gen8_engine_cs.c 16.5 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2014 Intel Corporation
 */

#include "gen8_engine_cs.h"
#include "i915_drv.h"
8
#include "intel_lrc.h"
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "intel_gpu_commands.h"
#include "intel_ring.h"

int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
	bool vf_flush_wa = false, dc_flush_wa = false;
	u32 *cs, flags = 0;
	int len;

	flags |= PIPE_CONTROL_CS_STALL;

	if (mode & EMIT_FLUSH) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
	}

	if (mode & EMIT_INVALIDATE) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;

		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
		if (IS_GEN(rq->engine->i915, 9))
			vf_flush_wa = true;

		/* WaForGAMHang:kbl */
45
		if (IS_KBL_GT_STEP(rq->engine->i915, 0, STEP_B0))
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
			dc_flush_wa = true;
	}

	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);

	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);

	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);

	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);

	intel_ring_advance(rq, cs);

	return 0;
}

int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
	u32 cmd, *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	cmd = MI_FLUSH_DW + 1;

	/*
	 * We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (mode & EMIT_INVALIDATE) {
		cmd |= MI_INVALIDATE_TLB;
		if (rq->engine->class == VIDEO_DECODE_CLASS)
			cmd |= MI_INVALIDATE_BSD;
	}

	*cs++ = cmd;
	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(rq, cs);

	return 0;
}

int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
		intel_ring_advance(rq, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
		intel_ring_advance(rq, cs);
	}

	return 0;
}

static u32 preparser_disable(bool state)
{
	return MI_ARB_CHECK | 1 << 8 | state;
}

static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
{
	static const i915_reg_t vd[] = {
		GEN12_VD0_AUX_NV,
		GEN12_VD1_AUX_NV,
		GEN12_VD2_AUX_NV,
		GEN12_VD3_AUX_NV,
	};

	static const i915_reg_t ve[] = {
		GEN12_VE0_AUX_NV,
		GEN12_VE1_AUX_NV,
	};

	if (engine->class == VIDEO_DECODE_CLASS)
		return vd[engine->instance];

	if (engine->class == VIDEO_ENHANCEMENT_CLASS)
		return ve[engine->instance];

	GEM_BUG_ON("unknown aux_inv reg\n");
	return INVALID_MMIO_REG;
}

static u32 *gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
{
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(inv_reg);
	*cs++ = AUX_INV;
	*cs++ = MI_NOOP;

	return cs;
}

int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_FLUSH_L3;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/* Wa_1409600907:tgl */
		flags |= PIPE_CONTROL_DEPTH_STALL;
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;

		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		cs = gen12_emit_pipe_control(cs,
					     PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
					     flags, LRC_PPHWSP_SCRATCH_ADDR);
		intel_ring_advance(rq, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;

		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

		cs = intel_ring_begin(rq, 8 + 4);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		/*
		 * Prevent the pre-parser from skipping past the TLB
		 * invalidate and loading a stale page for the batch
		 * buffer / request payload.
		 */
		*cs++ = preparser_disable(true);

		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);

		/* hsdes: 1809175790 */
		cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);

		*cs++ = preparser_disable(false);
		intel_ring_advance(rq, cs);
	}

	return 0;
}

int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
	intel_engine_mask_t aux_inv = 0;
	u32 cmd, *cs;

	cmd = 4;
	if (mode & EMIT_INVALIDATE)
		cmd += 2;
	if (mode & EMIT_INVALIDATE)
		aux_inv = rq->engine->mask & ~BIT(BCS0);
	if (aux_inv)
		cmd += 2 * hweight8(aux_inv) + 2;

	cs = intel_ring_begin(rq, cmd);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	if (mode & EMIT_INVALIDATE)
		*cs++ = preparser_disable(true);

	cmd = MI_FLUSH_DW + 1;

	/*
	 * We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (mode & EMIT_INVALIDATE) {
		cmd |= MI_INVALIDATE_TLB;
		if (rq->engine->class == VIDEO_DECODE_CLASS)
			cmd |= MI_INVALIDATE_BSD;
	}

	*cs++ = cmd;
	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */

	if (aux_inv) { /* hsdes: 1809175790 */
		struct intel_engine_cs *engine;
		unsigned int tmp;

		*cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
		for_each_engine_masked(engine, rq->engine->gt,
				       aux_inv, tmp) {
			*cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
			*cs++ = AUX_INV;
		}
		*cs++ = MI_NOOP;
	}

	if (mode & EMIT_INVALIDATE)
		*cs++ = preparser_disable(false);

	intel_ring_advance(rq, cs);

	return 0;
}

C
Chris Wilson 已提交
333
static u32 preempt_address(struct intel_engine_cs *engine)
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static u32 hwsp_offset(const struct i915_request *rq)
{
	const struct intel_timeline_cacheline *cl;

	/* Before the request is executed, the timeline/cachline is fixed */

	cl = rcu_dereference_protected(rq->hwsp_cacheline, 1);
	if (cl)
		return cl->ggtt_offset;

	return rcu_dereference_protected(rq->timeline, 1)->hwsp_offset;
}

int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
		return 0;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

364 365 366 367 368
	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = hwsp_offset(rq);
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

369 370 371 372 373
	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
374 375 376 377 378 379 380 381 382 383 384
	 *
	 * i915_request_started() is used during preemption processing
	 * to decide if the request is currently inside the user payload
	 * or spinning on a kernel semaphore (or earlier). For no-preemption
	 * requests, we do allow preemption on the semaphore before the user
	 * payload, but do not allow preemption once the request is started.
	 *
	 * i915_request_started() is similarly used during GPU hangs to
	 * determine if the user's payload was guilty, and if so, the
	 * request is banned. Before the request is started, it is assumed
	 * to be unharmed and an innocent victim of another's hang.
385 386
	 */
	*cs++ = MI_NOOP;
387
	*cs++ = MI_ARB_CHECK;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	intel_ring_advance(rq, cs);

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

	__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);

	return 0;
}

int gen8_emit_bb_start_noarb(struct i915_request *rq,
			     u64 offset, u32 len,
			     const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
	 */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

int gen8_emit_bb_start(struct i915_request *rq,
		       u64 offset, u32 len,
		       const unsigned int flags)
{
	u32 *cs;

441 442 443
	if (unlikely(i915_request_has_nopreempt(rq)))
		return gen8_emit_bb_start_noarb(rq, offset, len, flags);

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static void assert_request_valid(struct i915_request *rq)
{
	struct intel_ring *ring __maybe_unused = rq->ring;

	/* Can we unwind this request without appearing to go forwards? */
	GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
}

/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
{
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;
	rq->wa_tail = intel_ring_offset(rq, cs);

	/* Check that entire request is less than half the ring */
	assert_request_valid(rq);

	return cs;
}

static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
{
491
	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
492 493 494 495 496 497 498
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = preempt_address(rq->engine);
	*cs++ = 0;
499
	*cs++ = MI_NOOP;
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

	return cs;
}

static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
{
	*cs++ = MI_USER_INTERRUPT;

	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	if (intel_engine_has_semaphores(rq->engine))
		cs = emit_preempt_busywait(rq, cs);

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);

	return gen8_emit_wa_tail(rq, cs);
}

static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
{
	return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
}

u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
	return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
}

u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				    PIPE_CONTROL_DC_FLUSH_ENABLE,
				    0);

	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
	cs = gen8_emit_ggtt_write_rcs(cs,
				      rq->fence.seqno,
				      hwsp_offset(rq),
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);

	return gen8_emit_fini_breadcrumb_tail(rq, cs);
}

u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
	cs = gen8_emit_ggtt_write_rcs(cs,
				      rq->fence.seqno,
				      hwsp_offset(rq),
				      PIPE_CONTROL_CS_STALL |
				      PIPE_CONTROL_TILE_CACHE_FLUSH |
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE);

	return gen8_emit_fini_breadcrumb_tail(rq, cs);
}

/*
 * Note that the CS instruction pre-parser will not stall on the breadcrumb
 * flush and will continue pre-fetching the instructions after it before the
 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
 * of the next request before the memory has been flushed, we're guaranteed that
 * we won't access the batch itself too early.
 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
 * so, if the current request is modifying an instruction in the next request on
 * the same intel_context, we might pre-fetch and then execute the pre-update
 * instruction. To avoid this, the users of self-modifying code should either
 * disable the parser around the code emitting the memory writes, via a new flag
 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
 * the in-kernel use-cases we've opted to use a separate context, see
 * reloc_gpu() as an example.
 * All the above applies only to the instructions themselves. Non-inline data
 * used by the instructions is not pre-fetched.
 */

static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
{
583
	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = preempt_address(rq->engine);
	*cs++ = 0;
	*cs++ = 0;

	return cs;
}

static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
{
	*cs++ = MI_USER_INTERRUPT;

	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	if (intel_engine_has_semaphores(rq->engine))
		cs = gen12_emit_preempt_busywait(rq, cs);

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);

	return gen8_emit_wa_tail(rq, cs);
}

u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
	/* XXX Stalling flush before seqno write; post-sync not */
	cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
	return gen12_emit_fini_breadcrumb_tail(rq, cs);
}

u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
	cs = gen12_emit_ggtt_write_rcs(cs,
				       rq->fence.seqno,
				       hwsp_offset(rq),
				       PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_TILE_CACHE_FLUSH |
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				       /* Wa_1409600907:tgl */
				       PIPE_CONTROL_DEPTH_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE |
				       PIPE_CONTROL_FLUSH_ENABLE);

	return gen12_emit_fini_breadcrumb_tail(rq, cs);
}