book3s_xive.c 55.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt) "xive-kvm: " fmt

#include <linux/kernel.h>
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/gfp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/percpu.h>
#include <linux/cpumask.h>
19
#include <linux/uaccess.h>
20 21 22 23 24 25 26
#include <asm/kvm_book3s.h>
#include <asm/kvm_ppc.h>
#include <asm/hvcall.h>
#include <asm/xics.h>
#include <asm/xive.h>
#include <asm/xive-regs.h>
#include <asm/debug.h>
27
#include <asm/debugfs.h>
28 29 30 31 32 33 34 35 36 37 38 39 40
#include <asm/time.h>
#include <asm/opal.h>

#include <linux/debugfs.h>
#include <linux/seq_file.h>

#include "book3s_xive.h"


/*
 * Virtual mode variants of the hcalls for use on radix/radix
 * with AIL. They require the VCPU's VP to be "pushed"
 *
41
 * We still instantiate them here because we use some of the
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * generated utility functions as well in this file.
 */
#define XIVE_RUNTIME_CHECKS
#define X_PFX xive_vm_
#define X_STATIC static
#define X_STAT_PFX stat_vm_
#define __x_tima		xive_tima
#define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
#define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
#define __x_writeb	__raw_writeb
#define __x_readw	__raw_readw
#define __x_readq	__raw_readq
#define __x_writeq	__raw_writeq

#include "book3s_xive_template.c"

/*
 * We leave a gap of a couple of interrupts in the queue to
 * account for the IPI and additional safety guard.
 */
#define XIVE_Q_GAP	2

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/*
 * Push a vcpu's context to the XIVE on guest entry.
 * This assumes we are in virtual mode (MMU on)
 */
void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
{
	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
	u64 pq;

	if (!tima)
		return;
	eieio();
	__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
	vcpu->arch.xive_pushed = 1;
	eieio();

	/*
	 * We clear the irq_pending flag. There is a small chance of a
	 * race vs. the escalation interrupt happening on another
	 * processor setting it again, but the only consequence is to
	 * cause a spurious wakeup on the next H_CEDE, which is not an
	 * issue.
	 */
	vcpu->arch.irq_pending = 0;

	/*
	 * In single escalation mode, if the escalation interrupt is
	 * on, we mask it.
	 */
	if (vcpu->arch.xive_esc_on) {
		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
						  XIVE_ESB_SET_PQ_01));
		mb();

		/*
		 * We have a possible subtle race here: The escalation
		 * interrupt might have fired and be on its way to the
		 * host queue while we mask it, and if we unmask it
		 * early enough (re-cede right away), there is a
		 * theorical possibility that it fires again, thus
		 * landing in the target queue more than once which is
		 * a big no-no.
		 *
		 * Fortunately, solving this is rather easy. If the
		 * above load setting PQ to 01 returns a previous
		 * value where P is set, then we know the escalation
		 * interrupt is somewhere on its way to the host. In
		 * that case we simply don't clear the xive_esc_on
		 * flag below. It will be eventually cleared by the
		 * handler for the escalation interrupt.
		 *
		 * Then, when doing a cede, we check that flag again
		 * before re-enabling the escalation interrupt, and if
		 * set, we abort the cede.
		 */
		if (!(pq & XIVE_ESB_VAL_P))
			/* Now P is 0, we can clear the flag */
			vcpu->arch.xive_esc_on = 0;
	}
}
EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * This is a simple trigger for a generic XIVE IRQ. This must
 * only be called for interrupts that support a trigger page
 */
static bool xive_irq_trigger(struct xive_irq_data *xd)
{
	/* This should be only for MSIs */
	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
		return false;

	/* Those interrupts should always have a trigger page */
	if (WARN_ON(!xd->trig_mmio))
		return false;

	out_be64(xd->trig_mmio, 0);

	return true;
}

static irqreturn_t xive_esc_irq(int irq, void *data)
{
	struct kvm_vcpu *vcpu = data;

150
	vcpu->arch.irq_pending = 1;
151 152 153 154
	smp_mb();
	if (vcpu->arch.ceded)
		kvmppc_fast_vcpu_kick(vcpu);

155 156 157 158 159 160 161 162 163 164 165
	/* Since we have the no-EOI flag, the interrupt is effectively
	 * disabled now. Clearing xive_esc_on means we won't bother
	 * doing so on the next entry.
	 *
	 * This also allows the entry code to know that if a PQ combination
	 * of 10 is observed while xive_esc_on is true, it means the queue
	 * contains an unprocessed escalation interrupt. We don't make use of
	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
	 */
	vcpu->arch.xive_esc_on = false;

166 167 168
	return IRQ_HANDLED;
}

169 170
int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
				  bool single_escalation)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
	struct xive_q *q = &xc->queues[prio];
	char *name = NULL;
	int rc;

	/* Already there ? */
	if (xc->esc_virq[prio])
		return 0;

	/* Hook up the escalation interrupt */
	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
	if (!xc->esc_virq[prio]) {
		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
		       prio, xc->server_num);
		return -EIO;
	}

189
	if (single_escalation)
190 191 192 193 194
		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
				 vcpu->kvm->arch.lpid, xc->server_num);
	else
		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
				 vcpu->kvm->arch.lpid, xc->server_num, prio);
195 196 197 198 199 200
	if (!name) {
		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
		       prio, xc->server_num);
		rc = -ENOMEM;
		goto error;
	}
201 202 203

	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);

204 205 206 207 208 209 210 211
	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
			 IRQF_NO_THREAD, name, vcpu);
	if (rc) {
		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
		       prio, xc->server_num);
		goto error;
	}
	xc->esc_virq_names[prio] = name;
212 213 214 215 216 217 218 219 220

	/* In single escalation mode, we grab the ESB MMIO of the
	 * interrupt and mask it. Also populate the VCPU v/raddr
	 * of the ESB page for use by asm entry/exit code. Finally
	 * set the XIVE_IRQ_NO_EOI flag which will prevent the
	 * core code from performing an EOI on the escalation
	 * interrupt, thus leaving it effectively masked after
	 * it fires once.
	 */
221
	if (single_escalation) {
222 223 224 225 226 227 228 229 230
		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);

		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
		vcpu->arch.xive_esc_raddr = xd->eoi_page;
		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
		xd->flags |= XIVE_IRQ_NO_EOI;
	}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	return 0;
error:
	irq_dispose_mapping(xc->esc_virq[prio]);
	xc->esc_virq[prio] = 0;
	kfree(name);
	return rc;
}

static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
	struct kvmppc_xive *xive = xc->xive;
	struct xive_q *q =  &xc->queues[prio];
	void *qpage;
	int rc;

	if (WARN_ON(q->qpage))
		return 0;

	/* Allocate the queue and retrieve infos on current node for now */
	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
	if (!qpage) {
		pr_err("Failed to allocate queue %d for VCPU %d\n",
		       prio, xc->server_num);
255
		return -ENOMEM;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	}
	memset(qpage, 0, 1 << xive->q_order);

	/*
	 * Reconfigure the queue. This will set q->qpage only once the
	 * queue is fully configured. This is a requirement for prio 0
	 * as we will stop doing EOIs for every IPI as soon as we observe
	 * qpage being non-NULL, and instead will only EOI when we receive
	 * corresponding queue 0 entries
	 */
	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
					 xive->q_order, true);
	if (rc)
		pr_err("Failed to configure queue %d for VCPU %d\n",
		       prio, xc->server_num);
	return rc;
}

274
/* Called with xive->lock held */
275 276 277 278 279 280
static int xive_check_provisioning(struct kvm *kvm, u8 prio)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvm_vcpu *vcpu;
	int i, rc;

281
	lockdep_assert_held(&xive->lock);
282 283 284 285 286 287 288

	/* Already provisioned ? */
	if (xive->qmap & (1 << prio))
		return 0;

	pr_devel("Provisioning prio... %d\n", prio);

289
	/* Provision each VCPU and enable escalations if needed */
290 291 292 293
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!vcpu->arch.xive_vcpu)
			continue;
		rc = xive_provision_queue(vcpu, prio);
294
		if (rc == 0 && !xive->single_escalation)
295 296
			kvmppc_xive_attach_escalation(vcpu, prio,
						      xive->single_escalation);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		if (rc)
			return rc;
	}

	/* Order previous stores and mark it as provisioned */
	mb();
	xive->qmap |= (1 << prio);
	return 0;
}

static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
{
	struct kvm_vcpu *vcpu;
	struct kvmppc_xive_vcpu *xc;
	struct xive_q *q;

	/* Locate target server */
	vcpu = kvmppc_xive_find_server(kvm, server);
	if (!vcpu) {
		pr_warn("%s: Can't find server %d\n", __func__, server);
		return;
	}
	xc = vcpu->arch.xive_vcpu;
	if (WARN_ON(!xc))
		return;

	q = &xc->queues[prio];
	atomic_inc(&q->pending_count);
}

static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
	struct xive_q *q;
	u32 max;

	if (WARN_ON(!xc))
		return -ENXIO;
	if (!xc->valid)
		return -ENXIO;

	q = &xc->queues[prio];
	if (WARN_ON(!q->qpage))
		return -ENXIO;

	/* Calculate max number of interrupts in that queue. */
	max = (q->msk + 1) - XIVE_Q_GAP;
	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
}

347
int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{
	struct kvm_vcpu *vcpu;
	int i, rc;

	/* Locate target server */
	vcpu = kvmppc_xive_find_server(kvm, *server);
	if (!vcpu) {
		pr_devel("Can't find server %d\n", *server);
		return -EINVAL;
	}

	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);

	/* Try pick it */
	rc = xive_try_pick_queue(vcpu, prio);
	if (rc == 0)
		return rc;

	pr_devel(" .. failed, looking up candidate...\n");

	/* Failed, pick another VCPU */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!vcpu->arch.xive_vcpu)
			continue;
		rc = xive_try_pick_queue(vcpu, prio);
		if (rc == 0) {
			*server = vcpu->arch.xive_vcpu->server_num;
			pr_devel("  found on 0x%x/%d\n", *server, prio);
			return rc;
		}
	}
	pr_devel("  no available target !\n");

	/* No available target ! */
	return -EBUSY;
}

static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
			     struct kvmppc_xive_src_block *sb,
			     struct kvmppc_xive_irq_state *state)
{
	struct xive_irq_data *xd;
	u32 hw_num;
	u8 old_prio;
	u64 val;

	/*
	 * Take the lock, set masked, try again if racing
	 * with H_EOI
	 */
	for (;;) {
		arch_spin_lock(&sb->lock);
		old_prio = state->guest_priority;
		state->guest_priority = MASKED;
		mb();
		if (!state->in_eoi)
			break;
		state->guest_priority = old_prio;
		arch_spin_unlock(&sb->lock);
	}

	/* No change ? Bail */
	if (old_prio == MASKED)
		return old_prio;

	/* Get the right irq */
	kvmppc_xive_select_irq(state, &hw_num, &xd);

	/*
	 * If the interrupt is marked as needing masking via
	 * firmware, we do it here. Firmware masking however
	 * is "lossy", it won't return the old p and q bits
	 * and won't set the interrupt to a state where it will
	 * record queued ones. If this is an issue we should do
	 * lazy masking instead.
	 *
	 * For now, we work around this in unmask by forcing
	 * an interrupt whenever we unmask a non-LSI via FW
	 * (if ever).
	 */
	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
		xive_native_configure_irq(hw_num,
430 431
				kvmppc_xive_vp(xive, state->act_server),
				MASKED, state->number);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		/* set old_p so we can track if an H_EOI was done */
		state->old_p = true;
		state->old_q = false;
	} else {
		/* Set PQ to 10, return old P and old Q and remember them */
		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
		state->old_p = !!(val & 2);
		state->old_q = !!(val & 1);

		/*
		 * Synchronize hardware to sensure the queues are updated
		 * when masking
		 */
		xive_native_sync_source(hw_num);
	}

	return old_prio;
}

static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
				 struct kvmppc_xive_irq_state *state)
{
	/*
	 * Take the lock try again if racing with H_EOI
	 */
	for (;;) {
		arch_spin_lock(&sb->lock);
		if (!state->in_eoi)
			break;
		arch_spin_unlock(&sb->lock);
	}
}

static void xive_finish_unmask(struct kvmppc_xive *xive,
			       struct kvmppc_xive_src_block *sb,
			       struct kvmppc_xive_irq_state *state,
			       u8 prio)
{
	struct xive_irq_data *xd;
	u32 hw_num;

	/* If we aren't changing a thing, move on */
	if (state->guest_priority != MASKED)
		goto bail;

	/* Get the right irq */
	kvmppc_xive_select_irq(state, &hw_num, &xd);

	/*
	 * See command in xive_lock_and_mask() concerning masking
	 * via firmware.
	 */
	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
		xive_native_configure_irq(hw_num,
486 487
				kvmppc_xive_vp(xive, state->act_server),
				state->act_priority, state->number);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		/* If an EOI is needed, do it here */
		if (!state->old_p)
			xive_vm_source_eoi(hw_num, xd);
		/* If this is not an LSI, force a trigger */
		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
			xive_irq_trigger(xd);
		goto bail;
	}

	/* Old Q set, set PQ to 11 */
	if (state->old_q)
		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);

	/*
	 * If not old P, then perform an "effective" EOI,
	 * on the source. This will handle the cases where
	 * FW EOI is needed.
	 */
	if (!state->old_p)
		xive_vm_source_eoi(hw_num, xd);

	/* Synchronize ordering and mark unmasked */
	mb();
bail:
	state->guest_priority = prio;
}

/*
 * Target an interrupt to a given server/prio, this will fallback
 * to another server if necessary and perform the HW targetting
 * updates as needed
 *
 * NOTE: Must be called with the state lock held
 */
static int xive_target_interrupt(struct kvm *kvm,
				 struct kvmppc_xive_irq_state *state,
				 u32 server, u8 prio)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	u32 hw_num;
	int rc;

	/*
	 * This will return a tentative server and actual
	 * priority. The count for that new target will have
	 * already been incremented.
	 */
535
	rc = kvmppc_xive_select_target(kvm, &server, prio);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

	/*
	 * We failed to find a target ? Not much we can do
	 * at least until we support the GIQ.
	 */
	if (rc)
		return rc;

	/*
	 * Increment the old queue pending count if there
	 * was one so that the old queue count gets adjusted later
	 * when observed to be empty.
	 */
	if (state->act_priority != MASKED)
		xive_inc_q_pending(kvm,
				   state->act_server,
				   state->act_priority);
	/*
	 * Update state and HW
	 */
	state->act_priority = prio;
	state->act_server = server;

	/* Get the right irq */
	kvmppc_xive_select_irq(state, &hw_num, NULL);

	return xive_native_configure_irq(hw_num,
563
					 kvmppc_xive_vp(xive, server),
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
					 prio, state->number);
}

/*
 * Targetting rules: In order to avoid losing track of
 * pending interrupts accross mask and unmask, which would
 * allow queue overflows, we implement the following rules:
 *
 *  - Unless it was never enabled (or we run out of capacity)
 *    an interrupt is always targetted at a valid server/queue
 *    pair even when "masked" by the guest. This pair tends to
 *    be the last one used but it can be changed under some
 *    circumstances. That allows us to separate targetting
 *    from masking, we only handle accounting during (re)targetting,
 *    this also allows us to let an interrupt drain into its target
 *    queue after masking, avoiding complex schemes to remove
 *    interrupts out of remote processor queues.
 *
 *  - When masking, we set PQ to 10 and save the previous value
 *    of P and Q.
 *
 *  - When unmasking, if saved Q was set, we set PQ to 11
 *    otherwise we leave PQ to the HW state which will be either
 *    10 if nothing happened or 11 if the interrupt fired while
 *    masked. Effectively we are OR'ing the previous Q into the
 *    HW Q.
 *
 *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
 *    which will unmask the interrupt and shoot a new one if Q was
 *    set.
 *
 *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
 *    effectively meaning an H_EOI from the guest is still expected
 *    for that interrupt).
 *
 *  - If H_EOI occurs while masked, we clear the saved P.
 *
 *  - When changing target, we account on the new target and
 *    increment a separate "pending" counter on the old one.
 *    This pending counter will be used to decrement the old
 *    target's count when its queue has been observed empty.
 */

int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
			 u32 priority)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u8 new_act_prio;
	int rc = 0;
	u16 idx;

	if (!xive)
		return -ENODEV;

	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
		 irq, server, priority);

	/* First, check provisioning of queues */
624 625
	if (priority != MASKED) {
		mutex_lock(&xive->lock);
626 627
		rc = xive_check_provisioning(xive->kvm,
			      xive_prio_from_guest(priority));
628 629
		mutex_unlock(&xive->lock);
	}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	if (rc) {
		pr_devel("  provisioning failure %d !\n", rc);
		return rc;
	}

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return -EINVAL;
	state = &sb->irq_state[idx];

	/*
	 * We first handle masking/unmasking since the locking
	 * might need to be retried due to EOIs, we'll handle
	 * targetting changes later. These functions will return
	 * with the SB lock held.
	 *
	 * xive_lock_and_mask() will also set state->guest_priority
	 * but won't otherwise change other fields of the state.
	 *
	 * xive_lock_for_unmask will not actually unmask, this will
	 * be done later by xive_finish_unmask() once the targetting
	 * has been done, so we don't try to unmask an interrupt
	 * that hasn't yet been targetted.
	 */
	if (priority == MASKED)
		xive_lock_and_mask(xive, sb, state);
	else
		xive_lock_for_unmask(sb, state);


	/*
	 * Then we handle targetting.
	 *
	 * First calculate a new "actual priority"
	 */
	new_act_prio = state->act_priority;
	if (priority != MASKED)
		new_act_prio = xive_prio_from_guest(priority);

	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
		 new_act_prio, state->act_server, state->act_priority);

	/*
	 * Then check if we actually need to change anything,
	 *
	 * The condition for re-targetting the interrupt is that
	 * we have a valid new priority (new_act_prio is not 0xff)
	 * and either the server or the priority changed.
	 *
	 * Note: If act_priority was ff and the new priority is
	 *       also ff, we don't do anything and leave the interrupt
	 *       untargetted. An attempt of doing an int_on on an
	 *       untargetted interrupt will fail. If that is a problem
	 *       we could initialize interrupts with valid default
	 */

	if (new_act_prio != MASKED &&
	    (state->act_server != server ||
	     state->act_priority != new_act_prio))
		rc = xive_target_interrupt(kvm, state, server, new_act_prio);

	/*
	 * Perform the final unmasking of the interrupt source
	 * if necessary
	 */
	if (priority != MASKED)
		xive_finish_unmask(xive, sb, state, priority);

	/*
	 * Finally Update saved_priority to match. Only int_on/off
	 * set this field to a different value.
	 */
	state->saved_priority = priority;

	arch_spin_unlock(&sb->lock);
	return rc;
}

int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
			 u32 *priority)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u16 idx;

	if (!xive)
		return -ENODEV;

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return -EINVAL;
	state = &sb->irq_state[idx];
	arch_spin_lock(&sb->lock);
724
	*server = state->act_server;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	*priority = state->guest_priority;
	arch_spin_unlock(&sb->lock);

	return 0;
}

int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u16 idx;

	if (!xive)
		return -ENODEV;

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return -EINVAL;
	state = &sb->irq_state[idx];

	pr_devel("int_on(irq=0x%x)\n", irq);

	/*
	 * Check if interrupt was not targetted
	 */
	if (state->act_priority == MASKED) {
		pr_devel("int_on on untargetted interrupt\n");
		return -EINVAL;
	}

	/* If saved_priority is 0xff, do nothing */
	if (state->saved_priority == MASKED)
		return 0;

	/*
	 * Lock and unmask it.
	 */
	xive_lock_for_unmask(sb, state);
	xive_finish_unmask(xive, sb, state, state->saved_priority);
	arch_spin_unlock(&sb->lock);

	return 0;
}

int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u16 idx;

	if (!xive)
		return -ENODEV;

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return -EINVAL;
	state = &sb->irq_state[idx];

	pr_devel("int_off(irq=0x%x)\n", irq);

	/*
	 * Lock and mask
	 */
	state->saved_priority = xive_lock_and_mask(xive, sb, state);
	arch_spin_unlock(&sb->lock);

	return 0;
}

static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
{
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u16 idx;

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return false;
	state = &sb->irq_state[idx];
	if (!state->valid)
		return false;

	/*
	 * Trigger the IPI. This assumes we never restore a pass-through
	 * interrupt which should be safe enough
	 */
	xive_irq_trigger(&state->ipi_data);

	return true;
}

u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;

	if (!xc)
		return 0;

	/* Return the per-cpu state for state saving/migration */
	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
827 828
	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
}

int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
	u8 cppr, mfrr;
	u32 xisr;

	if (!xc || !xive)
		return -ENOENT;

	/* Grab individual state fields. We don't use pending_pri */
	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
		KVM_REG_PPC_ICP_XISR_MASK;
	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;

	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
		 xc->server_num, cppr, mfrr, xisr);

	/*
	 * We can't update the state of a "pushed" VCPU, but that
852 853
	 * shouldn't happen because the vcpu->mutex makes running a
	 * vcpu mutually exclusive with doing one_reg get/set on it.
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	 */
	if (WARN_ON(vcpu->arch.xive_pushed))
		return -EIO;

	/* Update VCPU HW saved state */
	vcpu->arch.xive_saved_state.cppr = cppr;
	xc->hw_cppr = xc->cppr = cppr;

	/*
	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
	 * having a pending MFRR change, which will re-evaluate the
	 * target. The VCPU will thus potentially get a spurious
	 * interrupt but that's not a big deal.
	 */
	xc->mfrr = mfrr;
	if (mfrr < cppr)
		xive_irq_trigger(&xc->vp_ipi_data);

	/*
	 * Now saved XIRR is "interesting". It means there's something in
	 * the legacy "1 element" queue... for an IPI we simply ignore it,
	 * as the MFRR restore will handle that. For anything else we need
	 * to force a resend of the source.
	 * However the source may not have been setup yet. If that's the
	 * case, we keep that info and increment a counter in the xive to
	 * tell subsequent xive_set_source() to go look.
	 */
	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
		xc->delayed_irq = xisr;
		xive->delayed_irqs++;
		pr_devel("  xisr restore delayed\n");
	}

	return 0;
}

int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
			   struct irq_desc *host_desc)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
	unsigned int host_irq = irq_desc_get_irq(host_desc);
	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
	u16 idx;
	u8 prio;
	int rc;

	if (!xive)
		return -ENODEV;

	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);

	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
	if (!sb)
		return -EINVAL;
	state = &sb->irq_state[idx];

	/*
	 * Mark the passed-through interrupt as going to a VCPU,
	 * this will prevent further EOIs and similar operations
	 * from the XIVE code. It will also mask the interrupt
	 * to either PQ=10 or 11 state, the latter if the interrupt
	 * is pending. This will allow us to unmask or retrigger it
	 * after routing it to the guest with a simple EOI.
	 *
	 * The "state" argument is a "token", all it needs is to be
	 * non-NULL to switch to passed-through or NULL for the
	 * other way around. We may not yet have an actual VCPU
	 * target here and we don't really care.
	 */
	rc = irq_set_vcpu_affinity(host_irq, state);
	if (rc) {
		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
		return rc;
	}

	/*
	 * Mask and read state of IPI. We need to know if its P bit
	 * is set as that means it's potentially already using a
	 * queue entry in the target
	 */
	prio = xive_lock_and_mask(xive, sb, state);
	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
		 state->old_p, state->old_q);

	/* Turn the IPI hard off */
	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);

944 945 946 947 948 949 950
	/*
	 * Reset ESB guest mapping. Needed when ESB pages are exposed
	 * to the guest in XIVE native mode
	 */
	if (xive->ops && xive->ops->reset_mapped)
		xive->ops->reset_mapped(kvm, guest_irq);

951 952 953 954 955 956 957 958 959 960 961
	/* Grab info about irq */
	state->pt_number = hw_irq;
	state->pt_data = irq_data_get_irq_handler_data(host_data);

	/*
	 * Configure the IRQ to match the existing configuration of
	 * the IPI if it was already targetted. Otherwise this will
	 * mask the interrupt in a lossy way (act_priority is 0xff)
	 * which is fine for a never started interrupt.
	 */
	xive_native_configure_irq(hw_irq,
962
				  kvmppc_xive_vp(xive, state->act_server),
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
				  state->act_priority, state->number);

	/*
	 * We do an EOI to enable the interrupt (and retrigger if needed)
	 * if the guest has the interrupt unmasked and the P bit was *not*
	 * set in the IPI. If it was set, we know a slot may still be in
	 * use in the target queue thus we have to wait for a guest
	 * originated EOI
	 */
	if (prio != MASKED && !state->old_p)
		xive_vm_source_eoi(hw_irq, state->pt_data);

	/* Clear old_p/old_q as they are no longer relevant */
	state->old_p = state->old_q = false;

	/* Restore guest prio (unlocks EOI) */
	mb();
	state->guest_priority = prio;
	arch_spin_unlock(&sb->lock);

	return 0;
}
EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);

int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
			   struct irq_desc *host_desc)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	unsigned int host_irq = irq_desc_get_irq(host_desc);
	u16 idx;
	u8 prio;
	int rc;

	if (!xive)
		return -ENODEV;

	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);

	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
	if (!sb)
		return -EINVAL;
	state = &sb->irq_state[idx];

	/*
	 * Mask and read state of IRQ. We need to know if its P bit
	 * is set as that means it's potentially already using a
	 * queue entry in the target
	 */
	prio = xive_lock_and_mask(xive, sb, state);
	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
		 state->old_p, state->old_q);

	/*
	 * If old_p is set, the interrupt is pending, we switch it to
	 * PQ=11. This will force a resend in the host so the interrupt
	 * isn't lost to whatver host driver may pick it up
	 */
	if (state->old_p)
		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);

	/* Release the passed-through interrupt to the host */
	rc = irq_set_vcpu_affinity(host_irq, NULL);
	if (rc) {
		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
		return rc;
	}

	/* Forget about the IRQ */
	state->pt_number = 0;
	state->pt_data = NULL;

1036 1037 1038 1039 1040 1041 1042 1043
	/*
	 * Reset ESB guest mapping. Needed when ESB pages are exposed
	 * to the guest in XIVE native mode
	 */
	if (xive->ops && xive->ops->reset_mapped) {
		xive->ops->reset_mapped(kvm, guest_irq);
	}

1044 1045
	/* Reconfigure the IPI */
	xive_native_configure_irq(state->ipi_number,
1046
				  kvmppc_xive_vp(xive, state->act_server),
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
				  state->act_priority, state->number);

	/*
	 * If old_p is set (we have a queue entry potentially
	 * occupied) or the interrupt is masked, we set the IPI
	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
	 */
	if (prio == MASKED || state->old_p)
		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
	else
		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);

	/* Restore guest prio (unlocks EOI) */
	mb();
	state->guest_priority = prio;
	arch_spin_unlock(&sb->lock);

	return 0;
}
EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);

1068
void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_xive *xive = kvm->arch.xive;
	int i, j;

	for (i = 0; i <= xive->max_sbid; i++) {
		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];

		if (!sb)
			continue;
		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];

			if (!state->valid)
				continue;
			if (state->act_priority == MASKED)
				continue;
			if (state->act_server != xc->server_num)
				continue;

			/* Clean it up */
			arch_spin_lock(&sb->lock);
			state->act_priority = MASKED;
			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
			if (state->pt_number) {
				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
			}
			arch_spin_unlock(&sb->lock);
		}
	}
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

	/* Disable vcpu's escalation interrupt */
	if (vcpu->arch.xive_esc_on) {
		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
					     XIVE_ESB_SET_PQ_01));
		vcpu->arch.xive_esc_on = false;
	}

	/*
	 * Clear pointers to escalation interrupt ESB.
	 * This is safe because the vcpu->mutex is held, preventing
	 * any other CPU from concurrently executing a KVM_RUN ioctl.
	 */
	vcpu->arch.xive_esc_vaddr = 0;
	vcpu->arch.xive_esc_raddr = 0;
1117 1118 1119 1120 1121
}

void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1122
	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1123 1124
	int i;

1125 1126 1127 1128 1129 1130
	if (!kvmppc_xics_enabled(vcpu))
		return;

	if (!xc)
		return;

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);

	/* Ensure no interrupt is still routed to that VP */
	xc->valid = false;
	kvmppc_xive_disable_vcpu_interrupts(vcpu);

	/* Mask the VP IPI */
	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);

	/* Disable the VP */
	xive_native_disable_vp(xc->vp_id);

	/* Free the queues & associated interrupts */
	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
		struct xive_q *q = &xc->queues[i];

		/* Free the escalation irq */
		if (xc->esc_virq[i]) {
			free_irq(xc->esc_virq[i], vcpu);
			irq_dispose_mapping(xc->esc_virq[i]);
			kfree(xc->esc_virq_names[i]);
		}
		/* Free the queue */
		xive_native_disable_queue(xc->vp_id, q, i);
		if (q->qpage) {
			free_pages((unsigned long)q->qpage,
				   xive->q_page_order);
			q->qpage = NULL;
		}
	}

	/* Free the IPI */
	if (xc->vp_ipi) {
		xive_cleanup_irq_data(&xc->vp_ipi_data);
		xive_native_free_irq(xc->vp_ipi);
	}
	/* Free the VP */
	kfree(xc);
1169 1170 1171 1172

	/* Cleanup the vcpu */
	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
	vcpu->arch.xive_vcpu = NULL;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
}

int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
			     struct kvm_vcpu *vcpu, u32 cpu)
{
	struct kvmppc_xive *xive = dev->private;
	struct kvmppc_xive_vcpu *xc;
	int i, r = -EBUSY;

	pr_devel("connect_vcpu(cpu=%d)\n", cpu);

	if (dev->ops != &kvm_xive_ops) {
		pr_devel("Wrong ops !\n");
		return -EPERM;
	}
	if (xive->kvm != vcpu->kvm)
		return -EPERM;
1190
	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1191 1192 1193 1194 1195
		return -EBUSY;
	if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
		pr_devel("Duplicate !\n");
		return -EEXIST;
	}
1196
	if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) {
1197 1198 1199 1200 1201 1202 1203 1204
		pr_devel("Out of bounds !\n");
		return -EINVAL;
	}
	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
	if (!xc)
		return -ENOMEM;

	/* We need to synchronize with queue provisioning */
1205
	mutex_lock(&xive->lock);
1206 1207 1208 1209
	vcpu->arch.xive_vcpu = xc;
	xc->xive = xive;
	xc->vcpu = vcpu;
	xc->server_num = cpu;
1210
	xc->vp_id = kvmppc_xive_vp(xive, cpu);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	xc->mfrr = 0xff;
	xc->valid = true;

	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
	if (r)
		goto bail;

	/* Configure VCPU fields for use by assembly push/pull */
	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);

	/* Allocate IPI */
	xc->vp_ipi = xive_native_alloc_irq();
	if (!xc->vp_ipi) {
1225
		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1226 1227 1228 1229 1230 1231 1232 1233 1234
		r = -EIO;
		goto bail;
	}
	pr_devel(" IPI=0x%x\n", xc->vp_ipi);

	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
	if (r)
		goto bail;

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	/*
	 * Enable the VP first as the single escalation mode will
	 * affect escalation interrupts numbering
	 */
	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
	if (r) {
		pr_err("Failed to enable VP in OPAL, err %d\n", r);
		goto bail;
	}

1245 1246 1247 1248
	/*
	 * Initialize queues. Initially we set them all for no queueing
	 * and we enable escalation for queue 0 only which we'll use for
	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1249 1250
	 * do handle provisioning however based on the existing "map"
	 * of enabled queues.
1251 1252 1253 1254
	 */
	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
		struct xive_q *q = &xc->queues[i];

1255 1256 1257 1258
		/* Single escalation, no queue 7 */
		if (i == 7 && xive->single_escalation)
			break;

1259 1260 1261
		/* Is queue already enabled ? Provision it */
		if (xive->qmap & (1 << i)) {
			r = xive_provision_queue(vcpu, i);
1262
			if (r == 0 && !xive->single_escalation)
1263 1264
				kvmppc_xive_attach_escalation(
					vcpu, i, xive->single_escalation);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			if (r)
				goto bail;
		} else {
			r = xive_native_configure_queue(xc->vp_id,
							q, i, NULL, 0, true);
			if (r) {
				pr_err("Failed to configure queue %d for VCPU %d\n",
				       i, cpu);
				goto bail;
			}
		}
	}

	/* If not done above, attach priority 0 escalation */
1279
	r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
1280 1281 1282 1283 1284 1285 1286 1287 1288
	if (r)
		goto bail;

	/* Route the IPI */
	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
	if (!r)
		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);

bail:
1289
	mutex_unlock(&xive->lock);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (r) {
		kvmppc_xive_cleanup_vcpu(vcpu);
		return r;
	}

	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
	return 0;
}

/*
 * Scanning of queues before/after migration save
 */
static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
{
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u16 idx;

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return;

	state = &sb->irq_state[idx];

	/* Some sanity checking */
	if (!state->valid) {
		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
		return;
	}

	/*
	 * If the interrupt is in a queue it should have P set.
	 * We warn so that gets reported. A backtrace isn't useful
	 * so no need to use a WARN_ON.
	 */
	if (!state->saved_p)
		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);

	/* Set flag */
	state->in_queue = true;
}

static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
				   struct kvmppc_xive_src_block *sb,
				   u32 irq)
{
	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];

	if (!state->valid)
		return;

	/* Mask and save state, this will also sync HW queues */
	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);

	/* Transfer P and Q */
	state->saved_p = state->old_p;
	state->saved_q = state->old_q;

	/* Unlock */
	arch_spin_unlock(&sb->lock);
}

static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
				     struct kvmppc_xive_src_block *sb,
				     u32 irq)
{
	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];

	if (!state->valid)
		return;

	/*
	 * Lock / exclude EOI (not technically necessary if the
	 * guest isn't running concurrently. If this becomes a
	 * performance issue we can probably remove the lock.
	 */
	xive_lock_for_unmask(sb, state);

	/* Restore mask/prio if it wasn't masked */
	if (state->saved_scan_prio != MASKED)
		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);

	/* Unlock */
	arch_spin_unlock(&sb->lock);
}

static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
{
	u32 idx = q->idx;
	u32 toggle = q->toggle;
	u32 irq;

	do {
		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
		if (irq > XICS_IPI)
			xive_pre_save_set_queued(xive, irq);
	} while(irq);
}

static void xive_pre_save_scan(struct kvmppc_xive *xive)
{
	struct kvm_vcpu *vcpu = NULL;
	int i, j;

	/*
	 * See comment in xive_get_source() about how this
	 * work. Collect a stable state for all interrupts
	 */
	for (i = 0; i <= xive->max_sbid; i++) {
		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
		if (!sb)
			continue;
		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
			xive_pre_save_mask_irq(xive, sb, j);
	}

	/* Then scan the queues and update the "in_queue" flag */
	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
		if (!xc)
			continue;
		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1412 1413
			if (xc->queues[j].qpage)
				xive_pre_save_queue(xive, &xc->queues[j]);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		}
	}

	/* Finally restore interrupt states */
	for (i = 0; i <= xive->max_sbid; i++) {
		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
		if (!sb)
			continue;
		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
			xive_pre_save_unmask_irq(xive, sb, j);
	}
}

static void xive_post_save_scan(struct kvmppc_xive *xive)
{
	u32 i, j;

	/* Clear all the in_queue flags */
	for (i = 0; i <= xive->max_sbid; i++) {
		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
		if (!sb)
			continue;
		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
			sb->irq_state[j].in_queue = false;
	}

	/* Next get_source() will do a new scan */
	xive->saved_src_count = 0;
}

/*
 * This returns the source configuration and state to user space.
 */
static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
{
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u64 __user *ubufp = (u64 __user *) addr;
	u64 val, prio;
	u16 idx;

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return -ENOENT;

	state = &sb->irq_state[idx];

	if (!state->valid)
		return -ENOENT;

	pr_devel("get_source(%ld)...\n", irq);

	/*
	 * So to properly save the state into something that looks like a
	 * XICS migration stream we cannot treat interrupts individually.
	 *
	 * We need, instead, mask them all (& save their previous PQ state)
	 * to get a stable state in the HW, then sync them to ensure that
	 * any interrupt that had already fired hits its queue, and finally
	 * scan all the queues to collect which interrupts are still present
	 * in the queues, so we can set the "pending" flag on them and
	 * they can be resent on restore.
	 *
	 * So we do it all when the "first" interrupt gets saved, all the
	 * state is collected at that point, the rest of xive_get_source()
	 * will merely collect and convert that state to the expected
	 * userspace bit mask.
	 */
	if (xive->saved_src_count == 0)
		xive_pre_save_scan(xive);
	xive->saved_src_count++;

	/* Convert saved state into something compatible with xics */
1487
	val = state->act_server;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	prio = state->saved_scan_prio;

	if (prio == MASKED) {
		val |= KVM_XICS_MASKED;
		prio = state->saved_priority;
	}
	val |= prio << KVM_XICS_PRIORITY_SHIFT;
	if (state->lsi) {
		val |= KVM_XICS_LEVEL_SENSITIVE;
		if (state->saved_p)
			val |= KVM_XICS_PENDING;
	} else {
		if (state->saved_p)
			val |= KVM_XICS_PRESENTED;

		if (state->saved_q)
			val |= KVM_XICS_QUEUED;

		/*
		 * We mark it pending (which will attempt a re-delivery)
		 * if we are in a queue *or* we were masked and had
		 * Q set which is equivalent to the XICS "masked pending"
		 * state
		 */
		if (state->in_queue || (prio == MASKED && state->saved_q))
			val |= KVM_XICS_PENDING;
	}

	/*
	 * If that was the last interrupt saved, reset the
	 * in_queue flags
	 */
	if (xive->saved_src_count == xive->src_count)
		xive_post_save_scan(xive);

	/* Copy the result to userspace */
	if (put_user(val, ubufp))
		return -EFAULT;

	return 0;
}

1530 1531
struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
	struct kvmppc_xive *xive, int irq)
1532 1533 1534 1535 1536 1537
{
	struct kvmppc_xive_src_block *sb;
	int i, bid;

	bid = irq >> KVMPPC_XICS_ICS_SHIFT;

1538
	mutex_lock(&xive->lock);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

	/* block already exists - somebody else got here first */
	if (xive->src_blocks[bid])
		goto out;

	/* Create the ICS */
	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
	if (!sb)
		goto out;

	sb->id = bid;

	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1553
		sb->irq_state[i].eisn = 0;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		sb->irq_state[i].guest_priority = MASKED;
		sb->irq_state[i].saved_priority = MASKED;
		sb->irq_state[i].act_priority = MASKED;
	}
	smp_wmb();
	xive->src_blocks[bid] = sb;

	if (bid > xive->max_sbid)
		xive->max_sbid = bid;

out:
1565
	mutex_unlock(&xive->lock);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	return xive->src_blocks[bid];
}

static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
{
	struct kvm *kvm = xive->kvm;
	struct kvm_vcpu *vcpu = NULL;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;

		if (!xc)
			continue;

		if (xc->delayed_irq == irq) {
			xc->delayed_irq = 0;
			xive->delayed_irqs--;
			return true;
		}
	}
	return false;
}

static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
{
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u64 __user *ubufp = (u64 __user *) addr;
	u16 idx;
	u64 val;
	u8 act_prio, guest_prio;
	u32 server;
	int rc = 0;

	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
		return -ENOENT;

	pr_devel("set_source(irq=0x%lx)\n", irq);

	/* Find the source */
	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb) {
		pr_devel("No source, creating source block...\n");
1610
		sb = kvmppc_xive_create_src_block(xive, irq);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		if (!sb) {
			pr_devel("Failed to create block...\n");
			return -ENOMEM;
		}
	}
	state = &sb->irq_state[idx];

	/* Read user passed data */
	if (get_user(val, ubufp)) {
		pr_devel("fault getting user info !\n");
		return -EFAULT;
	}

	server = val & KVM_XICS_DESTINATION_MASK;
	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;

	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
		 val, server, guest_prio);
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	/*
	 * If the source doesn't already have an IPI, allocate
	 * one and get the corresponding data
	 */
	if (!state->ipi_number) {
		state->ipi_number = xive_native_alloc_irq();
		if (state->ipi_number == 0) {
			pr_devel("Failed to allocate IPI !\n");
			return -ENOMEM;
		}
		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
	}

	/*
	 * We use lock_and_mask() to set us in the right masked
	 * state. We will override that state from the saved state
	 * further down, but this will handle the cases of interrupts
	 * that need FW masking. We set the initial guest_priority to
	 * 0 before calling it to ensure it actually performs the masking.
	 */
	state->guest_priority = 0;
	xive_lock_and_mask(xive, sb, state);

	/*
	 * Now, we select a target if we have one. If we don't we
	 * leave the interrupt untargetted. It means that an interrupt
	 * can become "untargetted" accross migration if it was masked
	 * by set_xive() but there is little we can do about it.
	 */

	/* First convert prio and mark interrupt as untargetted */
	act_prio = xive_prio_from_guest(guest_prio);
	state->act_priority = MASKED;

	/*
	 * We need to drop the lock due to the mutex below. Hopefully
	 * nothing is touching that interrupt yet since it hasn't been
	 * advertized to a running guest yet
	 */
	arch_spin_unlock(&sb->lock);

	/* If we have a priority target the interrupt */
	if (act_prio != MASKED) {
		/* First, check provisioning of queues */
1675
		mutex_lock(&xive->lock);
1676
		rc = xive_check_provisioning(xive->kvm, act_prio);
1677
		mutex_unlock(&xive->lock);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

		/* Target interrupt */
		if (rc == 0)
			rc = xive_target_interrupt(xive->kvm, state,
						   server, act_prio);
		/*
		 * If provisioning or targetting failed, leave it
		 * alone and masked. It will remain disabled until
		 * the guest re-targets it.
		 */
	}

	/*
	 * Find out if this was a delayed irq stashed in an ICP,
	 * in which case, treat it as pending
	 */
	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
		val |= KVM_XICS_PENDING;
		pr_devel("  Found delayed ! forcing PENDING !\n");
	}

	/* Cleanup the SW state */
	state->old_p = false;
	state->old_q = false;
	state->lsi = false;
	state->asserted = false;

	/* Restore LSI state */
	if (val & KVM_XICS_LEVEL_SENSITIVE) {
		state->lsi = true;
		if (val & KVM_XICS_PENDING)
			state->asserted = true;
		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
	}

	/*
	 * Restore P and Q. If the interrupt was pending, we
1715
	 * force Q and !P, which will trigger a resend.
1716 1717 1718 1719 1720 1721 1722
	 *
	 * That means that a guest that had both an interrupt
	 * pending (queued) and Q set will restore with only
	 * one instance of that interrupt instead of 2, but that
	 * is perfectly fine as coalescing interrupts that haven't
	 * been presented yet is always allowed.
	 */
1723
	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		state->old_p = true;
	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
		state->old_q = true;

	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);

	/*
	 * If the interrupt was unmasked, update guest priority and
	 * perform the appropriate state transition and do a
	 * re-trigger if necessary.
	 */
	if (val & KVM_XICS_MASKED) {
		pr_devel("  masked, saving prio\n");
		state->guest_priority = MASKED;
		state->saved_priority = guest_prio;
	} else {
		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
		xive_finish_unmask(xive, sb, state, guest_prio);
		state->saved_priority = guest_prio;
	}

	/* Increment the number of valid sources and mark this one valid */
	if (!state->valid)
		xive->src_count++;
	state->valid = true;

	return 0;
}

int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
			bool line_status)
{
	struct kvmppc_xive *xive = kvm->arch.xive;
	struct kvmppc_xive_src_block *sb;
	struct kvmppc_xive_irq_state *state;
	u16 idx;

	if (!xive)
		return -ENODEV;

	sb = kvmppc_xive_find_source(xive, irq, &idx);
	if (!sb)
		return -EINVAL;

	/* Perform locklessly .... (we need to do some RCUisms here...) */
	state = &sb->irq_state[idx];
	if (!state->valid)
		return -EINVAL;

	/* We don't allow a trigger on a passed-through interrupt */
	if (state->pt_number)
		return -EINVAL;

	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
		state->asserted = 1;
	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
		state->asserted = 0;
		return 0;
	}

	/* Trigger the IPI */
	xive_irq_trigger(&state->ipi_data);

	return 0;
}

static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	struct kvmppc_xive *xive = dev->private;

	/* We honor the existing XICS ioctl */
	switch (attr->group) {
	case KVM_DEV_XICS_GRP_SOURCES:
		return xive_set_source(xive, attr->attr, attr->addr);
	}
	return -ENXIO;
}

static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	struct kvmppc_xive *xive = dev->private;

	/* We honor the existing XICS ioctl */
	switch (attr->group) {
	case KVM_DEV_XICS_GRP_SOURCES:
		return xive_get_source(xive, attr->attr, attr->addr);
	}
	return -ENXIO;
}

static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	/* We honor the same limits as XICS, at least for now */
	switch (attr->group) {
	case KVM_DEV_XICS_GRP_SOURCES:
		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
		    attr->attr < KVMPPC_XICS_NR_IRQS)
			return 0;
		break;
	}
	return -ENXIO;
}

static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
{
	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
	xive_native_configure_irq(hw_num, 0, MASKED, 0);
}

1833
void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
{
	int i;

	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];

		if (!state->valid)
			continue;

		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1844
		xive_cleanup_irq_data(&state->ipi_data);
1845 1846
		xive_native_free_irq(state->ipi_number);

1847
		/* Pass-through, cleanup too but keep IRQ hw data */
1848 1849 1850 1851 1852 1853 1854
		if (state->pt_number)
			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);

		state->valid = false;
	}
}

1855
/*
1856
 * Called when device fd is closed.  kvm->lock is held.
1857 1858
 */
static void kvmppc_xive_release(struct kvm_device *dev)
1859 1860 1861
{
	struct kvmppc_xive *xive = dev->private;
	struct kvm *kvm = xive->kvm;
1862
	struct kvm_vcpu *vcpu;
1863 1864
	int i;

1865 1866 1867
	pr_devel("Releasing xive device\n");

	/*
1868 1869 1870 1871 1872 1873
	 * Since this is the device release function, we know that
	 * userspace does not have any open fd referring to the
	 * device.  Therefore there can not be any of the device
	 * attribute set/get functions being executed concurrently,
	 * and similarly, the connect_vcpu and set/clr_mapped
	 * functions also cannot be being executed.
1874
	 */
1875 1876

	debugfs_remove(xive->dentry);
1877

1878 1879 1880 1881 1882 1883 1884
	/*
	 * We should clean up the vCPU interrupt presenters first.
	 */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/*
		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
1885 1886 1887 1888
		 * Holding the vcpu->mutex also means that the vcpu cannot
		 * be executing the KVM_RUN ioctl, and therefore it cannot
		 * be executing the XIVE push or pull code or accessing
		 * the XIVE MMIO regions.
1889 1890 1891 1892 1893
		 */
		mutex_lock(&vcpu->mutex);
		kvmppc_xive_cleanup_vcpu(vcpu);
		mutex_unlock(&vcpu->mutex);
	}
1894

1895 1896 1897 1898 1899 1900
	/*
	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
	 * against xive code getting called during vcpu execution or
	 * set/get one_reg operations.
	 */
1901
	kvm->arch.xive = NULL;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

	/* Mask and free interrupts */
	for (i = 0; i <= xive->max_sbid; i++) {
		if (xive->src_blocks[i])
			kvmppc_xive_free_sources(xive->src_blocks[i]);
		kfree(xive->src_blocks[i]);
		xive->src_blocks[i] = NULL;
	}

	if (xive->vp_base != XIVE_INVALID_VP)
		xive_native_free_vp_block(xive->vp_base);

1914 1915 1916 1917 1918 1919
	/*
	 * A reference of the kvmppc_xive pointer is now kept under
	 * the xive_devices struct of the machine for reuse. It is
	 * freed when the VM is destroyed for now until we fix all the
	 * execution paths.
	 */
1920 1921 1922 1923

	kfree(dev);
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
/*
 * When the guest chooses the interrupt mode (XICS legacy or XIVE
 * native), the VM will switch of KVM device. The previous device will
 * be "released" before the new one is created.
 *
 * Until we are sure all execution paths are well protected, provide a
 * fail safe (transitional) method for device destruction, in which
 * the XIVE device pointer is recycled and not directly freed.
 */
struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
{
	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
		&kvm->arch.xive_devices.native :
		&kvm->arch.xive_devices.xics_on_xive;
	struct kvmppc_xive *xive = *kvm_xive_device;

	if (!xive) {
		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
		*kvm_xive_device = xive;
	} else {
		memset(xive, 0, sizeof(*xive));
	}

	return xive;
}

1950 1951 1952
/*
 * Create a XICS device with XIVE backend.  kvm->lock is held.
 */
1953 1954 1955 1956 1957 1958 1959 1960
static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
{
	struct kvmppc_xive *xive;
	struct kvm *kvm = dev->kvm;
	int ret = 0;

	pr_devel("Creating xive for partition\n");

1961
	xive = kvmppc_xive_get_device(kvm, type);
1962 1963 1964 1965 1966 1967
	if (!xive)
		return -ENOMEM;

	dev->private = xive;
	xive->dev = dev;
	xive->kvm = kvm;
1968
	mutex_init(&xive->lock);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	/* Already there ? */
	if (kvm->arch.xive)
		ret = -EEXIST;
	else
		kvm->arch.xive = xive;

	/* We use the default queue size set by the host */
	xive->q_order = xive_native_default_eq_shift();
	if (xive->q_order < PAGE_SHIFT)
		xive->q_page_order = 0;
	else
		xive->q_page_order = xive->q_order - PAGE_SHIFT;

	/* Allocate a bunch of VPs */
	xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
	pr_devel("VP_Base=%x\n", xive->vp_base);

	if (xive->vp_base == XIVE_INVALID_VP)
		ret = -ENOMEM;

1990 1991
	xive->single_escalation = xive_native_has_single_escalation();

1992 1993 1994 1995 1996 1997 1998 1999
	if (ret) {
		kfree(xive);
		return ret;
	}

	return 0;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
{
	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
	unsigned int i;

	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
		struct xive_q *q = &xc->queues[i];
		u32 i0, i1, idx;

		if (!q->qpage && !xc->esc_virq[i])
			continue;

		seq_printf(m, " [q%d]: ", i);

		if (q->qpage) {
			idx = q->idx;
			i0 = be32_to_cpup(q->qpage + idx);
			idx = (idx + 1) & q->msk;
			i1 = be32_to_cpup(q->qpage + idx);
			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
				   i0, i1);
		}
		if (xc->esc_virq[i]) {
			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
			struct xive_irq_data *xd =
				irq_data_get_irq_handler_data(d);
			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);

			seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
				   (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
				   xc->esc_virq[i], pq, xd->eoi_page);
			seq_puts(m, "\n");
		}
	}
	return 0;
}
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

static int xive_debug_show(struct seq_file *m, void *private)
{
	struct kvmppc_xive *xive = m->private;
	struct kvm *kvm = xive->kvm;
	struct kvm_vcpu *vcpu;
	u64 t_rm_h_xirr = 0;
	u64 t_rm_h_ipoll = 0;
	u64 t_rm_h_cppr = 0;
	u64 t_rm_h_eoi = 0;
	u64 t_rm_h_ipi = 0;
	u64 t_vm_h_xirr = 0;
	u64 t_vm_h_ipoll = 0;
	u64 t_vm_h_cppr = 0;
	u64 t_vm_h_eoi = 0;
	u64 t_vm_h_ipi = 0;
	unsigned int i;

	if (!kvm)
		return 0;

	seq_printf(m, "=========\nVCPU state\n=========\n");

	kvm_for_each_vcpu(i, vcpu, kvm) {
		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;

		if (!xc)
			continue;

		seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
			   xc->server_num, xc->cppr, xc->hw_cppr,
			   xc->mfrr, xc->pending,
			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2071

2072
		kvmppc_xive_debug_show_queues(m, vcpu);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

		t_rm_h_xirr += xc->stat_rm_h_xirr;
		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
		t_rm_h_cppr += xc->stat_rm_h_cppr;
		t_rm_h_eoi += xc->stat_rm_h_eoi;
		t_rm_h_ipi += xc->stat_rm_h_ipi;
		t_vm_h_xirr += xc->stat_vm_h_xirr;
		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
		t_vm_h_cppr += xc->stat_vm_h_cppr;
		t_vm_h_eoi += xc->stat_vm_h_eoi;
		t_vm_h_ipi += xc->stat_vm_h_ipi;
	}

	seq_printf(m, "Hcalls totals\n");
	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);

	return 0;
}

2096
DEFINE_SHOW_ATTRIBUTE(xive_debug);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

static void xive_debugfs_init(struct kvmppc_xive *xive)
{
	char *name;

	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
	if (!name) {
		pr_err("%s: no memory for name\n", __func__);
		return;
	}

	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
					   xive, &xive_debug_fops);

	pr_debug("%s: created %s\n", __func__, name);
	kfree(name);
}

static void kvmppc_xive_init(struct kvm_device *dev)
{
	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;

	/* Register some debug interfaces */
	xive_debugfs_init(xive);
}

struct kvm_device_ops kvm_xive_ops = {
	.name = "kvm-xive",
	.create = kvmppc_xive_create,
	.init = kvmppc_xive_init,
2127
	.release = kvmppc_xive_release,
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	.set_attr = xive_set_attr,
	.get_attr = xive_get_attr,
	.has_attr = xive_has_attr,
};

void kvmppc_xive_init_module(void)
{
	__xive_vm_h_xirr = xive_vm_h_xirr;
	__xive_vm_h_ipoll = xive_vm_h_ipoll;
	__xive_vm_h_ipi = xive_vm_h_ipi;
	__xive_vm_h_cppr = xive_vm_h_cppr;
	__xive_vm_h_eoi = xive_vm_h_eoi;
}

void kvmppc_xive_exit_module(void)
{
	__xive_vm_h_xirr = NULL;
	__xive_vm_h_ipoll = NULL;
	__xive_vm_h_ipi = NULL;
	__xive_vm_h_cppr = NULL;
	__xive_vm_h_eoi = NULL;
}