target_core_transport.c 126.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
 * Copyright (c) 2007-2010 Rising Tide Systems
 * Copyright (c) 2008-2010 Linux-iSCSI.org
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
39
#include <linux/module.h>
40 41 42 43 44
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
45
#include <scsi/scsi_tcq.h>
46 47

#include <target/target_core_base.h>
48 49
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
50 51
#include <target/target_core_configfs.h>

C
Christoph Hellwig 已提交
52
#include "target_core_internal.h"
53 54 55 56
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

57
static int sub_api_initialized;
58

59
static struct workqueue_struct *target_completion_wq;
60 61 62 63 64 65 66 67 68 69
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_tmr_req_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;

static int transport_generic_write_pending(struct se_cmd *);
70
static int transport_processing_thread(void *param);
71 72
static int __transport_execute_tasks(struct se_device *dev);
static void transport_complete_task_attr(struct se_cmd *cmd);
73
static void transport_handle_queue_full(struct se_cmd *cmd,
74
		struct se_device *dev);
75
static void transport_free_dev_tasks(struct se_cmd *cmd);
76
static int transport_generic_get_mem(struct se_cmd *cmd);
77
static void transport_put_cmd(struct se_cmd *cmd);
78
static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79
static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80
static void transport_generic_request_failure(struct se_cmd *);
81
static void target_complete_ok_work(struct work_struct *work);
82

83
int init_se_kmem_caches(void)
84 85 86 87
{
	se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
			sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
			0, NULL);
88 89
	if (!se_tmr_req_cache) {
		pr_err("kmem_cache_create() for struct se_tmr_req"
90
				" failed\n");
91
		goto out;
92 93 94 95
	}
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
96 97
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
98
				" failed\n");
99
		goto out_free_tmr_req_cache;
100 101 102 103
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
104 105
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
106
		goto out_free_sess_cache;
107 108 109 110
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
111 112
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
113
				" failed\n");
114
		goto out_free_ua_cache;
115 116 117 118
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
119 120
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121
				" failed\n");
122
		goto out_free_pr_reg_cache;
123 124 125 126
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 128
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129
				"cache failed\n");
130
		goto out_free_lu_gp_cache;
131 132 133 134
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 136
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137
				"cache failed\n");
138
		goto out_free_lu_gp_mem_cache;
139 140 141 142 143 144
	}
	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
			"t10_alua_tg_pt_gp_mem_cache",
			sizeof(struct t10_alua_tg_pt_gp_member),
			__alignof__(struct t10_alua_tg_pt_gp_member),
			0, NULL);
145 146
	if (!t10_alua_tg_pt_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147
				"mem_t failed\n");
148
		goto out_free_tg_pt_gp_cache;
149 150
	}

151 152 153 154 155
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
		goto out_free_tg_pt_gp_mem_cache;

156
	return 0;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

out_free_tg_pt_gp_mem_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
out_free_tmr_req_cache:
	kmem_cache_destroy(se_tmr_req_cache);
174
out:
175
	return -ENOMEM;
176 177
}

178
void release_se_kmem_caches(void)
179
{
180
	destroy_workqueue(target_completion_wq);
181 182 183 184 185 186 187 188 189 190
	kmem_cache_destroy(se_tmr_req_cache);
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
}

191 192 193
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194 195 196 197 198 199 200 201

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

202
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203

204 205 206
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
207 208 209 210

	return new_index;
}

C
Christoph Hellwig 已提交
211
static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 213 214 215 216 217 218
{
	atomic_set(&qobj->queue_cnt, 0);
	INIT_LIST_HEAD(&qobj->qobj_list);
	init_waitqueue_head(&qobj->thread_wq);
	spin_lock_init(&qobj->cmd_queue_lock);
}

219
void transport_subsystem_check_init(void)
220 221 222
{
	int ret;

223 224 225
	if (sub_api_initialized)
		return;

226 227
	ret = request_module("target_core_iblock");
	if (ret != 0)
228
		pr_err("Unable to load target_core_iblock\n");
229 230 231

	ret = request_module("target_core_file");
	if (ret != 0)
232
		pr_err("Unable to load target_core_file\n");
233 234 235

	ret = request_module("target_core_pscsi");
	if (ret != 0)
236
		pr_err("Unable to load target_core_pscsi\n");
237 238 239

	ret = request_module("target_core_stgt");
	if (ret != 0)
240
		pr_err("Unable to load target_core_stgt\n");
241

242
	sub_api_initialized = 1;
243
	return;
244 245 246 247 248 249 250
}

struct se_session *transport_init_session(void)
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 252
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
253 254 255 256 257
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 259 260
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
	spin_lock_init(&se_sess->sess_cmd_lock);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

/*
 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
290
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291
			memset(&buf[0], 0, PR_REG_ISID_LEN);
292
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

309
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
	spin_lock_bh(&se_tpg->session_lock);
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
	spin_unlock_bh(&se_tpg->session_lock);
}
EXPORT_SYMBOL(transport_register_session);

void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
329
	unsigned long flags;
330 331 332 333
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
334
	if (se_nacl) {
335
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 337 338 339 340 341 342 343 344 345 346 347 348
		list_del(&se_sess->sess_acl_list);
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
349
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350 351 352 353 354 355 356 357 358 359 360 361 362 363
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
	struct se_node_acl *se_nacl;
364
	unsigned long flags;
365

366
	if (!se_tpg) {
367 368 369 370
		transport_free_session(se_sess);
		return;
	}

371
	spin_lock_irqsave(&se_tpg->session_lock, flags);
372 373 374
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
375
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376 377 378 379 380 381

	/*
	 * Determine if we need to do extra work for this initiator node's
	 * struct se_node_acl if it had been previously dynamically generated.
	 */
	se_nacl = se_sess->se_node_acl;
382
	if (se_nacl) {
383
		spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384
		if (se_nacl->dynamic_node_acl) {
385 386
			if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
					se_tpg)) {
387 388
				list_del(&se_nacl->acl_list);
				se_tpg->num_node_acls--;
389
				spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390 391 392

				core_tpg_wait_for_nacl_pr_ref(se_nacl);
				core_free_device_list_for_node(se_nacl, se_tpg);
393
				se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394
						se_nacl);
395
				spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396 397
			}
		}
398
		spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399 400 401 402
	}

	transport_free_session(se_sess);

403
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404
		se_tpg->se_tpg_tfo->get_fabric_name());
405 406 407 408
}
EXPORT_SYMBOL(transport_deregister_session);

/*
409
 * Called with cmd->t_state_lock held.
410 411 412
 */
static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
{
413
	struct se_device *dev = cmd->se_dev;
414 415 416
	struct se_task *task;
	unsigned long flags;

417 418
	if (!dev)
		return;
419

420
	list_for_each_entry(task, &cmd->t_task_list, t_list) {
421
		if (task->task_flags & TF_ACTIVE)
422 423
			continue;

424
		if (!atomic_read(&task->task_state_active))
425 426 427 428
			continue;

		spin_lock_irqsave(&dev->execute_task_lock, flags);
		list_del(&task->t_state_list);
429 430
		pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
			cmd->se_tfo->get_task_tag(cmd), dev, task);
431 432 433
		spin_unlock_irqrestore(&dev->execute_task_lock, flags);

		atomic_set(&task->task_state_active, 0);
434
		atomic_dec(&cmd->t_task_cdbs_ex_left);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	}
}

/*	transport_cmd_check_stop():
 *
 *	'transport_off = 1' determines if t_transport_active should be cleared.
 *	'transport_off = 2' determines if task_dev_state should be removed.
 *
 *	A non-zero u8 t_state sets cmd->t_state.
 *	Returns 1 when command is stopped, else 0.
 */
static int transport_cmd_check_stop(
	struct se_cmd *cmd,
	int transport_off,
	u8 t_state)
{
	unsigned long flags;

453
	spin_lock_irqsave(&cmd->t_state_lock, flags);
454 455 456 457
	/*
	 * Determine if IOCTL context caller in requesting the stopping of this
	 * command for LUN shutdown purposes.
	 */
458
	if (atomic_read(&cmd->transport_lun_stop)) {
459
		pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460
			" == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461
			cmd->se_tfo->get_task_tag(cmd));
462

463
		atomic_set(&cmd->t_transport_active, 0);
464 465
		if (transport_off == 2)
			transport_all_task_dev_remove_state(cmd);
466
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467

468
		complete(&cmd->transport_lun_stop_comp);
469 470 471 472
		return 1;
	}
	/*
	 * Determine if frontend context caller is requesting the stopping of
473
	 * this command for frontend exceptions.
474
	 */
475
	if (atomic_read(&cmd->t_transport_stop)) {
476
		pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477
			" TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478
			cmd->se_tfo->get_task_tag(cmd));
479 480 481 482 483 484 485 486 487 488

		if (transport_off == 2)
			transport_all_task_dev_remove_state(cmd);

		/*
		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
		 * to FE.
		 */
		if (transport_off == 2)
			cmd->se_lun = NULL;
489
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490

491
		complete(&cmd->t_transport_stop_comp);
492 493 494
		return 1;
	}
	if (transport_off) {
495
		atomic_set(&cmd->t_transport_active, 0);
496 497 498 499 500 501 502 503 504
		if (transport_off == 2) {
			transport_all_task_dev_remove_state(cmd);
			/*
			 * Clear struct se_cmd->se_lun before the transport_off == 2
			 * handoff to fabric module.
			 */
			cmd->se_lun = NULL;
			/*
			 * Some fabric modules like tcm_loop can release
L
Lucas De Marchi 已提交
505
			 * their internally allocated I/O reference now and
506
			 * struct se_cmd now.
507 508 509 510
			 *
			 * Fabric modules are expected to return '1' here if the
			 * se_cmd being passed is released at this point,
			 * or zero if not being released.
511
			 */
512
			if (cmd->se_tfo->check_stop_free != NULL) {
513
				spin_unlock_irqrestore(
514
					&cmd->t_state_lock, flags);
515

516
				return cmd->se_tfo->check_stop_free(cmd);
517 518
			}
		}
519
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520 521 522 523

		return 0;
	} else if (t_state)
		cmd->t_state = t_state;
524
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525 526 527 528 529 530 531 532 533 534 535

	return 0;
}

static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
{
	return transport_cmd_check_stop(cmd, 2, 0);
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
536
	struct se_lun *lun = cmd->se_lun;
537 538 539 540 541
	unsigned long flags;

	if (!lun)
		return;

542
	spin_lock_irqsave(&cmd->t_state_lock, flags);
543
	if (!atomic_read(&cmd->transport_dev_active)) {
544
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545 546
		goto check_lun;
	}
547
	atomic_set(&cmd->transport_dev_active, 0);
548
	transport_all_task_dev_remove_state(cmd);
549
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550 551 552 553


check_lun:
	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554
	if (atomic_read(&cmd->transport_lun_active)) {
555
		list_del(&cmd->se_lun_node);
556
		atomic_set(&cmd->transport_lun_active, 0);
557
#if 0
558
		pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559
			cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 561 562 563 564 565 566
#endif
	}
	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
}

void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
{
567 568
	if (!cmd->se_tmr_req)
		transport_lun_remove_cmd(cmd);
569 570 571

	if (transport_cmd_check_stop_to_fabric(cmd))
		return;
572
	if (remove) {
573
		transport_remove_cmd_from_queue(cmd);
574
		transport_put_cmd(cmd);
575
	}
576 577
}

578 579
static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
		bool at_head)
580 581
{
	struct se_device *dev = cmd->se_dev;
582
	struct se_queue_obj *qobj = &dev->dev_queue_obj;
583 584 585
	unsigned long flags;

	if (t_state) {
586
		spin_lock_irqsave(&cmd->t_state_lock, flags);
587
		cmd->t_state = t_state;
588 589
		atomic_set(&cmd->t_transport_active, 1);
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590 591 592
	}

	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593 594 595 596 597 598 599

	/* If the cmd is already on the list, remove it before we add it */
	if (!list_empty(&cmd->se_queue_node))
		list_del(&cmd->se_queue_node);
	else
		atomic_inc(&qobj->queue_cnt);

600
	if (at_head)
601
		list_add(&cmd->se_queue_node, &qobj->qobj_list);
602
	else
603
		list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604
	atomic_set(&cmd->t_transport_queue_active, 1);
605 606 607 608 609
	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);

	wake_up_interruptible(&qobj->thread_wq);
}

610 611
static struct se_cmd *
transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612
{
613
	struct se_cmd *cmd;
614 615 616 617 618 619 620
	unsigned long flags;

	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
	if (list_empty(&qobj->qobj_list)) {
		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
		return NULL;
	}
621
	cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622

623
	atomic_set(&cmd->t_transport_queue_active, 0);
624

625
	list_del_init(&cmd->se_queue_node);
626 627 628
	atomic_dec(&qobj->queue_cnt);
	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);

629
	return cmd;
630 631
}

632
static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633
{
634
	struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635 636 637
	unsigned long flags;

	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638
	if (!atomic_read(&cmd->t_transport_queue_active)) {
639 640 641
		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
		return;
	}
642 643 644
	atomic_set(&cmd->t_transport_queue_active, 0);
	atomic_dec(&qobj->queue_cnt);
	list_del_init(&cmd->se_queue_node);
645 646
	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);

647
	if (atomic_read(&cmd->t_transport_queue_active)) {
648
		pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649
			cmd->se_tfo->get_task_tag(cmd),
650
			atomic_read(&cmd->t_transport_queue_active));
651 652 653 654 655 656 657 658 659
	}
}

/*
 * Completion function used by TCM subsystem plugins (such as FILEIO)
 * for queueing up response from struct se_subsystem_api->do_task()
 */
void transport_complete_sync_cache(struct se_cmd *cmd, int good)
{
660
	struct se_task *task = list_entry(cmd->t_task_list.next,
661 662 663 664 665 666 667
				struct se_task, t_list);

	if (good) {
		cmd->scsi_status = SAM_STAT_GOOD;
		task->task_scsi_status = GOOD;
	} else {
		task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668 669 670
		task->task_se_cmd->scsi_sense_reason =
				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;

671 672 673 674 675 676
	}

	transport_complete_task(task, good);
}
EXPORT_SYMBOL(transport_complete_sync_cache);

677 678 679 680
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

681
	transport_generic_request_failure(cmd);
682 683
}

684 685 686 687 688 689 690
/*	transport_complete_task():
 *
 *	Called from interrupt and non interrupt context depending
 *	on the transport plugin.
 */
void transport_complete_task(struct se_task *task, int success)
{
691
	struct se_cmd *cmd = task->task_se_cmd;
692
	struct se_device *dev = cmd->se_dev;
693 694
	unsigned long flags;
#if 0
695
	pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
696
			cmd->t_task_cdb[0], dev);
697
#endif
698
	if (dev)
699 700
		atomic_inc(&dev->depth_left);

701
	spin_lock_irqsave(&cmd->t_state_lock, flags);
702
	task->task_flags &= ~TF_ACTIVE;
703 704 705 706 707 708 709 710 711

	/*
	 * See if any sense data exists, if so set the TASK_SENSE flag.
	 * Also check for any other post completion work that needs to be
	 * done by the plugins.
	 */
	if (dev && dev->transport->transport_complete) {
		if (dev->transport->transport_complete(task) != 0) {
			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
712
			task->task_flags |= TF_HAS_SENSE;
713 714 715 716 717 718 719 720
			success = 1;
		}
	}

	/*
	 * See if we are waiting for outstanding struct se_task
	 * to complete for an exception condition
	 */
721
	if (task->task_flags & TF_REQUEST_STOP) {
722
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723 724 725
		complete(&task->task_stop_comp);
		return;
	}
726 727 728 729

	if (!success)
		cmd->t_tasks_failed = 1;

730 731 732 733 734
	/*
	 * Decrement the outstanding t_task_cdbs_left count.  The last
	 * struct se_task from struct se_cmd will complete itself into the
	 * device queue depending upon int success.
	 */
735
	if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
736
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737 738 739
		return;
	}

740
	if (cmd->t_tasks_failed) {
741 742
		if (!task->task_error_status) {
			task->task_error_status =
743 744 745
				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
			cmd->scsi_sense_reason =
				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
746
		}
747

748
		INIT_WORK(&cmd->work, target_complete_failure_work);
749
	} else {
750
		atomic_set(&cmd->t_transport_complete, 1);
751
		INIT_WORK(&cmd->work, target_complete_ok_work);
752
	}
753 754 755

	cmd->t_state = TRANSPORT_COMPLETE;
	atomic_set(&cmd->t_transport_active, 1);
756
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
757

758
	queue_work(target_completion_wq, &cmd->work);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
}
EXPORT_SYMBOL(transport_complete_task);

/*
 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
 * struct se_task list are ready to be added to the active execution list
 * struct se_device

 * Called with se_dev_t->execute_task_lock called.
 */
static inline int transport_add_task_check_sam_attr(
	struct se_task *task,
	struct se_task *task_prev,
	struct se_device *dev)
{
	/*
	 * No SAM Task attribute emulation enabled, add to tail of
	 * execution queue
	 */
	if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
		list_add_tail(&task->t_execute_list, &dev->execute_task_list);
		return 0;
	}
	/*
	 * HEAD_OF_QUEUE attribute for received CDB, which means
	 * the first task that is associated with a struct se_cmd goes to
	 * head of the struct se_device->execute_task_list, and task_prev
	 * after that for each subsequent task
	 */
788
	if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
789 790 791 792 793
		list_add(&task->t_execute_list,
				(task_prev != NULL) ?
				&task_prev->t_execute_list :
				&dev->execute_task_list);

794
		pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
795
				" in execution queue\n",
796
				task->task_se_cmd->t_task_cdb[0]);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
		return 1;
	}
	/*
	 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
	 * transitioned from Dermant -> Active state, and are added to the end
	 * of the struct se_device->execute_task_list
	 */
	list_add_tail(&task->t_execute_list, &dev->execute_task_list);
	return 0;
}

/*	__transport_add_task_to_execute_queue():
 *
 *	Called with se_dev_t->execute_task_lock called.
 */
static void __transport_add_task_to_execute_queue(
	struct se_task *task,
	struct se_task *task_prev,
	struct se_device *dev)
{
	int head_of_queue;

	head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
	atomic_inc(&dev->execute_tasks);

	if (atomic_read(&task->task_state_active))
		return;
	/*
	 * Determine if this task needs to go to HEAD_OF_QUEUE for the
	 * state list as well.  Running with SAM Task Attribute emulation
	 * will always return head_of_queue == 0 here
	 */
	if (head_of_queue)
		list_add(&task->t_state_list, (task_prev) ?
				&task_prev->t_state_list :
				&dev->state_task_list);
	else
		list_add_tail(&task->t_state_list, &dev->state_task_list);

	atomic_set(&task->task_state_active, 1);

838
	pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
839
		task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
840 841 842 843 844
		task, dev);
}

static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
{
845
	struct se_device *dev = cmd->se_dev;
846 847 848
	struct se_task *task;
	unsigned long flags;

849 850
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	list_for_each_entry(task, &cmd->t_task_list, t_list) {
851 852 853 854 855 856 857
		if (atomic_read(&task->task_state_active))
			continue;

		spin_lock(&dev->execute_task_lock);
		list_add_tail(&task->t_state_list, &dev->state_task_list);
		atomic_set(&task->task_state_active, 1);

858 859
		pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
			task->task_se_cmd->se_tfo->get_task_tag(
860 861 862 863
			task->task_se_cmd), task, dev);

		spin_unlock(&dev->execute_task_lock);
	}
864
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
865 866 867 868
}

static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
{
869
	struct se_device *dev = cmd->se_dev;
870 871 872 873
	struct se_task *task, *task_prev = NULL;
	unsigned long flags;

	spin_lock_irqsave(&dev->execute_task_lock, flags);
874
	list_for_each_entry(task, &cmd->t_task_list, t_list) {
875
		if (!list_empty(&task->t_execute_list))
876 877 878 879 880 881 882 883 884 885 886
			continue;
		/*
		 * __transport_add_task_to_execute_queue() handles the
		 * SAM Task Attribute emulation if enabled
		 */
		__transport_add_task_to_execute_queue(task, task_prev, dev);
		task_prev = task;
	}
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
}

887 888 889 890 891 892 893
void __transport_remove_task_from_execute_queue(struct se_task *task,
		struct se_device *dev)
{
	list_del_init(&task->t_execute_list);
	atomic_dec(&dev->execute_tasks);
}

C
Christoph Hellwig 已提交
894
static void transport_remove_task_from_execute_queue(
895 896 897 898 899
	struct se_task *task,
	struct se_device *dev)
{
	unsigned long flags;

900
	if (WARN_ON(list_empty(&task->t_execute_list)))
901 902
		return;

903
	spin_lock_irqsave(&dev->execute_task_lock, flags);
904
	__transport_remove_task_from_execute_queue(task, dev);
905 906 907
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
}

908
/*
909
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
910 911 912 913 914 915
 */

static void target_qf_do_work(struct work_struct *work)
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
916
	LIST_HEAD(qf_cmd_list);
917 918 919
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
920 921
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
922

923
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
924 925 926 927
		list_del(&cmd->se_qf_node);
		atomic_dec(&dev->dev_qf_count);
		smp_mb__after_atomic_dec();

928
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
929
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
930
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
931 932
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
933 934

		transport_add_cmd_to_queue(cmd, cmd->t_state, true);
935 936 937
	}
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
	switch (dev->dev_status) {
	case TRANSPORT_DEVICE_ACTIVATED:
		*bl += sprintf(b + *bl, "ACTIVATED");
		break;
	case TRANSPORT_DEVICE_DEACTIVATED:
		*bl += sprintf(b + *bl, "DEACTIVATED");
		break;
	case TRANSPORT_DEVICE_SHUTDOWN:
		*bl += sprintf(b + *bl, "SHUTDOWN");
		break;
	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
		*bl += sprintf(b + *bl, "OFFLINE");
		break;
	default:
		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
		break;
	}

	*bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
		atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
		dev->queue_depth);
	*bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
985
		dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1039
		pr_debug("%s", buf);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1064 1065
	int ret = 0;
	int len;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1082
		ret = -EINVAL;
1083 1084 1085 1086 1087 1088
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1089
		pr_debug("%s", buf);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1112 1113
	int ret = 0;
	int len;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1140
		ret = -EINVAL;
1141 1142 1143
		break;
	}

1144 1145 1146
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1147
		strncpy(p_buf, buf, p_buf_len);
1148
	} else {
1149
		pr_debug("%s", buf);
1150
	}
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1193
		ret = -EINVAL;
1194 1195 1196 1197 1198 1199
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1200
		pr_debug("%s", buf);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
	int j = 0, i = 4; /* offset to start of the identifer */

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

static void core_setup_task_attr_emulation(struct se_device *dev)
{
	/*
	 * If this device is from Target_Core_Mod/pSCSI, disable the
	 * SAM Task Attribute emulation.
	 *
	 * This is currently not available in upsream Linux/SCSI Target
	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
	 */
1251
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1252 1253 1254 1255 1256
		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
		return;
	}

	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1257
	pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1258 1259
		" device\n", dev->transport->name,
		dev->transport->get_device_rev(dev));
1260 1261 1262 1263
}

static void scsi_dump_inquiry(struct se_device *dev)
{
1264
	struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1265 1266 1267 1268
	int i, device_type;
	/*
	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
	 */
1269
	pr_debug("  Vendor: ");
1270 1271
	for (i = 0; i < 8; i++)
		if (wwn->vendor[i] >= 0x20)
1272
			pr_debug("%c", wwn->vendor[i]);
1273
		else
1274
			pr_debug(" ");
1275

1276
	pr_debug("  Model: ");
1277 1278
	for (i = 0; i < 16; i++)
		if (wwn->model[i] >= 0x20)
1279
			pr_debug("%c", wwn->model[i]);
1280
		else
1281
			pr_debug(" ");
1282

1283
	pr_debug("  Revision: ");
1284 1285
	for (i = 0; i < 4; i++)
		if (wwn->revision[i] >= 0x20)
1286
			pr_debug("%c", wwn->revision[i]);
1287
		else
1288
			pr_debug(" ");
1289

1290
	pr_debug("\n");
1291

1292
	device_type = dev->transport->get_device_type(dev);
1293 1294
	pr_debug("  Type:   %s ", scsi_device_type(device_type));
	pr_debug("                 ANSI SCSI revision: %02x\n",
1295
				dev->transport->get_device_rev(dev));
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
}

struct se_device *transport_add_device_to_core_hba(
	struct se_hba *hba,
	struct se_subsystem_api *transport,
	struct se_subsystem_dev *se_dev,
	u32 device_flags,
	void *transport_dev,
	struct se_dev_limits *dev_limits,
	const char *inquiry_prod,
	const char *inquiry_rev)
{
1308
	int force_pt;
1309 1310 1311
	struct se_device  *dev;

	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1312 1313
	if (!dev) {
		pr_err("Unable to allocate memory for se_dev_t\n");
1314 1315 1316
		return NULL;
	}

1317
	transport_init_queue_obj(&dev->dev_queue_obj);
1318 1319
	dev->dev_flags		= device_flags;
	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1320
	dev->dev_ptr		= transport_dev;
1321 1322 1323 1324 1325 1326 1327 1328 1329
	dev->se_hba		= hba;
	dev->se_sub_dev		= se_dev;
	dev->transport		= transport;
	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_sep_list);
	INIT_LIST_HEAD(&dev->dev_tmr_list);
	INIT_LIST_HEAD(&dev->execute_task_list);
	INIT_LIST_HEAD(&dev->delayed_cmd_list);
	INIT_LIST_HEAD(&dev->state_task_list);
1330
	INIT_LIST_HEAD(&dev->qf_cmd_list);
1331 1332 1333 1334 1335 1336
	spin_lock_init(&dev->execute_task_lock);
	spin_lock_init(&dev->delayed_cmd_lock);
	spin_lock_init(&dev->dev_reservation_lock);
	spin_lock_init(&dev->dev_status_lock);
	spin_lock_init(&dev->se_port_lock);
	spin_lock_init(&dev->se_tmr_lock);
1337
	spin_lock_init(&dev->qf_cmd_lock);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	dev->queue_depth	= dev_limits->queue_depth;
	atomic_set(&dev->depth_left, dev->queue_depth);
	atomic_set(&dev->dev_ordered_id, 0);

	se_dev_set_default_attribs(dev, dev_limits);

	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
	dev->creation_time = get_jiffies_64();
	spin_lock_init(&dev->stats_lock);

	spin_lock(&hba->device_lock);
	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
	hba->dev_count++;
	spin_unlock(&hba->device_lock);
	/*
	 * Setup the SAM Task Attribute emulation for struct se_device
	 */
	core_setup_task_attr_emulation(dev);
	/*
	 * Force PR and ALUA passthrough emulation with internal object use.
	 */
	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
	/*
	 * Setup the Reservations infrastructure for struct se_device
	 */
	core_setup_reservations(dev, force_pt);
	/*
	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
	 */
	if (core_setup_alua(dev, force_pt) < 0)
		goto out;

	/*
	 * Startup the struct se_device processing thread
	 */
	dev->process_thread = kthread_run(transport_processing_thread, dev,
1375
					  "LIO_%s", dev->transport->name);
1376
	if (IS_ERR(dev->process_thread)) {
1377
		pr_err("Unable to create kthread: LIO_%s\n",
1378
			dev->transport->name);
1379 1380
		goto out;
	}
1381 1382 1383 1384
	/*
	 * Setup work_queue for QUEUE_FULL
	 */
	INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * Preload the initial INQUIRY const values if we are doing
	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
	 * passthrough because this is being provided by the backend LLD.
	 * This is required so that transport_get_inquiry() copies these
	 * originals once back into DEV_T10_WWN(dev) for the virtual device
	 * setup.
	 */
1393
	if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1394
		if (!inquiry_prod || !inquiry_rev) {
1395
			pr_err("All non TCM/pSCSI plugins require"
1396 1397 1398 1399
				" INQUIRY consts\n");
			goto out;
		}

1400 1401 1402
		strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
		strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
		strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1403 1404 1405
	}
	scsi_dump_inquiry(dev);

1406
	return dev;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
out:
	kthread_stop(dev->process_thread);

	spin_lock(&hba->device_lock);
	list_del(&dev->dev_list);
	hba->dev_count--;
	spin_unlock(&hba->device_lock);

	se_release_vpd_for_dev(dev);

	kfree(dev);

	return NULL;
}
EXPORT_SYMBOL(transport_add_device_to_core_hba);

/*	transport_generic_prepare_cdb():
 *
 *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
 *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
 *	The point of this is since we are mapping iSCSI LUNs to
 *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
 *	devices and HBAs for a loop.
 */
static inline void transport_generic_prepare_cdb(
	unsigned char *cdb)
{
	switch (cdb[0]) {
	case READ_10: /* SBC - RDProtect */
	case READ_12: /* SBC - RDProtect */
	case READ_16: /* SBC - RDProtect */
	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
	case VERIFY: /* SBC - VRProtect */
	case VERIFY_16: /* SBC - VRProtect */
	case WRITE_VERIFY: /* SBC - VRProtect */
	case WRITE_VERIFY_12: /* SBC - VRProtect */
		break;
	default:
		cdb[1] &= 0x1f; /* clear logical unit number */
		break;
	}
}

static struct se_task *
transport_generic_get_task(struct se_cmd *cmd,
		enum dma_data_direction data_direction)
{
	struct se_task *task;
1455
	struct se_device *dev = cmd->se_dev;
1456

1457
	task = dev->transport->alloc_task(cmd->t_task_cdb);
1458
	if (!task) {
1459
		pr_err("Unable to allocate struct se_task\n");
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		return NULL;
	}

	INIT_LIST_HEAD(&task->t_list);
	INIT_LIST_HEAD(&task->t_execute_list);
	INIT_LIST_HEAD(&task->t_state_list);
	init_completion(&task->task_stop_comp);
	task->task_se_cmd = cmd;
	task->task_data_direction = data_direction;

	return task;
}

static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);

/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
	struct target_core_fabric_ops *tfo,
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1488 1489
	INIT_LIST_HEAD(&cmd->se_lun_node);
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1490
	INIT_LIST_HEAD(&cmd->se_qf_node);
1491
	INIT_LIST_HEAD(&cmd->se_queue_node);
1492
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1493 1494 1495 1496
	INIT_LIST_HEAD(&cmd->t_task_list);
	init_completion(&cmd->transport_lun_fe_stop_comp);
	init_completion(&cmd->transport_lun_stop_comp);
	init_completion(&cmd->t_transport_stop_comp);
1497
	init_completion(&cmd->cmd_wait_comp);
1498 1499
	spin_lock_init(&cmd->t_state_lock);
	atomic_set(&cmd->transport_dev_active, 1);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
}
EXPORT_SYMBOL(transport_init_se_cmd);

static int transport_check_alloc_task_attr(struct se_cmd *cmd)
{
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1516
	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1517 1518
		return 0;

1519
	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1520
		pr_debug("SAM Task Attribute ACA"
1521
			" emulation is not supported\n");
1522
		return -EINVAL;
1523 1524 1525 1526 1527
	}
	/*
	 * Used to determine when ORDERED commands should go from
	 * Dormant to Active status.
	 */
1528
	cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1529
	smp_mb__after_atomic_inc();
1530
	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1531
			cmd->se_ordered_id, cmd->sam_task_attr,
1532
			cmd->se_dev->transport->name);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	return 0;
}

/*	transport_generic_allocate_tasks():
 *
 *	Called from fabric RX Thread.
 */
int transport_generic_allocate_tasks(
	struct se_cmd *cmd,
	unsigned char *cdb)
{
	int ret;

	transport_generic_prepare_cdb(cdb);
	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1552
		pr_err("Received SCSI CDB with command_size: %d that"
1553 1554
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1555 1556
		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1557
		return -EINVAL;
1558 1559 1560 1561 1562 1563
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1564 1565
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1566
						GFP_KERNEL);
1567 1568
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1569
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1570
				scsi_command_size(cdb),
1571
				(unsigned long)sizeof(cmd->__t_task_cdb));
1572 1573 1574
			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
			cmd->scsi_sense_reason =
					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1575
			return -ENOMEM;
1576 1577
		}
	} else
1578
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1579
	/*
1580
	 * Copy the original CDB into cmd->
1581
	 */
1582
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1583 1584 1585
	/*
	 * Setup the received CDB based on SCSI defined opcodes and
	 * perform unit attention, persistent reservations and ALUA
1586
	 * checks for virtual device backends.  The cmd->t_task_cdb
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	 * pointer is expected to be setup before we reach this point.
	 */
	ret = transport_generic_cmd_sequencer(cmd, cdb);
	if (ret < 0)
		return ret;
	/*
	 * Check for SAM Task Attribute Emulation
	 */
	if (transport_check_alloc_task_attr(cmd) < 0) {
		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1598
		return -EINVAL;
1599 1600 1601 1602 1603 1604 1605 1606 1607
	}
	spin_lock(&cmd->se_lun->lun_sep_lock);
	if (cmd->se_lun->lun_sep)
		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
	spin_unlock(&cmd->se_lun->lun_sep_lock);
	return 0;
}
EXPORT_SYMBOL(transport_generic_allocate_tasks);

1608 1609 1610 1611 1612 1613 1614
/*
 * Used by fabric module frontends to queue tasks directly.
 * Many only be used from process context only
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1615 1616
	int ret;

1617 1618
	if (!cmd->se_lun) {
		dump_stack();
1619
		pr_err("cmd->se_lun is NULL\n");
1620 1621 1622 1623
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1624
		pr_err("transport_generic_handle_cdb cannot be called"
1625 1626 1627
				" from interrupt context\n");
		return -EINVAL;
	}
1628 1629 1630 1631
	/*
	 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
	 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
	 * in existing usage to ensure that outstanding descriptors are handled
1632
	 * correctly during shutdown via transport_wait_for_tasks()
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
	atomic_set(&cmd->t_transport_active, 1);
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1645 1646 1647
	if (ret < 0)
		transport_generic_request_failure(cmd);

1648
	return 0;
1649 1650 1651
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1652 1653 1654 1655 1656 1657 1658 1659
/*
 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
 * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
 * complete setup in TCM process context w/ TFO->new_cmd_map().
 */
int transport_generic_handle_cdb_map(
	struct se_cmd *cmd)
{
1660
	if (!cmd->se_lun) {
1661
		dump_stack();
1662
		pr_err("cmd->se_lun is NULL\n");
1663
		return -EINVAL;
1664 1665
	}

1666
	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	return 0;
}
EXPORT_SYMBOL(transport_generic_handle_cdb_map);

/*	transport_generic_handle_data():
 *
 *
 */
int transport_generic_handle_data(
	struct se_cmd *cmd)
{
	/*
	 * For the software fabric case, then we assume the nexus is being
	 * failed/shutdown when signals are pending from the kthread context
	 * caller, so we return a failure.  For the HW target mode case running
	 * in interrupt code, the signal_pending() check is skipped.
	 */
	if (!in_interrupt() && signal_pending(current))
1685
		return -EPERM;
1686 1687 1688 1689
	/*
	 * If the received CDB has aleady been ABORTED by the generic
	 * target engine, we now call transport_check_aborted_status()
	 * to queue any delated TASK_ABORTED status for the received CDB to the
L
Lucas De Marchi 已提交
1690
	 * fabric module as we are expecting no further incoming DATA OUT
1691 1692 1693 1694 1695
	 * sequences at this point.
	 */
	if (transport_check_aborted_status(cmd, 1) != 0)
		return 0;

1696
	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	return 0;
}
EXPORT_SYMBOL(transport_generic_handle_data);

/*	transport_generic_handle_tmr():
 *
 *
 */
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
{
1708
	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1709 1710 1711 1712
	return 0;
}
EXPORT_SYMBOL(transport_generic_handle_tmr);

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/*
 * If the task is active, request it to be stopped and sleep until it
 * has completed.
 */
bool target_stop_task(struct se_task *task, unsigned long *flags)
{
	struct se_cmd *cmd = task->task_se_cmd;
	bool was_active = false;

	if (task->task_flags & TF_ACTIVE) {
		task->task_flags |= TF_REQUEST_STOP;
		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);

		pr_debug("Task %p waiting to complete\n", task);
		wait_for_completion(&task->task_stop_comp);
		pr_debug("Task %p stopped successfully\n", task);

		spin_lock_irqsave(&cmd->t_state_lock, *flags);
		atomic_dec(&cmd->t_task_cdbs_left);
		task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
		was_active = true;
	}

	return was_active;
}

1739 1740 1741 1742 1743 1744
static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
{
	struct se_task *task, *task_tmp;
	unsigned long flags;
	int ret = 0;

1745
	pr_debug("ITT[0x%08x] - Stopping tasks\n",
1746
		cmd->se_tfo->get_task_tag(cmd));
1747 1748 1749 1750

	/*
	 * No tasks remain in the execution queue
	 */
1751
	spin_lock_irqsave(&cmd->t_state_lock, flags);
1752
	list_for_each_entry_safe(task, task_tmp,
1753
				&cmd->t_task_list, t_list) {
1754
		pr_debug("Processing task %p\n", task);
1755 1756 1757 1758
		/*
		 * If the struct se_task has not been sent and is not active,
		 * remove the struct se_task from the execution queue.
		 */
1759
		if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1760
			spin_unlock_irqrestore(&cmd->t_state_lock,
1761 1762
					flags);
			transport_remove_task_from_execute_queue(task,
1763
					cmd->se_dev);
1764

1765
			pr_debug("Task %p removed from execute queue\n", task);
1766
			spin_lock_irqsave(&cmd->t_state_lock, flags);
1767 1768 1769
			continue;
		}

1770
		if (!target_stop_task(task, &flags)) {
1771
			pr_debug("Task %p - did nothing\n", task);
1772 1773 1774
			ret++;
		}
	}
1775
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1776 1777 1778 1779 1780 1781 1782

	return ret;
}

/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1783
static void transport_generic_request_failure(struct se_cmd *cmd)
1784
{
1785 1786
	int ret = 0;

1787
	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1788
		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1789
		cmd->t_task_cdb[0]);
1790
	pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1791
		cmd->se_tfo->get_cmd_state(cmd),
1792
		cmd->t_state, cmd->scsi_sense_reason);
1793
	pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1794 1795
		" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
		" t_transport_active: %d t_transport_stop: %d"
1796
		" t_transport_sent: %d\n", cmd->t_task_list_num,
1797 1798 1799 1800 1801 1802
		atomic_read(&cmd->t_task_cdbs_left),
		atomic_read(&cmd->t_task_cdbs_sent),
		atomic_read(&cmd->t_task_cdbs_ex_left),
		atomic_read(&cmd->t_transport_active),
		atomic_read(&cmd->t_transport_stop),
		atomic_read(&cmd->t_transport_sent));
1803 1804 1805 1806 1807 1808 1809

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
		transport_complete_task_attr(cmd);

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	switch (cmd->scsi_sense_reason) {
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1821
		break;
1822
	case TCM_RESERVATION_CONFLICT:
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1837 1838 1839
		if (cmd->se_sess &&
		    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1840 1841 1842
				cmd->orig_fe_lun, 0x2C,
				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);

1843
		ret = cmd->se_tfo->queue_status(cmd);
1844
		if (ret == -EAGAIN || ret == -ENOMEM)
1845
			goto queue_full;
1846 1847
		goto check_stop;
	default:
1848
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1849
			cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1850 1851 1852
		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
		break;
	}
1853 1854 1855 1856 1857 1858 1859
	/*
	 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
	 * make the call to transport_send_check_condition_and_sense()
	 * directly.  Otherwise expect the fabric to make the call to
	 * transport_send_check_condition_and_sense() after handling
	 * possible unsoliticied write data payloads.
	 */
1860 1861 1862 1863
	ret = transport_send_check_condition_and_sense(cmd,
			cmd->scsi_sense_reason, 0);
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;
1864

1865 1866
check_stop:
	transport_lun_remove_cmd(cmd);
1867
	if (!transport_cmd_check_stop_to_fabric(cmd))
1868
		;
1869 1870 1871
	return;

queue_full:
1872 1873
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
}

static inline u32 transport_lba_21(unsigned char *cdb)
{
	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
}

static inline u32 transport_lba_32(unsigned char *cdb)
{
	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
}

static inline unsigned long long transport_lba_64(unsigned char *cdb)
{
	unsigned int __v1, __v2;

	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];

	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
}

/*
 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
 */
static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
{
	unsigned int __v1, __v2;

	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];

	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
}

static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
{
	unsigned long flags;

1913
	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1914
	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1915
	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
}

static inline int transport_tcq_window_closed(struct se_device *dev)
{
	if (dev->dev_tcq_window_closed++ <
			PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
		msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
	} else
		msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);

1926
	wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	return 0;
}

/*
 * Called from Fabric Module context from transport_execute_tasks()
 *
 * The return of this function determins if the tasks from struct se_cmd
 * get added to the execution queue in transport_execute_tasks(),
 * or are added to the delayed or ordered lists here.
 */
static inline int transport_execute_task_attr(struct se_cmd *cmd)
{
1939
	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1940 1941
		return 1;
	/*
L
Lucas De Marchi 已提交
1942
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1943 1944
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1945
	 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1946
		pr_debug("Added HEAD_OF_QUEUE for CDB:"
1947
			" 0x%02x, se_ordered_id: %u\n",
1948
			cmd->t_task_cdb[0],
1949 1950
			cmd->se_ordered_id);
		return 1;
1951
	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1952
		atomic_inc(&cmd->se_dev->dev_ordered_sync);
1953 1954
		smp_mb__after_atomic_inc();

1955
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1956
				" list, se_ordered_id: %u\n",
1957
				cmd->t_task_cdb[0],
1958 1959 1960 1961 1962 1963
				cmd->se_ordered_id);
		/*
		 * Add ORDERED command to tail of execution queue if
		 * no other older commands exist that need to be
		 * completed first.
		 */
1964
		if (!atomic_read(&cmd->se_dev->simple_cmds))
1965 1966 1967 1968 1969
			return 1;
	} else {
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1970
		atomic_inc(&cmd->se_dev->simple_cmds);
1971 1972 1973 1974 1975 1976 1977
		smp_mb__after_atomic_inc();
	}
	/*
	 * Otherwise if one or more outstanding ORDERED task attribute exist,
	 * add the dormant task(s) built for the passed struct se_cmd to the
	 * execution queue and become in Active state for this struct se_device.
	 */
1978
	if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1979 1980
		/*
		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
L
Lucas De Marchi 已提交
1981
		 * will be drained upon completion of HEAD_OF_QUEUE task.
1982
		 */
1983
		spin_lock(&cmd->se_dev->delayed_cmd_lock);
1984
		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1985 1986 1987
		list_add_tail(&cmd->se_delayed_node,
				&cmd->se_dev->delayed_cmd_list);
		spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1988

1989
		pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1990
			" delayed CMD list, se_ordered_id: %u\n",
1991
			cmd->t_task_cdb[0], cmd->sam_task_attr,
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
			cmd->se_ordered_id);
		/*
		 * Return zero to let transport_execute_tasks() know
		 * not to add the delayed tasks to the execution list.
		 */
		return 0;
	}
	/*
	 * Otherwise, no ORDERED task attributes exist..
	 */
	return 1;
}

/*
 * Called from fabric module context in transport_generic_new_cmd() and
 * transport_generic_process_write()
 */
static int transport_execute_tasks(struct se_cmd *cmd)
{
	int add_tasks;

2013
	if (se_dev_check_online(cmd->se_dev) != 0) {
2014 2015
		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		transport_generic_request_failure(cmd);
2016
		return 0;
2017
	}
2018

2019 2020
	/*
	 * Call transport_cmd_check_stop() to see if a fabric exception
L
Lucas De Marchi 已提交
2021
	 * has occurred that prevents execution.
2022
	 */
2023
	if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2024 2025 2026 2027 2028
		/*
		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
		 * attribute for the tasks of the received struct se_cmd CDB
		 */
		add_tasks = transport_execute_task_attr(cmd);
2029
		if (!add_tasks)
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
			goto execute_tasks;
		/*
		 * This calls transport_add_tasks_from_cmd() to handle
		 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
		 * (if enabled) in __transport_add_task_to_execute_queue() and
		 * transport_add_task_check_sam_attr().
		 */
		transport_add_tasks_from_cmd(cmd);
	}
	/*
	 * Kick the execution queue for the cmd associated struct se_device
	 * storage object.
	 */
execute_tasks:
2044
	__transport_execute_tasks(cmd->se_dev);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	return 0;
}

/*
 * Called to check struct se_device tcq depth window, and once open pull struct se_task
 * from struct se_device->execute_task_list and
 *
 * Called from transport_processing_thread()
 */
static int __transport_execute_tasks(struct se_device *dev)
{
	int error;
	struct se_cmd *cmd = NULL;
2058
	struct se_task *task = NULL;
2059 2060 2061 2062
	unsigned long flags;

	/*
	 * Check if there is enough room in the device and HBA queue to send
2063
	 * struct se_tasks to the selected transport.
2064 2065
	 */
check_depth:
2066
	if (!atomic_read(&dev->depth_left))
2067 2068
		return transport_tcq_window_closed(dev);

2069
	dev->dev_tcq_window_closed = 0;
2070

2071 2072 2073
	spin_lock_irq(&dev->execute_task_lock);
	if (list_empty(&dev->execute_task_list)) {
		spin_unlock_irq(&dev->execute_task_lock);
2074 2075
		return 0;
	}
2076 2077
	task = list_first_entry(&dev->execute_task_list,
				struct se_task, t_execute_list);
2078
	__transport_remove_task_from_execute_queue(task, dev);
2079
	spin_unlock_irq(&dev->execute_task_lock);
2080 2081 2082

	atomic_dec(&dev->depth_left);

2083
	cmd = task->task_se_cmd;
2084

2085
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2086
	task->task_flags |= (TF_ACTIVE | TF_SENT);
2087
	atomic_inc(&cmd->t_task_cdbs_sent);
2088

2089 2090
	if (atomic_read(&cmd->t_task_cdbs_sent) ==
	    cmd->t_task_list_num)
2091
		atomic_set(&cmd->t_transport_sent, 1);
2092

2093
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094

2095 2096 2097 2098
	if (cmd->execute_task)
		error = cmd->execute_task(task);
	else
		error = dev->transport->do_task(task);
2099 2100 2101 2102 2103 2104 2105
	if (error != 0) {
		spin_lock_irqsave(&cmd->t_state_lock, flags);
		task->task_flags &= ~TF_ACTIVE;
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		atomic_set(&cmd->t_transport_sent, 0);
		transport_stop_tasks_for_cmd(cmd);
		atomic_inc(&dev->depth_left);
2106
		transport_generic_request_failure(cmd);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	}

	goto check_depth;

	return 0;
}

static inline u32 transport_get_sectors_6(
	unsigned char *cdb,
	struct se_cmd *cmd,
	int *ret)
{
2119
	struct se_device *dev = cmd->se_dev;
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

	/*
	 * Assume TYPE_DISK for non struct se_device objects.
	 * Use 8-bit sector value.
	 */
	if (!dev)
		goto type_disk;

	/*
	 * Use 24-bit allocation length for TYPE_TAPE.
	 */
2131
	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2132 2133 2134 2135
		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];

	/*
	 * Everything else assume TYPE_DISK Sector CDB location.
2136 2137 2138 2139 2140 2141
	 * Use 8-bit sector value.  SBC-3 says:
	 *
	 *   A TRANSFER LENGTH field set to zero specifies that 256
	 *   logical blocks shall be written.  Any other value
	 *   specifies the number of logical blocks that shall be
	 *   written.
2142 2143
	 */
type_disk:
2144
	return cdb[4] ? : 256;
2145 2146 2147 2148 2149 2150 2151
}

static inline u32 transport_get_sectors_10(
	unsigned char *cdb,
	struct se_cmd *cmd,
	int *ret)
{
2152
	struct se_device *dev = cmd->se_dev;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

	/*
	 * Assume TYPE_DISK for non struct se_device objects.
	 * Use 16-bit sector value.
	 */
	if (!dev)
		goto type_disk;

	/*
	 * XXX_10 is not defined in SSC, throw an exception
	 */
2164 2165
	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
		*ret = -EINVAL;
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
		return 0;
	}

	/*
	 * Everything else assume TYPE_DISK Sector CDB location.
	 * Use 16-bit sector value.
	 */
type_disk:
	return (u32)(cdb[7] << 8) + cdb[8];
}

static inline u32 transport_get_sectors_12(
	unsigned char *cdb,
	struct se_cmd *cmd,
	int *ret)
{
2182
	struct se_device *dev = cmd->se_dev;
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

	/*
	 * Assume TYPE_DISK for non struct se_device objects.
	 * Use 32-bit sector value.
	 */
	if (!dev)
		goto type_disk;

	/*
	 * XXX_12 is not defined in SSC, throw an exception
	 */
2194 2195
	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
		*ret = -EINVAL;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		return 0;
	}

	/*
	 * Everything else assume TYPE_DISK Sector CDB location.
	 * Use 32-bit sector value.
	 */
type_disk:
	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
}

static inline u32 transport_get_sectors_16(
	unsigned char *cdb,
	struct se_cmd *cmd,
	int *ret)
{
2212
	struct se_device *dev = cmd->se_dev;
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

	/*
	 * Assume TYPE_DISK for non struct se_device objects.
	 * Use 32-bit sector value.
	 */
	if (!dev)
		goto type_disk;

	/*
	 * Use 24-bit allocation length for TYPE_TAPE.
	 */
2224
	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];

type_disk:
	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
		    (cdb[12] << 8) + cdb[13];
}

/*
 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
 */
static inline u32 transport_get_sectors_32(
	unsigned char *cdb,
	struct se_cmd *cmd,
	int *ret)
{
	/*
	 * Assume TYPE_DISK for non struct se_device objects.
	 * Use 32-bit sector value.
	 */
	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
		    (cdb[30] << 8) + cdb[31];

}

static inline u32 transport_get_size(
	u32 sectors,
	unsigned char *cdb,
	struct se_cmd *cmd)
{
2254
	struct se_device *dev = cmd->se_dev;
2255

2256
	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2257
		if (cdb[1] & 1) { /* sectors */
2258
			return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2259 2260 2261 2262
		} else /* bytes */
			return sectors;
	}
#if 0
2263
	pr_debug("Returning block_size: %u, sectors: %u == %u for"
2264 2265 2266
			" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
			dev->se_sub_dev->se_dev_attrib.block_size * sectors,
			dev->transport->name);
2267
#endif
2268
	return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2269 2270 2271 2272 2273
}

static void transport_xor_callback(struct se_cmd *cmd)
{
	unsigned char *buf, *addr;
2274
	struct scatterlist *sg;
2275 2276
	unsigned int offset;
	int i;
2277
	int count;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	/*
	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
	 *
	 * 1) read the specified logical block(s);
	 * 2) transfer logical blocks from the data-out buffer;
	 * 3) XOR the logical blocks transferred from the data-out buffer with
	 *    the logical blocks read, storing the resulting XOR data in a buffer;
	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
	 *    blocks transferred from the data-out buffer; and
	 * 5) transfer the resulting XOR data to the data-in buffer.
	 */
	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2290 2291
	if (!buf) {
		pr_err("Unable to allocate xor_callback buf\n");
2292 2293 2294
		return;
	}
	/*
2295
	 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2296 2297
	 * into the locally allocated *buf
	 */
2298 2299 2300 2301 2302
	sg_copy_to_buffer(cmd->t_data_sg,
			  cmd->t_data_nents,
			  buf,
			  cmd->data_length);

2303 2304
	/*
	 * Now perform the XOR against the BIDI read memory located at
2305
	 * cmd->t_mem_bidi_list
2306 2307 2308
	 */

	offset = 0;
2309 2310 2311
	for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
		addr = kmap_atomic(sg_page(sg), KM_USER0);
		if (!addr)
2312 2313
			goto out;

2314 2315
		for (i = 0; i < sg->length; i++)
			*(addr + sg->offset + i) ^= *(buf + offset + i);
2316

2317
		offset += sg->length;
2318 2319
		kunmap_atomic(addr, KM_USER0);
	}
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
out:
	kfree(buf);
}

/*
 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
 */
static int transport_get_sense_data(struct se_cmd *cmd)
{
	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2331
	struct se_device *dev = cmd->se_dev;
2332 2333 2334 2335
	struct se_task *task = NULL, *task_tmp;
	unsigned long flags;
	u32 offset = 0;

2336 2337
	WARN_ON(!cmd->se_lun);

2338 2339 2340
	if (!dev)
		return 0;

2341
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2342
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2343
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2344 2345 2346 2347
		return 0;
	}

	list_for_each_entry_safe(task, task_tmp,
2348
				&cmd->t_task_list, t_list) {
2349
		if (!(task->task_flags & TF_HAS_SENSE))
2350 2351
			continue;

2352
		if (!dev->transport->get_sense_buffer) {
2353
			pr_err("dev->transport->get_sense_buffer"
2354 2355 2356 2357
					" is NULL\n");
			continue;
		}

2358
		sense_buffer = dev->transport->get_sense_buffer(task);
2359
		if (!sense_buffer) {
2360
			pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2361
				" sense buffer for task with sense\n",
2362
				cmd->se_tfo->get_task_tag(cmd), task);
2363 2364
			continue;
		}
2365
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2366

2367
		offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2368 2369
				TRANSPORT_SENSE_BUFFER);

2370
		memcpy(&buffer[offset], sense_buffer,
2371 2372 2373 2374 2375 2376
				TRANSPORT_SENSE_BUFFER);
		cmd->scsi_status = task->task_scsi_status;
		/* Automatically padded */
		cmd->scsi_sense_length =
				(TRANSPORT_SENSE_BUFFER + offset);

2377
		pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2378
				" and sense\n",
2379
			dev->se_hba->hba_id, dev->transport->name,
2380 2381 2382
				cmd->scsi_status);
		return 0;
	}
2383
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2384 2385 2386 2387

	return -1;
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static inline long long transport_dev_end_lba(struct se_device *dev)
{
	return dev->transport->get_blocks(dev) + 1;
}

static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
{
	struct se_device *dev = cmd->se_dev;
	u32 sectors;

	if (dev->transport->get_device_type(dev) != TYPE_DISK)
		return 0;

	sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);

2403 2404
	if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
		pr_err("LBA: %llu Sectors: %u exceeds"
2405 2406 2407
			" transport_dev_end_lba(): %llu\n",
			cmd->t_task_lba, sectors,
			transport_dev_end_lba(dev));
2408
		return -EINVAL;
2409 2410
	}

2411
	return 0;
2412 2413
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
{
	/*
	 * Determine if the received WRITE_SAME is used to for direct
	 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
	 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
	 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
	 */
	int passthrough = (dev->transport->transport_type ==
				TRANSPORT_PLUGIN_PHBA_PDEV);

	if (!passthrough) {
		if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
			pr_err("WRITE_SAME PBDATA and LBDATA"
				" bits not supported for Block Discard"
				" Emulation\n");
			return -ENOSYS;
		}
		/*
		 * Currently for the emulated case we only accept
		 * tpws with the UNMAP=1 bit set.
		 */
		if (!(flags[0] & 0x08)) {
			pr_err("WRITE_SAME w/o UNMAP bit not"
				" supported for Block Discard Emulation\n");
			return -ENOSYS;
		}
	}

	return 0;
}

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
/*	transport_generic_cmd_sequencer():
 *
 *	Generic Command Sequencer that should work for most DAS transport
 *	drivers.
 *
 *	Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
 *	RX Thread.
 *
 *	FIXME: Need to support other SCSI OPCODES where as well.
 */
static int transport_generic_cmd_sequencer(
	struct se_cmd *cmd,
	unsigned char *cdb)
{
2460
	struct se_device *dev = cmd->se_dev;
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
	int ret = 0, sector_ret = 0, passthrough;
	u32 sectors = 0, size = 0, pr_reg_type = 0;
	u16 service_action;
	u8 alua_ascq = 0;
	/*
	 * Check for an existing UNIT ATTENTION condition
	 */
	if (core_scsi3_ua_check(cmd, cdb) < 0) {
		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2472
		return -EINVAL;
2473 2474 2475 2476
	}
	/*
	 * Check status of Asymmetric Logical Unit Assignment port
	 */
2477
	ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2478 2479
	if (ret != 0) {
		/*
L
Lucas De Marchi 已提交
2480
		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2481 2482 2483 2484 2485
		 * The ALUA additional sense code qualifier (ASCQ) is determined
		 * by the ALUA primary or secondary access state..
		 */
		if (ret > 0) {
#if 0
2486
			pr_debug("[%s]: ALUA TG Port not available,"
2487
				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2488
				cmd->se_tfo->get_fabric_name(), alua_ascq);
2489 2490 2491 2492
#endif
			transport_set_sense_codes(cmd, 0x04, alua_ascq);
			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2493
			return -EINVAL;
2494 2495 2496 2497 2498 2499
		}
		goto out_invalid_cdb_field;
	}
	/*
	 * Check status for SPC-3 Persistent Reservations
	 */
2500 2501
	if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
		if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2502 2503 2504 2505 2506 2507
					cmd, cdb, pr_reg_type) != 0) {
			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
			cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
			cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
			return -EBUSY;
		}
2508 2509 2510 2511 2512 2513 2514
		/*
		 * This means the CDB is allowed for the SCSI Initiator port
		 * when said port is *NOT* holding the legacy SPC-2 or
		 * SPC-3 Persistent Reservation.
		 */
	}

2515 2516 2517 2518 2519 2520 2521
	/*
	 * If we operate in passthrough mode we skip most CDB emulation and
	 * instead hand the commands down to the physical SCSI device.
	 */
	passthrough =
		(dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);

2522 2523 2524 2525 2526 2527
	switch (cdb[0]) {
	case READ_6:
		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2528
		cmd->t_task_lba = transport_lba_21(cdb);
2529 2530 2531 2532 2533 2534 2535
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case READ_10:
		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2536
		cmd->t_task_lba = transport_lba_32(cdb);
2537 2538 2539 2540 2541 2542 2543
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case READ_12:
		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2544
		cmd->t_task_lba = transport_lba_32(cdb);
2545 2546 2547 2548 2549 2550 2551
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case READ_16:
		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2552
		cmd->t_task_lba = transport_lba_64(cdb);
2553 2554 2555 2556 2557 2558 2559
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case WRITE_6:
		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2560
		cmd->t_task_lba = transport_lba_21(cdb);
2561 2562 2563 2564 2565 2566 2567
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case WRITE_10:
		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2568
		cmd->t_task_lba = transport_lba_32(cdb);
2569 2570
		if (cdb[1] & 0x8)
			cmd->se_cmd_flags |= SCF_FUA;
2571 2572 2573 2574 2575 2576 2577
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case WRITE_12:
		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2578
		cmd->t_task_lba = transport_lba_32(cdb);
2579 2580
		if (cdb[1] & 0x8)
			cmd->se_cmd_flags |= SCF_FUA;
2581 2582 2583 2584 2585 2586 2587
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case WRITE_16:
		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2588
		cmd->t_task_lba = transport_lba_64(cdb);
2589 2590
		if (cdb[1] & 0x8)
			cmd->se_cmd_flags |= SCF_FUA;
2591 2592 2593 2594
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
		break;
	case XDWRITEREAD_10:
		if ((cmd->data_direction != DMA_TO_DEVICE) ||
2595
		    !(cmd->se_cmd_flags & SCF_BIDI))
2596 2597 2598 2599 2600
			goto out_invalid_cdb_field;
		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
		size = transport_get_size(sectors, cdb, cmd);
2601
		cmd->t_task_lba = transport_lba_32(cdb);
2602
		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2603

2604 2605 2606 2607
		/*
		 * Do now allow BIDI commands for passthrough mode.
		 */
		if (passthrough)
2608
			goto out_unsupported_cdb;
2609

2610
		/*
2611
		 * Setup BIDI XOR callback to be run after I/O completion.
2612 2613
		 */
		cmd->transport_complete_callback = &transport_xor_callback;
2614 2615
		if (cdb[1] & 0x8)
			cmd->se_cmd_flags |= SCF_FUA;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
		break;
	case VARIABLE_LENGTH_CMD:
		service_action = get_unaligned_be16(&cdb[8]);
		switch (service_action) {
		case XDWRITEREAD_32:
			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
			if (sector_ret)
				goto out_unsupported_cdb;
			size = transport_get_size(sectors, cdb, cmd);
			/*
			 * Use WRITE_32 and READ_32 opcodes for the emulated
			 * XDWRITE_READ_32 logic.
			 */
2629
			cmd->t_task_lba = transport_lba_64_ext(cdb);
2630 2631
			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;

2632 2633 2634
			/*
			 * Do now allow BIDI commands for passthrough mode.
			 */
2635
			if (passthrough)
2636
				goto out_unsupported_cdb;
2637

2638
			/*
2639 2640
			 * Setup BIDI XOR callback to be run during after I/O
			 * completion.
2641 2642
			 */
			cmd->transport_complete_callback = &transport_xor_callback;
2643 2644
			if (cdb[1] & 0x8)
				cmd->se_cmd_flags |= SCF_FUA;
2645 2646 2647 2648 2649
			break;
		case WRITE_SAME_32:
			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
			if (sector_ret)
				goto out_unsupported_cdb;
2650

2651
			if (sectors)
2652
				size = transport_get_size(1, cdb, cmd);
2653 2654 2655 2656 2657
			else {
				pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
				       " supported\n");
				goto out_invalid_cdb_field;
			}
2658

2659
			cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2660 2661
			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;

2662
			if (target_check_write_same_discard(&cdb[10], dev) < 0)
2663
				goto out_invalid_cdb_field;
2664 2665
			if (!passthrough)
				cmd->execute_task = target_emulate_write_same;
2666 2667
			break;
		default:
2668
			pr_err("VARIABLE_LENGTH_CMD service action"
2669 2670 2671 2672
				" 0x%04x not supported\n", service_action);
			goto out_unsupported_cdb;
		}
		break;
2673
	case MAINTENANCE_IN:
2674
		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2675 2676 2677 2678
			/* MAINTENANCE_IN from SCC-2 */
			/*
			 * Check for emulated MI_REPORT_TARGET_PGS.
			 */
2679 2680 2681 2682
			if (cdb[1] == MI_REPORT_TARGET_PGS &&
			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
				cmd->execute_task =
					target_emulate_report_target_port_groups;
2683 2684 2685 2686 2687 2688 2689
			}
			size = (cdb[6] << 24) | (cdb[7] << 16) |
			       (cdb[8] << 8) | cdb[9];
		} else {
			/* GPCMD_SEND_KEY from multi media commands */
			size = (cdb[8] << 8) + cdb[9];
		}
2690
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		break;
	case MODE_SELECT:
		size = cdb[4];
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
		break;
	case MODE_SELECT_10:
		size = (cdb[7] << 8) + cdb[8];
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
		break;
	case MODE_SENSE:
		size = cdb[4];
2702
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2703 2704
		if (!passthrough)
			cmd->execute_task = target_emulate_modesense;
2705 2706
		break;
	case MODE_SENSE_10:
2707 2708 2709 2710 2711
		size = (cdb[7] << 8) + cdb[8];
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
		if (!passthrough)
			cmd->execute_task = target_emulate_modesense;
		break;
2712 2713 2714 2715 2716
	case GPCMD_READ_BUFFER_CAPACITY:
	case GPCMD_SEND_OPC:
	case LOG_SELECT:
	case LOG_SENSE:
		size = (cdb[7] << 8) + cdb[8];
2717
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2718 2719 2720
		break;
	case READ_BLOCK_LIMITS:
		size = READ_BLOCK_LEN;
2721
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2722 2723 2724 2725 2726 2727 2728 2729 2730
		break;
	case GPCMD_GET_CONFIGURATION:
	case GPCMD_READ_FORMAT_CAPACITIES:
	case GPCMD_READ_DISC_INFO:
	case GPCMD_READ_TRACK_RZONE_INFO:
		size = (cdb[7] << 8) + cdb[8];
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
		break;
	case PERSISTENT_RESERVE_IN:
2731
		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2732
			cmd->execute_task = target_scsi3_emulate_pr_in;
2733 2734 2735
		size = (cdb[7] << 8) + cdb[8];
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
		break;
2736
	case PERSISTENT_RESERVE_OUT:
2737
		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2738
			cmd->execute_task = target_scsi3_emulate_pr_out;
2739
		size = (cdb[7] << 8) + cdb[8];
2740
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2741 2742 2743 2744 2745 2746 2747 2748
		break;
	case GPCMD_MECHANISM_STATUS:
	case GPCMD_READ_DVD_STRUCTURE:
		size = (cdb[8] << 8) + cdb[9];
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
		break;
	case READ_POSITION:
		size = READ_POSITION_LEN;
2749
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2750
		break;
2751
	case MAINTENANCE_OUT:
2752
		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2753 2754 2755 2756
			/* MAINTENANCE_OUT from SCC-2
			 *
			 * Check for emulated MO_SET_TARGET_PGS.
			 */
2757 2758 2759 2760
			if (cdb[1] == MO_SET_TARGET_PGS &&
			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
				cmd->execute_task =
					target_emulate_set_target_port_groups;
2761 2762 2763 2764 2765 2766 2767 2768
			}

			size = (cdb[6] << 24) | (cdb[7] << 16) |
			       (cdb[8] << 8) | cdb[9];
		} else  {
			/* GPCMD_REPORT_KEY from multi media commands */
			size = (cdb[8] << 8) + cdb[9];
		}
2769
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2770 2771 2772 2773 2774 2775 2776
		break;
	case INQUIRY:
		size = (cdb[3] << 8) + cdb[4];
		/*
		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
		 * See spc4r17 section 5.3
		 */
2777
		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2778
			cmd->sam_task_attr = MSG_HEAD_TAG;
2779
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2780 2781
		if (!passthrough)
			cmd->execute_task = target_emulate_inquiry;
2782 2783 2784
		break;
	case READ_BUFFER:
		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2785
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2786 2787 2788
		break;
	case READ_CAPACITY:
		size = READ_CAP_LEN;
2789
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2790 2791
		if (!passthrough)
			cmd->execute_task = target_emulate_readcapacity;
2792 2793 2794 2795 2796
		break;
	case READ_MEDIA_SERIAL_NUMBER:
	case SECURITY_PROTOCOL_IN:
	case SECURITY_PROTOCOL_OUT:
		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2797
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2798 2799
		break;
	case SERVICE_ACTION_IN:
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		switch (cmd->t_task_cdb[1] & 0x1f) {
		case SAI_READ_CAPACITY_16:
			if (!passthrough)
				cmd->execute_task =
					target_emulate_readcapacity_16;
			break;
		default:
			if (passthrough)
				break;

			pr_err("Unsupported SA: 0x%02x\n",
				cmd->t_task_cdb[1] & 0x1f);
			goto out_unsupported_cdb;
		}
		/*FALLTHROUGH*/
2815 2816 2817 2818 2819 2820 2821 2822
	case ACCESS_CONTROL_IN:
	case ACCESS_CONTROL_OUT:
	case EXTENDED_COPY:
	case READ_ATTRIBUTE:
	case RECEIVE_COPY_RESULTS:
	case WRITE_ATTRIBUTE:
		size = (cdb[10] << 24) | (cdb[11] << 16) |
		       (cdb[12] << 8) | cdb[13];
2823
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824 2825 2826 2827
		break;
	case RECEIVE_DIAGNOSTIC:
	case SEND_DIAGNOSTIC:
		size = (cdb[3] << 8) | cdb[4];
2828
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829 2830 2831 2832 2833 2834
		break;
/* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
#if 0
	case GPCMD_READ_CD:
		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
		size = (2336 * sectors);
2835
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 2837 2838 2839
		break;
#endif
	case READ_TOC:
		size = cdb[8];
2840
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841 2842 2843
		break;
	case REQUEST_SENSE:
		size = cdb[4];
2844
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2845 2846
		if (!passthrough)
			cmd->execute_task = target_emulate_request_sense;
2847 2848 2849
		break;
	case READ_ELEMENT_STATUS:
		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2850
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2851 2852 2853
		break;
	case WRITE_BUFFER:
		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2854
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		break;
	case RESERVE:
	case RESERVE_10:
		/*
		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
		 */
		if (cdb[0] == RESERVE_10)
			size = (cdb[7] << 8) | cdb[8];
		else
			size = cmd->data_length;

		/*
		 * Setup the legacy emulated handler for SPC-2 and
		 * >= SPC-3 compatible reservation handling (CRH=1)
		 * Otherwise, we assume the underlying SCSI logic is
		 * is running in SPC_PASSTHROUGH, and wants reservations
		 * emulation disabled.
		 */
2874 2875
		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
			cmd->execute_task = target_scsi2_reservation_reserve;
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
		break;
	case RELEASE:
	case RELEASE_10:
		/*
		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
		*/
		if (cdb[0] == RELEASE_10)
			size = (cdb[7] << 8) | cdb[8];
		else
			size = cmd->data_length;

2889 2890
		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
			cmd->execute_task = target_scsi2_reservation_release;
2891 2892 2893 2894 2895 2896 2897 2898 2899
		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
		break;
	case SYNCHRONIZE_CACHE:
	case 0x91: /* SYNCHRONIZE_CACHE_16: */
		/*
		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
		 */
		if (cdb[0] == SYNCHRONIZE_CACHE) {
			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2900
			cmd->t_task_lba = transport_lba_32(cdb);
2901 2902
		} else {
			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2903
			cmd->t_task_lba = transport_lba_64(cdb);
2904 2905 2906 2907 2908 2909 2910
		}
		if (sector_ret)
			goto out_unsupported_cdb;

		size = transport_get_size(sectors, cdb, cmd);
		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;

2911
		if (passthrough)
2912
			break;
2913

2914 2915
		/*
		 * Check to ensure that LBA + Range does not exceed past end of
2916
		 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2917
		 */
2918 2919 2920 2921
		if ((cmd->t_task_lba != 0) || (sectors != 0)) {
			if (transport_cmd_get_valid_sectors(cmd) < 0)
				goto out_invalid_cdb_field;
		}
2922
		cmd->execute_task = target_emulate_synchronize_cache;
2923 2924 2925
		break;
	case UNMAP:
		size = get_unaligned_be16(&cdb[7]);
2926
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2927 2928
		if (!passthrough)
			cmd->execute_task = target_emulate_unmap;
2929 2930 2931 2932 2933
		break;
	case WRITE_SAME_16:
		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;
2934

2935
		if (sectors)
2936
			size = transport_get_size(1, cdb, cmd);
2937 2938 2939 2940
		else {
			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
			goto out_invalid_cdb_field;
		}
2941

2942
		cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2943 2944 2945 2946
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;

		if (target_check_write_same_discard(&cdb[1], dev) < 0)
			goto out_invalid_cdb_field;
2947 2948
		if (!passthrough)
			cmd->execute_task = target_emulate_write_same;
2949 2950 2951 2952 2953 2954 2955
		break;
	case WRITE_SAME:
		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
		if (sector_ret)
			goto out_unsupported_cdb;

		if (sectors)
2956
			size = transport_get_size(1, cdb, cmd);
2957 2958 2959
		else {
			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
			goto out_invalid_cdb_field;
2960
		}
2961 2962

		cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2963
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2964 2965 2966 2967 2968 2969
		/*
		 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
		 * of byte 1 bit 3 UNMAP instead of original reserved field
		 */
		if (target_check_write_same_discard(&cdb[1], dev) < 0)
			goto out_invalid_cdb_field;
2970 2971
		if (!passthrough)
			cmd->execute_task = target_emulate_write_same;
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		break;
	case ALLOW_MEDIUM_REMOVAL:
	case ERASE:
	case REZERO_UNIT:
	case SEEK_10:
	case SPACE:
	case START_STOP:
	case TEST_UNIT_READY:
	case VERIFY:
	case WRITE_FILEMARKS:
2982 2983 2984 2985 2986 2987 2988 2989
		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
		if (!passthrough)
			cmd->execute_task = target_emulate_noop;
		break;
	case GPCMD_CLOSE_TRACK:
	case INITIALIZE_ELEMENT_STATUS:
	case GPCMD_LOAD_UNLOAD:
	case GPCMD_SET_SPEED:
2990 2991 2992 2993
	case MOVE_MEDIUM:
		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
		break;
	case REPORT_LUNS:
2994
		cmd->execute_task = target_report_luns;
2995 2996 2997 2998 2999
		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
		/*
		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
		 * See spc4r17 section 5.3
		 */
3000
		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3001
			cmd->sam_task_attr = MSG_HEAD_TAG;
3002
		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3003 3004
		break;
	default:
3005
		pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3006
			" 0x%02x, sending CHECK_CONDITION.\n",
3007
			cmd->se_tfo->get_fabric_name(), cdb[0]);
3008 3009 3010 3011
		goto out_unsupported_cdb;
	}

	if (size != cmd->data_length) {
3012
		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3013
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
3014
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3015 3016 3017 3018 3019
				cmd->data_length, size, cdb[0]);

		cmd->cmd_spdtl = size;

		if (cmd->data_direction == DMA_TO_DEVICE) {
3020
			pr_err("Rejecting underflow/overflow"
3021 3022 3023 3024 3025 3026 3027
					" WRITE data\n");
			goto out_invalid_cdb_field;
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_SG_IO_CDB.
		 */
3028 3029
		if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3030
				" CDB on non 512-byte sector setup subsystem"
3031
				" plugin: %s\n", dev->transport->name);
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
			goto out_invalid_cdb_field;
		}

		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
		}
		cmd->data_length = size;
	}

3046 3047 3048 3049 3050
	/* reject any command that we don't have a handler for */
	if (!(passthrough || cmd->execute_task ||
	     (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
		goto out_unsupported_cdb;

3051 3052 3053 3054 3055
	/* Let's limit control cdbs to a page, for simplicity's sake. */
	if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
	    size > PAGE_SIZE)
		goto out_invalid_cdb_field;

3056 3057 3058 3059 3060 3061
	transport_set_supported_SAM_opcode(cmd);
	return ret;

out_unsupported_cdb:
	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3062
	return -EINVAL;
3063 3064 3065
out_invalid_cdb_field:
	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3066
	return -EINVAL;
3067 3068 3069
}

/*
3070
 * Called from I/O completion to determine which dormant/delayed
3071 3072 3073 3074
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
3075
	struct se_device *dev = cmd->se_dev;
3076 3077 3078
	struct se_cmd *cmd_p, *cmd_tmp;
	int new_active_tasks = 0;

3079
	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3080 3081 3082
		atomic_dec(&dev->simple_cmds);
		smp_mb__after_atomic_dec();
		dev->dev_cur_ordered_id++;
3083
		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3084 3085
			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
3086
	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3087
		dev->dev_cur_ordered_id++;
3088
		pr_debug("Incremented dev_cur_ordered_id: %u for"
3089 3090
			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
3091
	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3092 3093 3094 3095
		atomic_dec(&dev->dev_ordered_sync);
		smp_mb__after_atomic_dec();

		dev->dev_cur_ordered_id++;
3096
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3097 3098 3099 3100 3101 3102 3103 3104 3105
			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
	}
	/*
	 * Process all commands up to the last received
	 * ORDERED task attribute which requires another blocking
	 * boundary
	 */
	spin_lock(&dev->delayed_cmd_lock);
	list_for_each_entry_safe(cmd_p, cmd_tmp,
3106
			&dev->delayed_cmd_list, se_delayed_node) {
3107

3108
		list_del(&cmd_p->se_delayed_node);
3109 3110
		spin_unlock(&dev->delayed_cmd_lock);

3111
		pr_debug("Calling add_tasks() for"
3112 3113
			" cmd_p: 0x%02x Task Attr: 0x%02x"
			" Dormant -> Active, se_ordered_id: %u\n",
3114
			cmd_p->t_task_cdb[0],
3115 3116 3117 3118 3119 3120
			cmd_p->sam_task_attr, cmd_p->se_ordered_id);

		transport_add_tasks_from_cmd(cmd_p);
		new_active_tasks++;

		spin_lock(&dev->delayed_cmd_lock);
3121
		if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3122 3123 3124 3125 3126 3127 3128 3129
			break;
	}
	spin_unlock(&dev->delayed_cmd_lock);
	/*
	 * If new tasks have become active, wake up the transport thread
	 * to do the processing of the Active tasks.
	 */
	if (new_active_tasks != 0)
3130
		wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3131 3132
}

3133
static void transport_complete_qf(struct se_cmd *cmd)
3134 3135 3136
{
	int ret = 0;

3137 3138 3139 3140 3141 3142 3143 3144
	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
		transport_complete_task_attr(cmd);

	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
		ret = cmd->se_tfo->queue_status(cmd);
		if (ret)
			goto out;
	}
3145 3146 3147 3148 3149 3150

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
3151
		if (cmd->t_bidi_data_sg) {
3152 3153
			ret = cmd->se_tfo->queue_data_in(cmd);
			if (ret < 0)
3154
				break;
3155 3156 3157 3158 3159 3160 3161 3162 3163
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

3164 3165 3166 3167 3168 3169 3170
out:
	if (ret < 0) {
		transport_handle_queue_full(cmd, cmd->se_dev);
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
3171 3172 3173 3174
}

static void transport_handle_queue_full(
	struct se_cmd *cmd,
3175
	struct se_device *dev)
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
{
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
	atomic_inc(&dev->dev_qf_count);
	smp_mb__after_atomic_inc();
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

3186
static void target_complete_ok_work(struct work_struct *work)
3187
{
3188
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3189
	int reason = 0, ret;
3190

3191 3192 3193 3194 3195
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
3196
	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3197
		transport_complete_task_attr(cmd);
3198 3199 3200 3201 3202 3203 3204
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/*
	 * Check if we need to retrieve a sense buffer from
	 * the struct se_cmd in question.
	 */
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
		if (transport_get_sense_data(cmd) < 0)
			reason = TCM_NON_EXISTENT_LUN;

		/*
		 * Only set when an struct se_task->task_scsi_status returned
		 * a non GOOD status.
		 */
		if (cmd->scsi_status) {
3218
			ret = transport_send_check_condition_and_sense(
3219
					cmd, reason, 1);
3220
			if (ret == -EAGAIN || ret == -ENOMEM)
3221 3222
				goto queue_full;

3223 3224 3225 3226 3227 3228
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
	}
	/*
L
Lucas De Marchi 已提交
3229
	 * Check for a callback, used by amongst other things
3230 3231 3232 3233 3234 3235 3236 3237
	 * XDWRITE_READ_10 emulation.
	 */
	if (cmd->transport_complete_callback)
		cmd->transport_complete_callback(cmd);

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
3238 3239
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3240 3241 3242 3243
					cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);

3244
		ret = cmd->se_tfo->queue_data_in(cmd);
3245
		if (ret == -EAGAIN || ret == -ENOMEM)
3246
			goto queue_full;
3247 3248 3249
		break;
	case DMA_TO_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
3250 3251
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3252 3253 3254 3255 3256 3257
				cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
3258
		if (cmd->t_bidi_data_sg) {
3259
			spin_lock(&cmd->se_lun->lun_sep_lock);
3260 3261
			if (cmd->se_lun->lun_sep) {
				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3262 3263 3264
					cmd->data_length;
			}
			spin_unlock(&cmd->se_lun->lun_sep_lock);
3265
			ret = cmd->se_tfo->queue_data_in(cmd);
3266
			if (ret == -EAGAIN || ret == -ENOMEM)
3267
				goto queue_full;
3268 3269 3270 3271
			break;
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
3272
		ret = cmd->se_tfo->queue_status(cmd);
3273
		if (ret == -EAGAIN || ret == -ENOMEM)
3274
			goto queue_full;
3275 3276 3277 3278 3279 3280 3281
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
3282 3283 3284
	return;

queue_full:
3285
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3286
		" data_direction: %d\n", cmd, cmd->data_direction);
3287 3288
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
3289 3290 3291 3292 3293 3294
}

static void transport_free_dev_tasks(struct se_cmd *cmd)
{
	struct se_task *task, *task_tmp;
	unsigned long flags;
3295
	LIST_HEAD(dispose_list);
3296

3297
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3298
	list_for_each_entry_safe(task, task_tmp,
3299
				&cmd->t_task_list, t_list) {
3300 3301 3302 3303 3304 3305 3306
		if (!(task->task_flags & TF_ACTIVE))
			list_move_tail(&task->t_list, &dispose_list);
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

	while (!list_empty(&dispose_list)) {
		task = list_first_entry(&dispose_list, struct se_task, t_list);
3307

3308 3309 3310
		if (task->task_sg != cmd->t_data_sg &&
		    task->task_sg != cmd->t_bidi_data_sg)
			kfree(task->task_sg);
3311 3312 3313

		list_del(&task->t_list);

3314
		cmd->se_dev->transport->free_task(task);
3315 3316 3317
	}
}

3318
static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3319
{
3320 3321
	struct scatterlist *sg;
	int count;
3322

3323 3324
	for_each_sg(sgl, sg, nents, count)
		__free_page(sg_page(sg));
3325

3326 3327
	kfree(sgl);
}
3328

3329 3330 3331 3332 3333 3334
static inline void transport_free_pages(struct se_cmd *cmd)
{
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
		return;

	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3335 3336
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
3337

3338
	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3339 3340
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
3341 3342
}

C
Christoph Hellwig 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
/**
 * transport_release_cmd - free a command
 * @cmd:       command to free
 *
 * This routine unconditionally frees a command, and reference counting
 * or list removal must be done in the caller.
 */
static void transport_release_cmd(struct se_cmd *cmd)
{
	BUG_ON(!cmd->se_tfo);

	if (cmd->se_tmr_req)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
	/*
	 * Check if target_wait_for_sess_cmds() is expecting to
	 * release se_cmd directly here..
	 */
	if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
		if (cmd->se_tfo->check_release_cmd(cmd) != 0)
			return;

	cmd->se_tfo->release_cmd(cmd);
}

3369 3370 3371 3372 3373 3374
/**
 * transport_put_cmd - release a reference to a command
 * @cmd:       command to release
 *
 * This routine releases our reference to the command and frees it if possible.
 */
3375
static void transport_put_cmd(struct se_cmd *cmd)
3376 3377
{
	unsigned long flags;
3378
	int free_tasks = 0;
3379

3380
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
	if (atomic_read(&cmd->t_fe_count)) {
		if (!atomic_dec_and_test(&cmd->t_fe_count))
			goto out_busy;
	}

	if (atomic_read(&cmd->t_se_count)) {
		if (!atomic_dec_and_test(&cmd->t_se_count))
			goto out_busy;
	}

	if (atomic_read(&cmd->transport_dev_active)) {
		atomic_set(&cmd->transport_dev_active, 0);
		transport_all_task_dev_remove_state(cmd);
		free_tasks = 1;
3395
	}
3396
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3397

3398 3399
	if (free_tasks != 0)
		transport_free_dev_tasks(cmd);
3400

3401
	transport_free_pages(cmd);
3402
	transport_release_cmd(cmd);
3403
	return;
3404 3405
out_busy:
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3406 3407 3408
}

/*
3409 3410
 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
 * allocating in the core.
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
 * @cmd:  Associated se_cmd descriptor
 * @mem:  SGL style memory for TCM WRITE / READ
 * @sg_mem_num: Number of SGL elements
 * @mem_bidi_in: SGL style memory for TCM BIDI READ
 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
 *
 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
 * of parameters.
 */
int transport_generic_map_mem_to_cmd(
	struct se_cmd *cmd,
3422 3423 3424 3425
	struct scatterlist *sgl,
	u32 sgl_count,
	struct scatterlist *sgl_bidi,
	u32 sgl_bidi_count)
3426
{
3427
	if (!sgl || !sgl_count)
3428 3429 3430 3431
		return 0;

	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		/*
		 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
		 * scatterlists already have been set to follow what the fabric
		 * passes for the original expected data transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			pr_warn("Rejecting SCSI DATA overflow for fabric using"
				" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
			cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
			return -EINVAL;
		}
3444

3445 3446
		cmd->t_data_sg = sgl;
		cmd->t_data_nents = sgl_count;
3447

3448 3449 3450
		if (sgl_bidi && sgl_bidi_count) {
			cmd->t_bidi_data_sg = sgl_bidi;
			cmd->t_bidi_data_nents = sgl_bidi_count;
3451 3452 3453 3454 3455 3456 3457 3458
		}
		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	}

	return 0;
}
EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);

3459 3460
void *transport_kmap_first_data_page(struct se_cmd *cmd)
{
3461
	struct scatterlist *sg = cmd->t_data_sg;
3462

3463
	BUG_ON(!sg);
3464
	/*
3465 3466 3467
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3468
	 */
3469
	return kmap(sg_page(sg)) + sg->offset;
3470 3471 3472 3473 3474
}
EXPORT_SYMBOL(transport_kmap_first_data_page);

void transport_kunmap_first_data_page(struct se_cmd *cmd)
{
3475
	kunmap(sg_page(cmd->t_data_sg));
3476 3477 3478
}
EXPORT_SYMBOL(transport_kunmap_first_data_page);

3479
static int
3480
transport_generic_get_mem(struct se_cmd *cmd)
3481
{
3482 3483 3484 3485
	u32 length = cmd->data_length;
	unsigned int nents;
	struct page *page;
	int i = 0;
3486

3487 3488 3489 3490
	nents = DIV_ROUND_UP(length, PAGE_SIZE);
	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
	if (!cmd->t_data_sg)
		return -ENOMEM;
3491

3492 3493
	cmd->t_data_nents = nents;
	sg_init_table(cmd->t_data_sg, nents);
3494

3495 3496 3497 3498 3499
	while (length) {
		u32 page_len = min_t(u32, length, PAGE_SIZE);
		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
		if (!page)
			goto out;
3500

3501 3502 3503
		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
		length -= page_len;
		i++;
3504 3505 3506
	}
	return 0;

3507 3508 3509 3510
out:
	while (i >= 0) {
		__free_page(sg_page(&cmd->t_data_sg[i]));
		i--;
3511
	}
3512 3513 3514
	kfree(cmd->t_data_sg);
	cmd->t_data_sg = NULL;
	return -ENOMEM;
3515 3516
}

3517 3518
/* Reduce sectors if they are too long for the device */
static inline sector_t transport_limit_task_sectors(
3519 3520
	struct se_device *dev,
	unsigned long long lba,
3521
	sector_t sectors)
3522
{
3523
	sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3524

3525 3526 3527
	if (dev->transport->get_device_type(dev) == TYPE_DISK)
		if ((lba + sectors) > transport_dev_end_lba(dev))
			sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3528

3529
	return sectors;
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
}


/*
 * This function can be used by HW target mode drivers to create a linked
 * scatterlist from all contiguously allocated struct se_task->task_sg[].
 * This is intended to be called during the completion path by TCM Core
 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
 */
void transport_do_task_sg_chain(struct se_cmd *cmd)
{
3541 3542 3543 3544
	struct scatterlist *sg_first = NULL;
	struct scatterlist *sg_prev = NULL;
	int sg_prev_nents = 0;
	struct scatterlist *sg;
3545
	struct se_task *task;
3546
	u32 chained_nents = 0;
3547 3548
	int i;

3549 3550
	BUG_ON(!cmd->se_tfo->task_sg_chaining);

3551 3552
	/*
	 * Walk the struct se_task list and setup scatterlist chains
3553
	 * for each contiguously allocated struct se_task->task_sg[].
3554
	 */
3555
	list_for_each_entry(task, &cmd->t_task_list, t_list) {
3556
		if (!task->task_sg)
3557 3558
			continue;

3559 3560
		if (!sg_first) {
			sg_first = task->task_sg;
3561
			chained_nents = task->task_sg_nents;
3562
		} else {
3563
			sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3564
			chained_nents += task->task_sg_nents;
3565
		}
3566 3567 3568
		/*
		 * For the padded tasks, use the extra SGL vector allocated
		 * in transport_allocate_data_tasks() for the sg_prev_nents
3569 3570 3571 3572 3573
		 * offset into sg_chain() above.
		 *
		 * We do not need the padding for the last task (or a single
		 * task), but in that case we will never use the sg_prev_nents
		 * value below which would be incorrect.
3574
		 */
3575
		sg_prev_nents = (task->task_sg_nents + 1);
3576
		sg_prev = task->task_sg;
3577 3578 3579 3580 3581
	}
	/*
	 * Setup the starting pointer and total t_tasks_sg_linked_no including
	 * padding SGs for linking and to mark the end.
	 */
3582
	cmd->t_tasks_sg_chained = sg_first;
3583
	cmd->t_tasks_sg_chained_no = chained_nents;
3584

3585
	pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3586 3587
		" t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
		cmd->t_tasks_sg_chained_no);
3588

3589 3590
	for_each_sg(cmd->t_tasks_sg_chained, sg,
			cmd->t_tasks_sg_chained_no, i) {
3591

3592
		pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3593
			i, sg, sg_page(sg), sg->length, sg->offset);
3594
		if (sg_is_chain(sg))
3595
			pr_debug("SG: %p sg_is_chain=1\n", sg);
3596
		if (sg_is_last(sg))
3597
			pr_debug("SG: %p sg_is_last=1\n", sg);
3598 3599 3600 3601
	}
}
EXPORT_SYMBOL(transport_do_task_sg_chain);

3602 3603 3604
/*
 * Break up cmd into chunks transport can handle
 */
3605 3606
static int
transport_allocate_data_tasks(struct se_cmd *cmd,
3607
	enum dma_data_direction data_direction,
3608
	struct scatterlist *cmd_sg, unsigned int sgl_nents)
3609
{
3610
	struct se_device *dev = cmd->se_dev;
3611
	int task_count, i;
3612 3613 3614 3615 3616 3617 3618 3619 3620
	unsigned long long lba;
	sector_t sectors, dev_max_sectors;
	u32 sector_size;

	if (transport_cmd_get_valid_sectors(cmd) < 0)
		return -EINVAL;

	dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
	sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3621

3622
	WARN_ON(cmd->data_length % sector_size);
3623 3624

	lba = cmd->t_task_lba;
3625
	sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3626
	task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

	/*
	 * If we need just a single task reuse the SG list in the command
	 * and avoid a lot of work.
	 */
	if (task_count == 1) {
		struct se_task *task;
		unsigned long flags;

		task = transport_generic_get_task(cmd, data_direction);
		if (!task)
			return -ENOMEM;

		task->task_sg = cmd_sg;
		task->task_sg_nents = sgl_nents;

		task->task_lba = lba;
		task->task_sectors = sectors;
		task->task_size = task->task_sectors * sector_size;

		spin_lock_irqsave(&cmd->t_state_lock, flags);
		list_add_tail(&task->t_list, &cmd->t_task_list);
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		return task_count;
	}

3654
	for (i = 0; i < task_count; i++) {
3655
		struct se_task *task;
3656
		unsigned int task_size, task_sg_nents_padded;
3657 3658
		struct scatterlist *sg;
		unsigned long flags;
3659
		int count;
3660

3661
		task = transport_generic_get_task(cmd, data_direction);
3662
		if (!task)
3663
			return -ENOMEM;
3664 3665

		task->task_lba = lba;
3666 3667
		task->task_sectors = min(sectors, dev_max_sectors);
		task->task_size = task->task_sectors * sector_size;
3668

3669 3670 3671 3672 3673
		/*
		 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
		 * in order to calculate the number per task SGL entries
		 */
		task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3674
		/*
3675 3676 3677
		 * Check if the fabric module driver is requesting that all
		 * struct se_task->task_sg[] be chained together..  If so,
		 * then allocate an extra padding SG entry for linking and
3678 3679 3680
		 * marking the end of the chained SGL for every task except
		 * the last one for (task_count > 1) operation, or skipping
		 * the extra padding for the (task_count == 1) case.
3681
		 */
3682 3683 3684 3685
		if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
			task_sg_nents_padded = (task->task_sg_nents + 1);
		} else
			task_sg_nents_padded = task->task_sg_nents;
3686

3687
		task->task_sg = kmalloc(sizeof(struct scatterlist) *
3688
					task_sg_nents_padded, GFP_KERNEL);
3689 3690 3691 3692 3693
		if (!task->task_sg) {
			cmd->se_dev->transport->free_task(task);
			return -ENOMEM;
		}

3694
		sg_init_table(task->task_sg, task_sg_nents_padded);
3695

3696 3697 3698
		task_size = task->task_size;

		/* Build new sgl, only up to task_size */
3699
		for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3700 3701 3702 3703 3704 3705
			if (cmd_sg->length > task_size)
				break;

			*sg = *cmd_sg;
			task_size -= cmd_sg->length;
			cmd_sg = sg_next(cmd_sg);
3706 3707
		}

3708 3709
		lba += task->task_sectors;
		sectors -= task->task_sectors;
3710

3711 3712 3713
		spin_lock_irqsave(&cmd->t_state_lock, flags);
		list_add_tail(&task->t_list, &cmd->t_task_list);
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3714 3715
	}

3716
	return task_count;
3717 3718 3719
}

static int
3720
transport_allocate_control_task(struct se_cmd *cmd)
3721 3722
{
	struct se_task *task;
3723
	unsigned long flags;
3724 3725 3726

	task = transport_generic_get_task(cmd, cmd->data_direction);
	if (!task)
3727
		return -ENOMEM;
3728

3729
	task->task_sg = cmd->t_data_sg;
3730
	task->task_size = cmd->data_length;
3731
	task->task_sg_nents = cmd->t_data_nents;
3732

3733 3734 3735
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	list_add_tail(&task->t_list, &cmd->t_task_list);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3736

3737
	/* Success! Return number of tasks allocated */
3738
	return 1;
3739 3740
}

3741 3742 3743 3744
/*
 * Allocate any required ressources to execute the command, and either place
 * it on the execution queue if possible.  For writes we might not have the
 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3745
 */
3746
int transport_generic_new_cmd(struct se_cmd *cmd)
3747
{
3748
	struct se_device *dev = cmd->se_dev;
3749
	int task_cdbs, task_cdbs_bidi = 0;
3750
	int set_counts = 1;
3751 3752 3753 3754 3755
	int ret = 0;

	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3756
	 * beforehand.
3757
	 */
3758 3759
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
3760
		ret = transport_generic_get_mem(cmd);
3761
		if (ret < 0)
3762
			goto out_fail;
3763
	}
3764

3765
	/*
3766
	 * For BIDI command set up the read tasks first.
3767
	 */
3768
	if (cmd->t_bidi_data_sg &&
3769 3770 3771
	    dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
		BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));

3772 3773 3774 3775
		task_cdbs_bidi = transport_allocate_data_tasks(cmd,
				DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
				cmd->t_bidi_data_nents);
		if (task_cdbs_bidi <= 0)
3776 3777 3778 3779 3780 3781
			goto out_fail;

		atomic_inc(&cmd->t_fe_count);
		atomic_inc(&cmd->t_se_count);
		set_counts = 0;
	}
3782 3783 3784 3785 3786 3787 3788 3789 3790

	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
		task_cdbs = transport_allocate_data_tasks(cmd,
					cmd->data_direction, cmd->t_data_sg,
					cmd->t_data_nents);
	} else {
		task_cdbs = transport_allocate_control_task(cmd);
	}

3791
	if (task_cdbs < 0)
3792
		goto out_fail;
3793 3794 3795 3796 3797 3798 3799
	else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
		cmd->t_state = TRANSPORT_COMPLETE;
		atomic_set(&cmd->t_transport_active, 1);
		INIT_WORK(&cmd->work, target_complete_ok_work);
		queue_work(target_completion_wq, &cmd->work);
		return 0;
	}
3800 3801 3802 3803 3804 3805

	if (set_counts) {
		atomic_inc(&cmd->t_fe_count);
		atomic_inc(&cmd->t_se_count);
	}

3806 3807 3808
	cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
	atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
	atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3809

3810
	/*
3811
	 * For WRITEs, let the fabric know its buffer is ready..
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
	 * This WRITE struct se_cmd (and all of its associated struct se_task's)
	 * will be added to the struct se_device execution queue after its WRITE
	 * data has arrived. (ie: It gets handled by the transport processing
	 * thread a second time)
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
		transport_add_tasks_to_state_queue(cmd);
		return transport_generic_write_pending(cmd);
	}
	/*
	 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
	 * to the execution queue.
	 */
	transport_execute_tasks(cmd);
	return 0;
3827 3828 3829 3830 3831

out_fail:
	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
	cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	return -EINVAL;
3832
}
3833
EXPORT_SYMBOL(transport_generic_new_cmd);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

/*	transport_generic_process_write():
 *
 *
 */
void transport_generic_process_write(struct se_cmd *cmd)
{
	transport_execute_tasks(cmd);
}
EXPORT_SYMBOL(transport_generic_process_write);

3845
static void transport_write_pending_qf(struct se_cmd *cmd)
3846
{
3847 3848 3849 3850
	int ret;

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM) {
3851 3852 3853 3854
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
		transport_handle_queue_full(cmd, cmd->se_dev);
	}
3855 3856
}

3857 3858 3859 3860 3861
static int transport_generic_write_pending(struct se_cmd *cmd)
{
	unsigned long flags;
	int ret;

3862
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3863
	cmd->t_state = TRANSPORT_WRITE_PENDING;
3864
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3865

3866 3867
	/*
	 * Clear the se_cmd for WRITE_PENDING status in order to set
3868
	 * cmd->t_transport_active=0 so that transport_generic_handle_data
3869
	 * can be called from HW target mode interrupt code.  This is safe
3870
	 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3871 3872 3873 3874 3875 3876 3877 3878
	 * because the se_cmd->se_lun pointer is not being cleared.
	 */
	transport_cmd_check_stop(cmd, 1, 0);

	/*
	 * Call the fabric write_pending function here to let the
	 * frontend know that WRITE buffers are ready.
	 */
3879
	ret = cmd->se_tfo->write_pending(cmd);
3880
	if (ret == -EAGAIN || ret == -ENOMEM)
3881 3882
		goto queue_full;
	else if (ret < 0)
3883 3884
		return ret;

3885
	return 1;
3886 3887

queue_full:
3888
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3889
	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3890
	transport_handle_queue_full(cmd, cmd->se_dev);
3891
	return 0;
3892 3893
}

3894
void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3895
{
3896 3897 3898 3899
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
		if (wait_for_tasks && cmd->se_tmr_req)
			 transport_wait_for_tasks(cmd);

3900
		transport_release_cmd(cmd);
3901 3902 3903 3904
	} else {
		if (wait_for_tasks)
			transport_wait_for_tasks(cmd);

3905 3906
		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);

3907
		if (cmd->se_lun)
3908 3909
			transport_lun_remove_cmd(cmd);

3910 3911
		transport_free_dev_tasks(cmd);

3912
		transport_put_cmd(cmd);
3913 3914 3915 3916
	}
}
EXPORT_SYMBOL(transport_generic_free_cmd);

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
/* target_get_sess_cmd - Add command to active ->sess_cmd_list
 * @se_sess:	session to reference
 * @se_cmd:	command descriptor to add
 */
void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
{
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
	se_cmd->check_release = 1;
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
EXPORT_SYMBOL(target_get_sess_cmd);

/* target_put_sess_cmd - Check for active I/O shutdown or list delete
 * @se_sess: 	session to reference
 * @se_cmd:	command descriptor to drop
 */
int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
{
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	if (list_empty(&se_cmd->se_cmd_list)) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		WARN_ON(1);
		return 0;
	}

	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		complete(&se_cmd->cmd_wait_comp);
		return 1;
	}
	list_del(&se_cmd->se_cmd_list);
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return 0;
}
EXPORT_SYMBOL(target_put_sess_cmd);

/* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
 * @se_sess:	session to split
 */
void target_splice_sess_cmd_list(struct se_session *se_sess)
{
	struct se_cmd *se_cmd;
	unsigned long flags;

	WARN_ON(!list_empty(&se_sess->sess_wait_list));
	INIT_LIST_HEAD(&se_sess->sess_wait_list);

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	se_sess->sess_tearing_down = 1;

	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);

	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
		se_cmd->cmd_wait_set = 1;

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
EXPORT_SYMBOL(target_splice_sess_cmd_list);

/* target_wait_for_sess_cmds - Wait for outstanding descriptors
 * @se_sess:    session to wait for active I/O
 * @wait_for_tasks:	Make extra transport_wait_for_tasks call
 */
void target_wait_for_sess_cmds(
	struct se_session *se_sess,
	int wait_for_tasks)
{
	struct se_cmd *se_cmd, *tmp_cmd;
	bool rc = false;

	list_for_each_entry_safe(se_cmd, tmp_cmd,
				&se_sess->sess_wait_list, se_cmd_list) {
		list_del(&se_cmd->se_cmd_list);

		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

		if (wait_for_tasks) {
			pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
				" fabric state: %d\n", se_cmd, se_cmd->t_state,
				se_cmd->se_tfo->get_cmd_state(se_cmd));

			rc = transport_wait_for_tasks(se_cmd);

			pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
				" fabric state: %d\n", se_cmd, se_cmd->t_state,
				se_cmd->se_tfo->get_cmd_state(se_cmd));
		}

		if (!rc) {
			wait_for_completion(&se_cmd->cmd_wait_comp);
			pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
				" fabric state: %d\n", se_cmd, se_cmd->t_state,
				se_cmd->se_tfo->get_cmd_state(se_cmd));
		}

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
/*	transport_lun_wait_for_tasks():
 *
 *	Called from ConfigFS context to stop the passed struct se_cmd to allow
 *	an struct se_lun to be successfully shutdown.
 */
static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
{
	unsigned long flags;
	int ret;
	/*
	 * If the frontend has already requested this struct se_cmd to
	 * be stopped, we can safely ignore this struct se_cmd.
	 */
4038 4039 4040
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (atomic_read(&cmd->t_transport_stop)) {
		atomic_set(&cmd->transport_lun_stop, 0);
4041
		pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4042
			" TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4043
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4044
		transport_cmd_check_stop(cmd, 1, 0);
4045
		return -EPERM;
4046
	}
4047 4048
	atomic_set(&cmd->transport_lun_fe_stop, 1);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4049

4050
	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4051 4052 4053

	ret = transport_stop_tasks_for_cmd(cmd);

4054 4055
	pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
			" %d\n", cmd, cmd->t_task_list_num, ret);
4056
	if (!ret) {
4057
		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4058
				cmd->se_tfo->get_task_tag(cmd));
4059
		wait_for_completion(&cmd->transport_lun_stop_comp);
4060
		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4061
				cmd->se_tfo->get_task_tag(cmd));
4062
	}
4063
	transport_remove_cmd_from_queue(cmd);
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076

	return 0;
}

static void __transport_clear_lun_from_sessions(struct se_lun *lun)
{
	struct se_cmd *cmd = NULL;
	unsigned long lun_flags, cmd_flags;
	/*
	 * Do exception processing and return CHECK_CONDITION status to the
	 * Initiator Port.
	 */
	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4077 4078 4079 4080 4081
	while (!list_empty(&lun->lun_cmd_list)) {
		cmd = list_first_entry(&lun->lun_cmd_list,
		       struct se_cmd, se_lun_node);
		list_del(&cmd->se_lun_node);

4082
		atomic_set(&cmd->transport_lun_active, 0);
4083 4084 4085 4086 4087
		/*
		 * This will notify iscsi_target_transport.c:
		 * transport_cmd_check_stop() that a LUN shutdown is in
		 * progress for the iscsi_cmd_t.
		 */
4088
		spin_lock(&cmd->t_state_lock);
4089
		pr_debug("SE_LUN[%d] - Setting cmd->transport"
4090
			"_lun_stop for  ITT: 0x%08x\n",
4091 4092
			cmd->se_lun->unpacked_lun,
			cmd->se_tfo->get_task_tag(cmd));
4093 4094
		atomic_set(&cmd->transport_lun_stop, 1);
		spin_unlock(&cmd->t_state_lock);
4095 4096 4097

		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);

4098 4099
		if (!cmd->se_lun) {
			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4100 4101
				cmd->se_tfo->get_task_tag(cmd),
				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4102 4103 4104 4105 4106 4107
			BUG();
		}
		/*
		 * If the Storage engine still owns the iscsi_cmd_t, determine
		 * and/or stop its context.
		 */
4108
		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4109 4110
			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
			cmd->se_tfo->get_task_tag(cmd));
4111

4112
		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4113 4114 4115 4116
			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
			continue;
		}

4117
		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4118
			"_wait_for_tasks(): SUCCESS\n",
4119 4120
			cmd->se_lun->unpacked_lun,
			cmd->se_tfo->get_task_tag(cmd));
4121

4122
		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4123
		if (!atomic_read(&cmd->transport_dev_active)) {
4124
			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4125 4126
			goto check_cond;
		}
4127
		atomic_set(&cmd->transport_dev_active, 0);
4128
		transport_all_task_dev_remove_state(cmd);
4129
		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

		transport_free_dev_tasks(cmd);
		/*
		 * The Storage engine stopped this struct se_cmd before it was
		 * send to the fabric frontend for delivery back to the
		 * Initiator Node.  Return this SCSI CDB back with an
		 * CHECK_CONDITION status.
		 */
check_cond:
		transport_send_check_condition_and_sense(cmd,
				TCM_NON_EXISTENT_LUN, 0);
		/*
		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
		 * be released, notify the waiting thread now that LU has
		 * finished accessing it.
		 */
4146 4147
		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
		if (atomic_read(&cmd->transport_lun_fe_stop)) {
4148
			pr_debug("SE_LUN[%d] - Detected FE stop for"
4149 4150
				" struct se_cmd: %p ITT: 0x%08x\n",
				lun->unpacked_lun,
4151
				cmd, cmd->se_tfo->get_task_tag(cmd));
4152

4153
			spin_unlock_irqrestore(&cmd->t_state_lock,
4154 4155
					cmd_flags);
			transport_cmd_check_stop(cmd, 1, 0);
4156
			complete(&cmd->transport_lun_fe_stop_comp);
4157 4158 4159
			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
			continue;
		}
4160
		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4161
			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4162

4163
		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
	}
	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
}

static int transport_clear_lun_thread(void *p)
{
	struct se_lun *lun = (struct se_lun *)p;

	__transport_clear_lun_from_sessions(lun);
	complete(&lun->lun_shutdown_comp);

	return 0;
}

int transport_clear_lun_from_sessions(struct se_lun *lun)
{
	struct task_struct *kt;

4183
	kt = kthread_run(transport_clear_lun_thread, lun,
4184 4185
			"tcm_cl_%u", lun->unpacked_lun);
	if (IS_ERR(kt)) {
4186
		pr_err("Unable to start clear_lun thread\n");
4187
		return PTR_ERR(kt);
4188 4189 4190 4191 4192 4193
	}
	wait_for_completion(&lun->lun_shutdown_comp);

	return 0;
}

4194 4195 4196
/**
 * transport_wait_for_tasks - wait for completion to occur
 * @cmd:	command to wait
4197
 *
4198 4199
 * Called from frontend fabric context to wait for storage engine
 * to pause and/or release frontend generated struct se_cmd.
4200
 */
4201
bool transport_wait_for_tasks(struct se_cmd *cmd)
4202 4203 4204
{
	unsigned long flags;

4205
	spin_lock_irqsave(&cmd->t_state_lock, flags);
4206 4207
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4208
		return false;
4209 4210 4211 4212 4213 4214 4215
	}
	/*
	 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
	 * has been set in transport_set_supported_SAM_opcode().
	 */
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4216
		return false;
4217
	}
4218 4219 4220
	/*
	 * If we are already stopped due to an external event (ie: LUN shutdown)
	 * sleep until the connection can have the passed struct se_cmd back.
4221
	 * The cmd->transport_lun_stopped_sem will be upped by
4222 4223 4224
	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
	 * has completed its operation on the struct se_cmd.
	 */
4225
	if (atomic_read(&cmd->transport_lun_stop)) {
4226

4227
		pr_debug("wait_for_tasks: Stopping"
4228
			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
4229
			"_stop_comp); for ITT: 0x%08x\n",
4230
			cmd->se_tfo->get_task_tag(cmd));
4231 4232 4233 4234 4235 4236 4237
		/*
		 * There is a special case for WRITES where a FE exception +
		 * LUN shutdown means ConfigFS context is still sleeping on
		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
		 * We go ahead and up transport_lun_stop_comp just to be sure
		 * here.
		 */
4238 4239 4240 4241
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		complete(&cmd->transport_lun_stop_comp);
		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
		spin_lock_irqsave(&cmd->t_state_lock, flags);
4242 4243 4244 4245 4246 4247 4248

		transport_all_task_dev_remove_state(cmd);
		/*
		 * At this point, the frontend who was the originator of this
		 * struct se_cmd, now owns the structure and can be released through
		 * normal means below.
		 */
4249
		pr_debug("wait_for_tasks: Stopped"
4250
			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4251
			"stop_comp); for ITT: 0x%08x\n",
4252
			cmd->se_tfo->get_task_tag(cmd));
4253

4254
		atomic_set(&cmd->transport_lun_stop, 0);
4255
	}
4256
	if (!atomic_read(&cmd->t_transport_active) ||
4257 4258
	     atomic_read(&cmd->t_transport_aborted)) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4259
		return false;
4260
	}
4261

4262
	atomic_set(&cmd->t_transport_stop, 1);
4263

4264
	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4265 4266 4267
		" i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
		cmd, cmd->se_tfo->get_task_tag(cmd),
		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4268

4269
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4270

4271
	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4272

4273
	wait_for_completion(&cmd->t_transport_stop_comp);
4274

4275 4276 4277
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	atomic_set(&cmd->t_transport_active, 0);
	atomic_set(&cmd->t_transport_stop, 0);
4278

4279
	pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4280
		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4281
		cmd->se_tfo->get_task_tag(cmd));
4282

4283
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4284 4285

	return true;
4286
}
4287
EXPORT_SYMBOL(transport_wait_for_tasks);
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320

static int transport_get_sense_codes(
	struct se_cmd *cmd,
	u8 *asc,
	u8 *ascq)
{
	*asc = cmd->scsi_asc;
	*ascq = cmd->scsi_ascq;

	return 0;
}

static int transport_set_sense_codes(
	struct se_cmd *cmd,
	u8 asc,
	u8 ascq)
{
	cmd->scsi_asc = asc;
	cmd->scsi_ascq = ascq;

	return 0;
}

int transport_send_check_condition_and_sense(
	struct se_cmd *cmd,
	u8 reason,
	int from_transport)
{
	unsigned char *buffer = cmd->sense_buffer;
	unsigned long flags;
	int offset;
	u8 asc = 0, ascq = 0;

4321
	spin_lock_irqsave(&cmd->t_state_lock, flags);
4322
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4323
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4324 4325 4326
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4327
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

	if (!reason && from_transport)
		goto after_reason;

	if (!from_transport)
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
	/*
	 * Data Segment and SenseLength of the fabric response PDU.
	 *
	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
	 * from include/scsi/scsi_cmnd.h
	 */
4340
	offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4341 4342 4343 4344 4345 4346 4347
				TRANSPORT_SENSE_BUFFER);
	/*
	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
	 * SENSE KEY values from include/scsi/scsi.h
	 */
	switch (reason) {
	case TCM_NON_EXISTENT_LUN:
4348 4349 4350 4351 4352 4353 4354
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ILLEGAL REQUEST */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* LOGICAL UNIT NOT SUPPORTED */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
		break;
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_SECTOR_COUNT_TOO_MANY:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ILLEGAL REQUEST */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* INVALID COMMAND OPERATION CODE */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
		break;
	case TCM_UNKNOWN_MODE_PAGE:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ILLEGAL REQUEST */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* INVALID FIELD IN CDB */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
		break;
	case TCM_CHECK_CONDITION_ABORT_CMD:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ABORTED COMMAND */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
		/* BUS DEVICE RESET FUNCTION OCCURRED */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
		break;
	case TCM_INCORRECT_AMOUNT_OF_DATA:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ABORTED COMMAND */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
		/* WRITE ERROR */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
		/* NOT ENOUGH UNSOLICITED DATA */
		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
		break;
	case TCM_INVALID_CDB_FIELD:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ABORTED COMMAND */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
		/* INVALID FIELD IN CDB */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
		break;
	case TCM_INVALID_PARAMETER_LIST:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ABORTED COMMAND */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
		/* INVALID FIELD IN PARAMETER LIST */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
		break;
	case TCM_UNEXPECTED_UNSOLICITED_DATA:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ABORTED COMMAND */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
		/* WRITE ERROR */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
		/* UNEXPECTED_UNSOLICITED_DATA */
		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
		break;
	case TCM_SERVICE_CRC_ERROR:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ABORTED COMMAND */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
		/* PROTOCOL SERVICE CRC ERROR */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
		/* N/A */
		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
		break;
	case TCM_SNACK_REJECTED:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ABORTED COMMAND */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
		/* READ ERROR */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
		/* FAILED RETRANSMISSION REQUEST */
		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
		break;
	case TCM_WRITE_PROTECTED:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* DATA PROTECT */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
		/* WRITE PROTECTED */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
		break;
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* UNIT ATTENTION */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
		break;
	case TCM_CHECK_CONDITION_NOT_READY:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* Not Ready */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
		transport_get_sense_codes(cmd, &asc, &ascq);
		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
		break;
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	default:
		/* CURRENT ERROR */
		buffer[offset] = 0x70;
		/* ILLEGAL REQUEST */
		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* LOGICAL UNIT COMMUNICATION FAILURE */
		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
		break;
	}
	/*
	 * This code uses linux/include/scsi/scsi.h SAM status codes!
	 */
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	/*
	 * Automatically padded, this value is encoded in the fabric's
	 * data_length response PDU containing the SCSI defined sense data.
	 */
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;

after_reason:
4484
	return cmd->se_tfo->queue_status(cmd);
4485 4486 4487 4488 4489 4490 4491
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
	int ret = 0;

4492
	if (atomic_read(&cmd->t_transport_aborted) != 0) {
4493
		if (!send_status ||
4494 4495 4496
		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
			return 1;
#if 0
4497
		pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4498
			" status for CDB: 0x%02x ITT: 0x%08x\n",
4499
			cmd->t_task_cdb[0],
4500
			cmd->se_tfo->get_task_tag(cmd));
4501 4502
#endif
		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4503
		cmd->se_tfo->queue_status(cmd);
4504 4505 4506 4507 4508 4509 4510 4511
		ret = 1;
	}
	return ret;
}
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
4512 4513 4514 4515 4516 4517 4518 4519 4520
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

4521 4522 4523 4524 4525 4526 4527
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
4528
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4529
			atomic_inc(&cmd->t_transport_aborted);
4530 4531 4532 4533 4534
			smp_mb__after_atomic_inc();
		}
	}
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
#if 0
4535
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4536
		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
4537
		cmd->se_tfo->get_task_tag(cmd));
4538
#endif
4539
	cmd->se_tfo->queue_status(cmd);
4540 4541
}

C
Christoph Hellwig 已提交
4542
static int transport_generic_do_tmr(struct se_cmd *cmd)
4543
{
4544
	struct se_device *dev = cmd->se_dev;
4545 4546 4547 4548
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

	switch (tmr->function) {
4549
	case TMR_ABORT_TASK:
4550 4551
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
4552 4553 4554
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
4555 4556
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
4557
	case TMR_LUN_RESET:
4558 4559 4560 4561
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
		break;
4562
	case TMR_TARGET_WARM_RESET:
4563 4564
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
4565
	case TMR_TARGET_COLD_RESET:
4566 4567 4568
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
4569
		pr_err("Uknown TMR function: 0x%02x.\n",
4570 4571 4572 4573 4574 4575
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4576
	cmd->se_tfo->queue_tm_rsp(cmd);
4577

4578
	transport_cmd_check_stop_to_fabric(cmd);
4579 4580 4581 4582 4583 4584 4585 4586 4587
	return 0;
}

/*	transport_processing_thread():
 *
 *
 */
static int transport_processing_thread(void *param)
{
4588
	int ret;
4589 4590 4591 4592
	struct se_cmd *cmd;
	struct se_device *dev = (struct se_device *) param;

	while (!kthread_should_stop()) {
4593 4594
		ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
				atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4595 4596 4597 4598 4599 4600 4601
				kthread_should_stop());
		if (ret < 0)
			goto out;

get_cmd:
		__transport_execute_tasks(dev);

4602 4603
		cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
		if (!cmd)
4604 4605
			continue;

4606
		switch (cmd->t_state) {
4607 4608 4609
		case TRANSPORT_NEW_CMD:
			BUG();
			break;
4610
		case TRANSPORT_NEW_CMD_MAP:
4611 4612
			if (!cmd->se_tfo->new_cmd_map) {
				pr_err("cmd->se_tfo->new_cmd_map is"
4613 4614 4615
					" NULL for TRANSPORT_NEW_CMD_MAP\n");
				BUG();
			}
4616
			ret = cmd->se_tfo->new_cmd_map(cmd);
4617
			if (ret < 0) {
4618
				transport_generic_request_failure(cmd);
4619 4620 4621
				break;
			}
			ret = transport_generic_new_cmd(cmd);
4622
			if (ret < 0) {
4623 4624
				transport_generic_request_failure(cmd);
				break;
4625 4626 4627 4628 4629 4630 4631 4632
			}
			break;
		case TRANSPORT_PROCESS_WRITE:
			transport_generic_process_write(cmd);
			break;
		case TRANSPORT_PROCESS_TMR:
			transport_generic_do_tmr(cmd);
			break;
4633
		case TRANSPORT_COMPLETE_QF_WP:
4634 4635 4636 4637
			transport_write_pending_qf(cmd);
			break;
		case TRANSPORT_COMPLETE_QF_OK:
			transport_complete_qf(cmd);
4638
			break;
4639
		default:
4640 4641 4642
			pr_err("Unknown t_state: %d  for ITT: 0x%08x "
				"i_state: %d on SE LUN: %u\n",
				cmd->t_state,
4643 4644 4645
				cmd->se_tfo->get_task_tag(cmd),
				cmd->se_tfo->get_cmd_state(cmd),
				cmd->se_lun->unpacked_lun);
4646 4647 4648 4649 4650 4651 4652
			BUG();
		}

		goto get_cmd;
	}

out:
4653 4654
	WARN_ON(!list_empty(&dev->state_task_list));
	WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4655 4656 4657
	dev->process_thread = NULL;
	return 0;
}