += count << width;
	}

	return residue;
}

static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
					   dma_cookie_t cookie,
					   struct dma_tx_state *state)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	struct virt_dma_desc *vdesc;
	enum dma_status status;
	unsigned long flags;
883
	u32 residue = 0;
884 885 886 887 888 889 890

	status = dma_cookie_status(c, cookie, state);
	if ((status == DMA_COMPLETE) || (!state))
		return status;

	spin_lock_irqsave(&chan->vchan.lock, flags);
	vdesc = vchan_find_desc(&chan->vchan, cookie);
891
	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
892 893
		residue = stm32_dma_desc_residue(chan, chan->desc,
						 chan->next_sg);
894
	else if (vdesc)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
		residue = stm32_dma_desc_residue(chan,
						 to_stm32_dma_desc(vdesc), 0);
	dma_set_residue(state, residue);

	spin_unlock_irqrestore(&chan->vchan.lock, flags);

	return status;
}

static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	int ret;

	chan->config_init = false;
	ret = clk_prepare_enable(dmadev->clk);
	if (ret < 0) {
		dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
		return ret;
	}

	ret = stm32_dma_disable_chan(chan);
	if (ret < 0)
		clk_disable_unprepare(dmadev->clk);

	return ret;
}

static void stm32_dma_free_chan_resources(struct dma_chan *c)
{
	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
	unsigned long flags;

	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);

	if (chan->busy) {
		spin_lock_irqsave(&chan->vchan.lock, flags);
		stm32_dma_stop(chan);
		chan->desc = NULL;
		spin_unlock_irqrestore(&chan->vchan.lock, flags);
	}

	clk_disable_unprepare(dmadev->clk);

	vchan_free_chan_resources(to_virt_chan(c));
}

static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
}

949
static void stm32_dma_set_config(struct stm32_dma_chan *chan,
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
			  struct stm32_dma_cfg *cfg)
{
	stm32_dma_clear_reg(&chan->chan_reg);

	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);

	/* Enable Interrupts  */
	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;

	chan->chan_reg.dma_sfcr = cfg->threshold & STM32_DMA_SFCR_FTH_MASK;
}

static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
					   struct of_dma *ofdma)
{
	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
	struct stm32_dma_cfg cfg;
	struct stm32_dma_chan *chan;
	struct dma_chan *c;

971
	if (dma_spec->args_count < 4)
972 973 974 975 976
		return NULL;

	cfg.channel_id = dma_spec->args[0];
	cfg.request_line = dma_spec->args[1];
	cfg.stream_config = dma_spec->args[2];
977
	cfg.threshold = dma_spec->args[3];
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	if ((cfg.channel_id >= STM32_DMA_MAX_CHANNELS) || (cfg.request_line >=
				STM32_DMA_MAX_REQUEST_ID))
		return NULL;

	chan = &dmadev->chan[cfg.channel_id];

	c = dma_get_slave_channel(&chan->vchan.chan);
	if (c)
		stm32_dma_set_config(chan, &cfg);

	return c;
}

static const struct of_device_id stm32_dma_of_match[] = {
	{ .compatible = "st,stm32-dma", },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, stm32_dma_of_match);

static int stm32_dma_probe(struct platform_device *pdev)
{
	struct stm32_dma_chan *chan;
	struct stm32_dma_device *dmadev;
	struct dma_device *dd;
	const struct of_device_id *match;
	struct resource *res;
	int i, ret;

	match = of_match_device(stm32_dma_of_match, &pdev->dev);
	if (!match) {
		dev_err(&pdev->dev, "Error: No device match found\n");
		return -ENODEV;
	}

	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
	if (!dmadev)
		return -ENOMEM;

	dd = &dmadev->ddev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(dmadev->base))
		return PTR_ERR(dmadev->base);

	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(dmadev->clk)) {
		dev_err(&pdev->dev, "Error: Missing controller clock\n");
		return PTR_ERR(dmadev->clk);
	}

	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
						"st,mem2mem");

	dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
	if (!IS_ERR(dmadev->rst)) {
		reset_control_assert(dmadev->rst);
		udelay(2);
		reset_control_deassert(dmadev->rst);
	}

	dma_cap_set(DMA_SLAVE, dd->cap_mask);
	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
	dd->device_tx_status = stm32_dma_tx_status;
	dd->device_issue_pending = stm32_dma_issue_pending;
	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
	dd->device_config = stm32_dma_slave_config;
	dd->device_terminate_all = stm32_dma_terminate_all;
	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
	dd->dev = &pdev->dev;
	INIT_LIST_HEAD(&dd->channels);

	if (dmadev->mem2mem) {
		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
		dd->directions |= BIT(DMA_MEM_TO_MEM);
	}

	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
		chan = &dmadev->chan[i];
		chan->id = i;
		chan->vchan.desc_free = stm32_dma_desc_free;
		vchan_init(&chan->vchan, dd);
	}

	ret = dma_async_device_register(dd);
	if (ret)
		return ret;

	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
		chan = &dmadev->chan[i];
		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
		if (!res) {
			ret = -EINVAL;
			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
			goto err_unregister;
		}
		chan->irq = res->start;
		ret = devm_request_irq(&pdev->dev, chan->irq,
				       stm32_dma_chan_irq, 0,
				       dev_name(chan2dev(chan)), chan);
		if (ret) {
			dev_err(&pdev->dev,
				"request_irq failed with err %d channel %d\n",
				ret, i);
			goto err_unregister;
		}
	}

	ret = of_dma_controller_register(pdev->dev.of_node,
					 stm32_dma_of_xlate, dmadev);
	if (ret < 0) {
		dev_err(&pdev->dev,
			"STM32 DMA DMA OF registration failed %d\n", ret);
		goto err_unregister;
	}

	platform_set_drvdata(pdev, dmadev);

	dev_info(&pdev->dev, "STM32 DMA driver registered\n");

	return 0;

err_unregister:
	dma_async_device_unregister(dd);

	return ret;
}

static struct platform_driver stm32_dma_driver = {
	.driver = {
		.name = "stm32-dma",
		.of_match_table = stm32_dma_of_match,
	},
};

static int __init stm32_dma_init(void)
{
	return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
}
subsys_initcall(stm32_dma_init);