tls_device.c 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <crypto/aead.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <net/dst.h>
#include <net/inet_connection_sock.h>
#include <net/tcp.h>
#include <net/tls.h>

/* device_offload_lock is used to synchronize tls_dev_add
 * against NETDEV_DOWN notifications.
 */
static DECLARE_RWSEM(device_offload_lock);

static void tls_device_gc_task(struct work_struct *work);

static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
static LIST_HEAD(tls_device_gc_list);
static LIST_HEAD(tls_device_list);
static DEFINE_SPINLOCK(tls_device_lock);

static void tls_device_free_ctx(struct tls_context *ctx)
{
J
Jakub Kicinski 已提交
55
	if (ctx->tx_conf == TLS_HW) {
56
		kfree(tls_offload_ctx_tx(ctx));
J
Jakub Kicinski 已提交
57 58 59
		kfree(ctx->tx.rec_seq);
		kfree(ctx->tx.iv);
	}
60 61 62

	if (ctx->rx_conf == TLS_HW)
		kfree(tls_offload_ctx_rx(ctx));
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

	kfree(ctx);
}

static void tls_device_gc_task(struct work_struct *work)
{
	struct tls_context *ctx, *tmp;
	unsigned long flags;
	LIST_HEAD(gc_list);

	spin_lock_irqsave(&tls_device_lock, flags);
	list_splice_init(&tls_device_gc_list, &gc_list);
	spin_unlock_irqrestore(&tls_device_lock, flags);

	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
		struct net_device *netdev = ctx->netdev;

80
		if (netdev && ctx->tx_conf == TLS_HW) {
81 82 83
			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
							TLS_OFFLOAD_CTX_DIR_TX);
			dev_put(netdev);
84
			ctx->netdev = NULL;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		}

		list_del(&ctx->list);
		tls_device_free_ctx(ctx);
	}
}

static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&tls_device_lock, flags);
	list_move_tail(&ctx->list, &tls_device_gc_list);

	/* schedule_work inside the spinlock
	 * to make sure tls_device_down waits for that work.
	 */
	schedule_work(&tls_device_gc_work);

	spin_unlock_irqrestore(&tls_device_lock, flags);
}

/* We assume that the socket is already connected */
static struct net_device *get_netdev_for_sock(struct sock *sk)
{
	struct dst_entry *dst = sk_dst_get(sk);
	struct net_device *netdev = NULL;

	if (likely(dst)) {
		netdev = dst->dev;
		dev_hold(netdev);
	}

	dst_release(dst);

	return netdev;
}

static void destroy_record(struct tls_record_info *record)
{
	int nr_frags = record->num_frags;
	skb_frag_t *frag;

	while (nr_frags-- > 0) {
		frag = &record->frags[nr_frags];
		__skb_frag_unref(frag);
	}
	kfree(record);
}

135
static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
{
	struct tls_record_info *info, *temp;

	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
		list_del(&info->list);
		destroy_record(info);
	}

	offload_ctx->retransmit_hint = NULL;
}

static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
{
	struct tls_context *tls_ctx = tls_get_ctx(sk);
	struct tls_record_info *info, *temp;
151
	struct tls_offload_context_tx *ctx;
152 153 154 155 156 157
	u64 deleted_records = 0;
	unsigned long flags;

	if (!tls_ctx)
		return;

158
	ctx = tls_offload_ctx_tx(tls_ctx);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	spin_lock_irqsave(&ctx->lock, flags);
	info = ctx->retransmit_hint;
	if (info && !before(acked_seq, info->end_seq)) {
		ctx->retransmit_hint = NULL;
		list_del(&info->list);
		destroy_record(info);
		deleted_records++;
	}

	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
		if (before(acked_seq, info->end_seq))
			break;
		list_del(&info->list);

		destroy_record(info);
		deleted_records++;
	}

	ctx->unacked_record_sn += deleted_records;
	spin_unlock_irqrestore(&ctx->lock, flags);
}

/* At this point, there should be no references on this
 * socket and no in-flight SKBs associated with this
 * socket, so it is safe to free all the resources.
 */
186
static void tls_device_sk_destruct(struct sock *sk)
187 188
{
	struct tls_context *tls_ctx = tls_get_ctx(sk);
189
	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
190

191
	tls_ctx->sk_destruct(sk);
192

193 194 195 196 197 198 199
	if (tls_ctx->tx_conf == TLS_HW) {
		if (ctx->open_record)
			destroy_record(ctx->open_record);
		delete_all_records(ctx);
		crypto_free_aead(ctx->aead_send);
		clean_acked_data_disable(inet_csk(sk));
	}
200 201 202 203 204

	if (refcount_dec_and_test(&tls_ctx->refcount))
		tls_device_queue_ctx_destruction(tls_ctx);
}

205 206 207 208 209 210 211
void tls_device_free_resources_tx(struct sock *sk)
{
	struct tls_context *tls_ctx = tls_get_ctx(sk);

	tls_free_partial_record(sk, tls_ctx);
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static void tls_append_frag(struct tls_record_info *record,
			    struct page_frag *pfrag,
			    int size)
{
	skb_frag_t *frag;

	frag = &record->frags[record->num_frags - 1];
	if (frag->page.p == pfrag->page &&
	    frag->page_offset + frag->size == pfrag->offset) {
		frag->size += size;
	} else {
		++frag;
		frag->page.p = pfrag->page;
		frag->page_offset = pfrag->offset;
		frag->size = size;
		++record->num_frags;
		get_page(pfrag->page);
	}

	pfrag->offset += size;
	record->len += size;
}

static int tls_push_record(struct sock *sk,
			   struct tls_context *ctx,
237
			   struct tls_offload_context_tx *offload_ctx,
238 239 240 241 242
			   struct tls_record_info *record,
			   struct page_frag *pfrag,
			   int flags,
			   unsigned char record_type)
{
243
	struct tls_prot_info *prot = &ctx->prot_info;
244 245 246 247 248 249 250 251 252
	struct tcp_sock *tp = tcp_sk(sk);
	struct page_frag dummy_tag_frag;
	skb_frag_t *frag;
	int i;

	/* fill prepend */
	frag = &record->frags[0];
	tls_fill_prepend(ctx,
			 skb_frag_address(frag),
253
			 record->len - prot->prepend_size,
D
Dave Watson 已提交
254
			 record_type,
J
Jakub Kicinski 已提交
255
			 prot->version);
256 257 258 259 260

	/* HW doesn't care about the data in the tag, because it fills it. */
	dummy_tag_frag.page = skb_frag_page(frag);
	dummy_tag_frag.offset = 0;

261
	tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
262 263 264 265 266
	record->end_seq = tp->write_seq + record->len;
	spin_lock_irq(&offload_ctx->lock);
	list_add_tail(&record->list, &offload_ctx->records_list);
	spin_unlock_irq(&offload_ctx->lock);
	offload_ctx->open_record = NULL;
267
	tls_advance_record_sn(sk, prot, &ctx->tx);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

	for (i = 0; i < record->num_frags; i++) {
		frag = &record->frags[i];
		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
			    frag->size, frag->page_offset);
		sk_mem_charge(sk, frag->size);
		get_page(skb_frag_page(frag));
	}
	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);

	/* all ready, send */
	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
}

283
static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
				 struct page_frag *pfrag,
				 size_t prepend_size)
{
	struct tls_record_info *record;
	skb_frag_t *frag;

	record = kmalloc(sizeof(*record), GFP_KERNEL);
	if (!record)
		return -ENOMEM;

	frag = &record->frags[0];
	__skb_frag_set_page(frag, pfrag->page);
	frag->page_offset = pfrag->offset;
	skb_frag_size_set(frag, prepend_size);

	get_page(pfrag->page);
	pfrag->offset += prepend_size;

	record->num_frags = 1;
	record->len = prepend_size;
	offload_ctx->open_record = record;
	return 0;
}

static int tls_do_allocation(struct sock *sk,
309
			     struct tls_offload_context_tx *offload_ctx,
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
			     struct page_frag *pfrag,
			     size_t prepend_size)
{
	int ret;

	if (!offload_ctx->open_record) {
		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
						   sk->sk_allocation))) {
			sk->sk_prot->enter_memory_pressure(sk);
			sk_stream_moderate_sndbuf(sk);
			return -ENOMEM;
		}

		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
		if (ret)
			return ret;

		if (pfrag->size > pfrag->offset)
			return 0;
	}

	if (!sk_page_frag_refill(sk, pfrag))
		return -ENOMEM;

	return 0;
}

static int tls_push_data(struct sock *sk,
			 struct iov_iter *msg_iter,
			 size_t size, int flags,
			 unsigned char record_type)
{
	struct tls_context *tls_ctx = tls_get_ctx(sk);
343
	struct tls_prot_info *prot = &tls_ctx->prot_info;
344
	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
	int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
	struct tls_record_info *record = ctx->open_record;
	struct page_frag *pfrag;
	size_t orig_size = size;
	u32 max_open_record_len;
	int copy, rc = 0;
	bool done = false;
	long timeo;

	if (flags &
	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
		return -ENOTSUPP;

	if (sk->sk_err)
		return -sk->sk_err;

	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
363 364 365 366 367
	if (tls_is_partially_sent_record(tls_ctx)) {
		rc = tls_push_partial_record(sk, tls_ctx, flags);
		if (rc < 0)
			return rc;
	}
368 369 370 371 372 373 374

	pfrag = sk_page_frag(sk);

	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
	 * we need to leave room for an authentication tag.
	 */
	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
375
			      prot->prepend_size;
376 377
	do {
		rc = tls_do_allocation(sk, ctx, pfrag,
378
				       prot->prepend_size);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
		if (rc) {
			rc = sk_stream_wait_memory(sk, &timeo);
			if (!rc)
				continue;

			record = ctx->open_record;
			if (!record)
				break;
handle_error:
			if (record_type != TLS_RECORD_TYPE_DATA) {
				/* avoid sending partial
				 * record with type !=
				 * application_data
				 */
				size = orig_size;
				destroy_record(record);
				ctx->open_record = NULL;
396
			} else if (record->len > prot->prepend_size) {
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
				goto last_record;
			}

			break;
		}

		record = ctx->open_record;
		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
		copy = min_t(size_t, copy, (max_open_record_len - record->len));

		if (copy_from_iter_nocache(page_address(pfrag->page) +
					       pfrag->offset,
					   copy, msg_iter) != copy) {
			rc = -EFAULT;
			goto handle_error;
		}
		tls_append_frag(record, pfrag, copy);

		size -= copy;
		if (!size) {
last_record:
			tls_push_record_flags = flags;
			if (more) {
				tls_ctx->pending_open_record_frags =
421
						!!record->num_frags;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
				break;
			}

			done = true;
		}

		if (done || record->len >= max_open_record_len ||
		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
			rc = tls_push_record(sk,
					     tls_ctx,
					     ctx,
					     record,
					     pfrag,
					     tls_push_record_flags,
					     record_type);
			if (rc < 0)
				break;
		}
	} while (!done);

	if (orig_size - size > 0)
		rc = orig_size - size;

	return rc;
}

int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
	unsigned char record_type = TLS_RECORD_TYPE_DATA;
	int rc;

	lock_sock(sk);

	if (unlikely(msg->msg_controllen)) {
		rc = tls_proccess_cmsg(sk, msg, &record_type);
		if (rc)
			goto out;
	}

	rc = tls_push_data(sk, &msg->msg_iter, size,
			   msg->msg_flags, record_type);

out:
	release_sock(sk);
	return rc;
}

int tls_device_sendpage(struct sock *sk, struct page *page,
			int offset, size_t size, int flags)
{
	struct iov_iter	msg_iter;
	char *kaddr = kmap(page);
	struct kvec iov;
	int rc;

	if (flags & MSG_SENDPAGE_NOTLAST)
		flags |= MSG_MORE;

	lock_sock(sk);

	if (flags & MSG_OOB) {
		rc = -ENOTSUPP;
		goto out;
	}

	iov.iov_base = kaddr + offset;
	iov.iov_len = size;
489
	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
490 491 492 493 494 495 496 497 498
	rc = tls_push_data(sk, &msg_iter, size,
			   flags, TLS_RECORD_TYPE_DATA);
	kunmap(page);

out:
	release_sock(sk);
	return rc;
}

499
struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
				       u32 seq, u64 *p_record_sn)
{
	u64 record_sn = context->hint_record_sn;
	struct tls_record_info *info;

	info = context->retransmit_hint;
	if (!info ||
	    before(seq, info->end_seq - info->len)) {
		/* if retransmit_hint is irrelevant start
		 * from the beggining of the list
		 */
		info = list_first_entry(&context->records_list,
					struct tls_record_info, list);
		record_sn = context->unacked_record_sn;
	}

	list_for_each_entry_from(info, &context->records_list, list) {
		if (before(seq, info->end_seq)) {
			if (!context->retransmit_hint ||
			    after(info->end_seq,
				  context->retransmit_hint->end_seq)) {
				context->hint_record_sn = record_sn;
				context->retransmit_hint = info;
			}
			*p_record_sn = record_sn;
			return info;
		}
		record_sn++;
	}

	return NULL;
}
EXPORT_SYMBOL(tls_get_record);

static int tls_device_push_pending_record(struct sock *sk, int flags)
{
	struct iov_iter	msg_iter;

538
	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
539 540 541
	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
}

B
Boris Pismenny 已提交
542 543 544 545 546 547
void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
{
	if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
		gfp_t sk_allocation = sk->sk_allocation;

		sk->sk_allocation = GFP_ATOMIC;
548
		tls_push_partial_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL);
B
Boris Pismenny 已提交
549 550 551 552
		sk->sk_allocation = sk_allocation;
	}
}

553
static void tls_device_resync_rx(struct tls_context *tls_ctx,
554
				 struct sock *sk, u32 seq, u8 *rcd_sn)
555 556 557 558 559 560 561
{
	struct net_device *netdev;

	if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
		return;
	netdev = READ_ONCE(tls_ctx->netdev);
	if (netdev)
562 563
		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
						   TLS_OFFLOAD_CTX_DIR_RX);
564 565 566
	clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
}

567
void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
568 569 570
{
	struct tls_context *tls_ctx = tls_get_ctx(sk);
	struct tls_offload_context_rx *rx_ctx;
571 572
	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
	struct tls_prot_info *prot;
573 574 575 576 577 578 579
	u32 is_req_pending;
	s64 resync_req;
	u32 req_seq;

	if (tls_ctx->rx_conf != TLS_HW)
		return;

580
	prot = &tls_ctx->prot_info;
581
	rx_ctx = tls_offload_ctx_rx(tls_ctx);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);

	switch (rx_ctx->resync_type) {
	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
		resync_req = atomic64_read(&rx_ctx->resync_req);
		req_seq = resync_req >> 32;
		seq += TLS_HEADER_SIZE - 1;
		is_req_pending = resync_req;

		if (likely(!is_req_pending) || req_seq != seq ||
		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
			return;
		break;
	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
		if (likely(!rx_ctx->resync_nh_do_now))
			return;

		/* head of next rec is already in, note that the sock_inq will
		 * include the currently parsed message when called from parser
		 */
		if (tcp_inq(sk) > rcd_len)
			return;

		rx_ctx->resync_nh_do_now = 0;
		seq += rcd_len;
		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
		break;
	}

	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
}

static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
					   struct tls_offload_context_rx *ctx,
					   struct sock *sk, struct sk_buff *skb)
{
	struct strp_msg *rxm;

	/* device will request resyncs by itself based on stream scan */
	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
		return;
	/* already scheduled */
	if (ctx->resync_nh_do_now)
		return;
	/* seen decrypted fragments since last fully-failed record */
	if (ctx->resync_nh_reset) {
		ctx->resync_nh_reset = 0;
		ctx->resync_nh.decrypted_failed = 1;
		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
		return;
	}

	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
		return;

	/* doing resync, bump the next target in case it fails */
	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
		ctx->resync_nh.decrypted_tgt *= 2;
	else
		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;

	rxm = strp_msg(skb);

	/* head of next rec is already in, parser will sync for us */
	if (tcp_inq(sk) > rxm->full_len) {
		ctx->resync_nh_do_now = 1;
	} else {
		struct tls_prot_info *prot = &tls_ctx->prot_info;
		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];

		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
		tls_bigint_increment(rcd_sn, prot->rec_seq_size);

		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
				     rcd_sn);
	}
658 659 660 661 662
}

static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
{
	struct strp_msg *rxm = strp_msg(skb);
663
	int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	struct sk_buff *skb_iter, *unused;
	struct scatterlist sg[1];
	char *orig_buf, *buf;

	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
	if (!orig_buf)
		return -ENOMEM;
	buf = orig_buf;

	nsg = skb_cow_data(skb, 0, &unused);
	if (unlikely(nsg < 0)) {
		err = nsg;
		goto free_buf;
	}

	sg_init_table(sg, 1);
	sg_set_buf(&sg[0], buf,
		   rxm->full_len + TLS_HEADER_SIZE +
		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
684 685 686 687
	err = skb_copy_bits(skb, offset, buf,
			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
	if (err)
		goto free_buf;
688 689 690 691 692 693 694 695

	/* We are interested only in the decrypted data not the auth */
	err = decrypt_skb(sk, skb, sg);
	if (err != -EBADMSG)
		goto free_buf;
	else
		err = 0;

696
	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
697

698
	if (skb_pagelen(skb) > offset) {
699
		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
700

701 702 703 704 705
		if (skb->decrypted) {
			err = skb_store_bits(skb, offset, buf, copy);
			if (err)
				goto free_buf;
		}
706

707 708 709
		offset += copy;
		buf += copy;
	}
710

711
	pos = skb_pagelen(skb);
712
	skb_walk_frags(skb, skb_iter) {
713 714 715 716 717 718 719 720 721 722 723 724 725 726
		int frag_pos;

		/* Practically all frags must belong to msg if reencrypt
		 * is needed with current strparser and coalescing logic,
		 * but strparser may "get optimized", so let's be safe.
		 */
		if (pos + skb_iter->len <= offset)
			goto done_with_frag;
		if (pos >= data_len + rxm->offset)
			break;

		frag_pos = offset - pos;
		copy = min_t(int, skb_iter->len - frag_pos,
			     data_len + rxm->offset - offset);
727

728 729 730 731 732
		if (skb_iter->decrypted) {
			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
			if (err)
				goto free_buf;
		}
733 734 735

		offset += copy;
		buf += copy;
736 737
done_with_frag:
		pos += skb_iter->len;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	}

free_buf:
	kfree(orig_buf);
	return err;
}

int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
{
	struct tls_context *tls_ctx = tls_get_ctx(sk);
	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
	int is_decrypted = skb->decrypted;
	int is_encrypted = !is_decrypted;
	struct sk_buff *skb_iter;

	/* Check if all the data is decrypted already */
	skb_walk_frags(skb, skb_iter) {
		is_decrypted &= skb_iter->decrypted;
		is_encrypted &= !skb_iter->decrypted;
	}

	ctx->sw.decrypted |= is_decrypted;

761
	/* Return immediately if the record is either entirely plaintext or
762 763 764
	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
	 * record.
	 */
765 766 767 768 769 770 771 772 773 774 775
	if (is_decrypted) {
		ctx->resync_nh_reset = 1;
		return 0;
	}
	if (is_encrypted) {
		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
		return 0;
	}

	ctx->resync_nh_reset = 1;
	return tls_device_reencrypt(sk, skb);
776 777
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
			      struct net_device *netdev)
{
	if (sk->sk_destruct != tls_device_sk_destruct) {
		refcount_set(&ctx->refcount, 1);
		dev_hold(netdev);
		ctx->netdev = netdev;
		spin_lock_irq(&tls_device_lock);
		list_add_tail(&ctx->list, &tls_device_list);
		spin_unlock_irq(&tls_device_lock);

		ctx->sk_destruct = sk->sk_destruct;
		sk->sk_destruct = tls_device_sk_destruct;
	}
}

794 795 796
int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
{
	u16 nonce_size, tag_size, iv_size, rec_seq_size;
797 798
	struct tls_context *tls_ctx = tls_get_ctx(sk);
	struct tls_prot_info *prot = &tls_ctx->prot_info;
799
	struct tls_record_info *start_marker_record;
800
	struct tls_offload_context_tx *offload_ctx;
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	struct tls_crypto_info *crypto_info;
	struct net_device *netdev;
	char *iv, *rec_seq;
	struct sk_buff *skb;
	int rc = -EINVAL;
	__be64 rcd_sn;

	if (!ctx)
		goto out;

	if (ctx->priv_ctx_tx) {
		rc = -EEXIST;
		goto out;
	}

	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
	if (!start_marker_record) {
		rc = -ENOMEM;
		goto out;
	}

822
	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
823 824 825 826 827
	if (!offload_ctx) {
		rc = -ENOMEM;
		goto free_marker_record;
	}

828
	crypto_info = &ctx->crypto_send.info;
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	switch (crypto_info->cipher_type) {
	case TLS_CIPHER_AES_GCM_128:
		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
		rec_seq =
		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
		break;
	default:
		rc = -EINVAL;
		goto free_offload_ctx;
	}

844 845 846 847 848 849
	/* Sanity-check the rec_seq_size for stack allocations */
	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
		rc = -EINVAL;
		goto free_offload_ctx;
	}

850 851 852 853
	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
	prot->tag_size = tag_size;
	prot->overhead_size = prot->prepend_size + prot->tag_size;
	prot->iv_size = iv_size;
854 855 856 857 858 859 860 861 862
	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
			     GFP_KERNEL);
	if (!ctx->tx.iv) {
		rc = -ENOMEM;
		goto free_offload_ctx;
	}

	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);

863
	prot->rec_seq_size = rec_seq_size;
864
	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	if (!ctx->tx.rec_seq) {
		rc = -ENOMEM;
		goto free_iv;
	}

	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
	if (rc)
		goto free_rec_seq;

	/* start at rec_seq - 1 to account for the start marker record */
	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;

	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
	start_marker_record->len = 0;
	start_marker_record->num_frags = 0;

	INIT_LIST_HEAD(&offload_ctx->records_list);
	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
	spin_lock_init(&offload_ctx->lock);
885 886
	sg_init_table(offload_ctx->sg_tx_data,
		      ARRAY_SIZE(offload_ctx->sg_tx_data));
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
	ctx->push_pending_record = tls_device_push_pending_record;

	/* TLS offload is greatly simplified if we don't send
	 * SKBs where only part of the payload needs to be encrypted.
	 * So mark the last skb in the write queue as end of record.
	 */
	skb = tcp_write_queue_tail(sk);
	if (skb)
		TCP_SKB_CB(skb)->eor = 1;

	/* We support starting offload on multiple sockets
	 * concurrently, so we only need a read lock here.
	 * This lock must precede get_netdev_for_sock to prevent races between
	 * NETDEV_DOWN and setsockopt.
	 */
	down_read(&device_offload_lock);
	netdev = get_netdev_for_sock(sk);
	if (!netdev) {
		pr_err_ratelimited("%s: netdev not found\n", __func__);
		rc = -EINVAL;
		goto release_lock;
	}

	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
		rc = -ENOTSUPP;
		goto release_netdev;
	}

	/* Avoid offloading if the device is down
	 * We don't want to offload new flows after
	 * the NETDEV_DOWN event
	 */
	if (!(netdev->flags & IFF_UP)) {
		rc = -EINVAL;
		goto release_netdev;
	}

	ctx->priv_ctx_tx = offload_ctx;
	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
928
					     &ctx->crypto_send.info,
929 930 931 932
					     tcp_sk(sk)->write_seq);
	if (rc)
		goto release_netdev;

933
	tls_device_attach(ctx, sk, netdev);
934 935 936 937 938

	/* following this assignment tls_is_sk_tx_device_offloaded
	 * will return true and the context might be accessed
	 * by the netdev's xmit function.
	 */
939 940
	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
	dev_put(netdev);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	up_read(&device_offload_lock);
	goto out;

release_netdev:
	dev_put(netdev);
release_lock:
	up_read(&device_offload_lock);
	clean_acked_data_disable(inet_csk(sk));
	crypto_free_aead(offload_ctx->aead_send);
free_rec_seq:
	kfree(ctx->tx.rec_seq);
free_iv:
	kfree(ctx->tx.iv);
free_offload_ctx:
	kfree(offload_ctx);
	ctx->priv_ctx_tx = NULL;
free_marker_record:
	kfree(start_marker_record);
out:
	return rc;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
{
	struct tls_offload_context_rx *context;
	struct net_device *netdev;
	int rc = 0;

	/* We support starting offload on multiple sockets
	 * concurrently, so we only need a read lock here.
	 * This lock must precede get_netdev_for_sock to prevent races between
	 * NETDEV_DOWN and setsockopt.
	 */
	down_read(&device_offload_lock);
	netdev = get_netdev_for_sock(sk);
	if (!netdev) {
		pr_err_ratelimited("%s: netdev not found\n", __func__);
		rc = -EINVAL;
		goto release_lock;
	}

	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
		rc = -ENOTSUPP;
		goto release_netdev;
	}

	/* Avoid offloading if the device is down
	 * We don't want to offload new flows after
	 * the NETDEV_DOWN event
	 */
	if (!(netdev->flags & IFF_UP)) {
		rc = -EINVAL;
		goto release_netdev;
	}

	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
	if (!context) {
		rc = -ENOMEM;
		goto release_netdev;
	}
1001
	context->resync_nh_reset = 1;
1002 1003 1004 1005 1006 1007 1008

	ctx->priv_ctx_rx = context;
	rc = tls_set_sw_offload(sk, ctx, 0);
	if (rc)
		goto release_ctx;

	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1009
					     &ctx->crypto_recv.info,
1010
					     tcp_sk(sk)->copied_seq);
1011
	if (rc)
1012 1013 1014 1015 1016 1017
		goto free_sw_resources;

	tls_device_attach(ctx, sk, netdev);
	goto release_netdev;

free_sw_resources:
1018
	up_read(&device_offload_lock);
1019
	tls_sw_free_resources_rx(sk);
1020
	down_read(&device_offload_lock);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
release_ctx:
	ctx->priv_ctx_rx = NULL;
release_netdev:
	dev_put(netdev);
release_lock:
	up_read(&device_offload_lock);
	return rc;
}

void tls_device_offload_cleanup_rx(struct sock *sk)
{
	struct tls_context *tls_ctx = tls_get_ctx(sk);
	struct net_device *netdev;

	down_read(&device_offload_lock);
	netdev = tls_ctx->netdev;
	if (!netdev)
		goto out;

	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
					TLS_OFFLOAD_CTX_DIR_RX);

	if (tls_ctx->tx_conf != TLS_HW) {
		dev_put(netdev);
		tls_ctx->netdev = NULL;
	}
out:
	up_read(&device_offload_lock);
	tls_sw_release_resources_rx(sk);
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static int tls_device_down(struct net_device *netdev)
{
	struct tls_context *ctx, *tmp;
	unsigned long flags;
	LIST_HEAD(list);

	/* Request a write lock to block new offload attempts */
	down_write(&device_offload_lock);

	spin_lock_irqsave(&tls_device_lock, flags);
	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
		if (ctx->netdev != netdev ||
		    !refcount_inc_not_zero(&ctx->refcount))
			continue;

		list_move(&ctx->list, &list);
	}
	spin_unlock_irqrestore(&tls_device_lock, flags);

	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1072 1073 1074 1075 1076 1077
		if (ctx->tx_conf == TLS_HW)
			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
							TLS_OFFLOAD_CTX_DIR_TX);
		if (ctx->rx_conf == TLS_HW)
			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
							TLS_OFFLOAD_CTX_DIR_RX);
1078 1079 1080 1081
		WRITE_ONCE(ctx->netdev, NULL);
		smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
		while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
			usleep_range(10, 200);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		dev_put(netdev);
		list_del_init(&ctx->list);

		if (refcount_dec_and_test(&ctx->refcount))
			tls_device_free_ctx(ctx);
	}

	up_write(&device_offload_lock);

	flush_work(&tls_device_gc_work);

	return NOTIFY_DONE;
}

static int tls_dev_event(struct notifier_block *this, unsigned long event,
			 void *ptr)
{
	struct net_device *dev = netdev_notifier_info_to_dev(ptr);

1101 1102
	if (!dev->tlsdev_ops &&
	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1103 1104 1105 1106 1107
		return NOTIFY_DONE;

	switch (event) {
	case NETDEV_REGISTER:
	case NETDEV_FEAT_CHANGE:
1108
		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1109
		    !dev->tlsdev_ops->tls_dev_resync)
1110 1111
			return NOTIFY_BAD;

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		if  (dev->tlsdev_ops &&
		     dev->tlsdev_ops->tls_dev_add &&
		     dev->tlsdev_ops->tls_dev_del)
			return NOTIFY_DONE;
		else
			return NOTIFY_BAD;
	case NETDEV_DOWN:
		return tls_device_down(dev);
	}
	return NOTIFY_DONE;
}

static struct notifier_block tls_dev_notifier = {
	.notifier_call	= tls_dev_event,
};

void __init tls_device_init(void)
{
	register_netdevice_notifier(&tls_dev_notifier);
}

void __exit tls_device_cleanup(void)
{
	unregister_netdevice_notifier(&tls_dev_notifier);
	flush_work(&tls_device_gc_work);
1137
	clean_acked_data_flush();
1138
}