reset.S 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Copyright 2003-2013 Broadcom Corporation.
 * All Rights Reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the Broadcom
 * license below:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <linux/init.h>

#include <asm/asm.h>
#include <asm/asm-offsets.h>
39
#include <asm/cacheops.h>
40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include <asm/regdef.h>
#include <asm/mipsregs.h>
#include <asm/stackframe.h>
#include <asm/asmmacro.h>
#include <asm/addrspace.h>

#include <asm/netlogic/common.h>

#include <asm/netlogic/xlp-hal/iomap.h>
#include <asm/netlogic/xlp-hal/xlp.h>
#include <asm/netlogic/xlp-hal/sys.h>
#include <asm/netlogic/xlp-hal/cpucontrol.h>

#define CP0_EBASE	$15
54 55
#define SYS_CPU_COHERENT_BASE	CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
			XLP_IO_SYS_OFFSET(0) + XLP_IO_PCI_HDRSZ + \
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
			SYS_CPU_NONCOHERENT_MODE * 4

/* Enable XLP features and workarounds in the LSU */
.macro xlp_config_lsu
	li	t0, LSU_DEFEATURE
	mfcr	t1, t0

	lui	t2, 0xc080	/* SUE, Enable Unaligned Access, L2HPE */
	or	t1, t1, t2
	mtcr	t1, t0

	li	t0, ICU_DEFEATURE
	mfcr	t1, t0
	ori	t1, 0x1000	/* Enable Icache partitioning */
	mtcr	t1, t0

	li	t0, SCHED_DEFEATURE
	lui	t1, 0x0100	/* Disable BRU accepting ALU ops */
	mtcr	t1, t0
.endm

/*
78 79 80
 * L1D cache has to be flushed before enabling threads in XLP.
 * On XLP8xx/XLP3xx, we do a low level flush using processor control
 * registers. On XLPII CPUs, usual cache instructions work.
81 82
 */
.macro	xlp_flush_l1_dcache
83 84 85 86 87 88 89
	mfc0	t0, CP0_EBASE, 0
	andi	t0, t0, 0xff00
	slt	t1, t0, 0x1200
	beqz	t1, 15f
	nop

	/* XLP8xx low level cache flush */
90 91 92 93
	li	t0, LSU_DEBUG_DATA0
	li	t1, LSU_DEBUG_ADDR
	li	t2, 0		/* index */
	li	t3, 0x1000	/* loop count */
94
11:
95 96 97 98
	sll	v0, t2, 5
	mtcr	zero, t0
	ori	v1, v0, 0x3	/* way0 | write_enable | write_active */
	mtcr	v1, t1
99
12:
100 101
	mfcr	v1, t1
	andi	v1, 0x1		/* wait for write_active == 0 */
102
	bnez	v1, 12b
103 104 105 106
	nop
	mtcr	zero, t0
	ori	v1, v0, 0x7	/* way1 | write_enable | write_active */
	mtcr	v1, t1
107
13:
108 109
	mfcr	v1, t1
	andi	v1, 0x1		/* wait for write_active == 0 */
110
	bnez	v1, 13b
111 112
	nop
	addi	t2, 1
113
	bne	t3, t2, 11b
114
	nop
115 116 117 118 119 120 121 122 123 124 125 126
	b	17f
	nop

	/* XLPII CPUs, Invalidate all 64k of L1 D-cache */
15:
	li	t0, 0x80000000
	li	t1, 0x80010000
16:	cache	Index_Writeback_Inv_D, 0(t0)
	addiu	t0, t0, 32
	bne	t0, t1, 16b
	nop
17:
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
.endm

/*
 * nlm_reset_entry will be copied to the reset entry point for
 * XLR and XLP. The XLP cores start here when they are woken up. This
 * is also the NMI entry point.
 *
 * We use scratch reg 6/7 to save k0/k1 and check for NMI first.
 *
 * The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
 * location, this will have the thread mask (used when core is woken up)
 * and the current NMI handler in case we reached here for an NMI.
 *
 * When a core or thread is newly woken up, it marks itself ready and
 * loops in a 'wait'. When the CPU really needs waking up, we send an NMI
 * IPI to it, with the NMI handler set to prom_boot_secondary_cpus
 */
	.set	noreorder
	.set	noat
	.set	arch=xlr	/* for mfcr/mtcr, XLR is sufficient */

FEXPORT(nlm_reset_entry)
	dmtc0	k0, $22, 6
	dmtc0	k1, $22, 7
	mfc0	k0, CP0_STATUS
	li	k1, 0x80000
	and	k1, k0, k1
	beqz	k1, 1f		/* go to real reset entry */
	nop
	li	k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
	ld	k0, BOOT_NMI_HANDLER(k1)
	jr	k0
	nop

1:	/* Entry point on core wakeup */
	mfc0	t0, CP0_EBASE, 1
	mfc0	t1, CP0_EBASE, 1
	srl	t1, 5
	andi	t1, 0x3			/* t1 <- node */
	li	t2, 0x40000
	mul	t3, t2, t1		/* t3 = node * 0x40000 */
	srl	t0, t0, 2
	and	t0, t0, 0x7		/* t0 <- core */
	li	t1, 0x1
	sll	t0, t1, t0
	nor	t0, t0, zero		/* t0 <- ~(1 << core) */
173
	li	t2, SYS_CPU_COHERENT_BASE
174 175 176 177 178 179 180 181 182 183 184 185 186 187
	add	t2, t2, t3		/* t2 <- SYS offset for node */
	lw	t1, 0(t2)
	and	t1, t1, t0
	sw	t1, 0(t2)

	/* read back to ensure complete */
	lw	t1, 0(t2)
	sync

	/* Configure LSU on Non-0 Cores. */
	xlp_config_lsu
	/* FALL THROUGH */

/*
188
 * Wake up sibling threads from the initial thread in a core.
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
 */
EXPORT(nlm_boot_siblings)
	/* core L1D flush before enable threads */
	xlp_flush_l1_dcache
	/* Enable hw threads by writing to MAP_THREADMODE of the core */
	li	t0, CKSEG1ADDR(RESET_DATA_PHYS)
	lw	t1, BOOT_THREAD_MODE(t0)	/* t1 <- thread mode */
	li	t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
	mfcr	t2, t0
	or	t2, t2, t1
	mtcr	t2, t0

	/*
	 * The new hardware thread starts at the next instruction
	 * For all the cases other than core 0 thread 0, we will
204 205 206 207
	 * jump to the secondary wait function.

	 * NOTE: All GPR contents are lost after the mtcr above!
	 */
208 209 210
	mfc0	v0, CP0_EBASE, 1
	andi	v0, 0x3ff		/* v0 <- node/core */

211
	beqz	v0, 4f		/* boot cpu (cpuid == 0)? */
212 213 214 215 216 217 218 219
	nop

	/* setup status reg */
	move	t1, zero
#ifdef CONFIG_64BIT
	ori	t1, ST0_KX
#endif
	mtc0	t1, CP0_STATUS
220

221
	/* mark CPU ready */
222 223
	li	t3, CKSEG1ADDR(RESET_DATA_PHYS)
	ADDIU	t1, t3, BOOT_CPU_READY
224 225 226 227 228 229
	sll	v1, v0, 2
	PTR_ADDU t1, v1
	li	t2, 1
	sw	t2, 0(t1)
	/* Wait until NMI hits */
3:	wait
230
	b	3b
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	nop

	/*
	 * For the boot CPU, we have to restore registers and
	 * return
	 */
4:	dmfc0	t0, $4, 2	/* restore SP from UserLocal */
	li	t1, 0xfadebeef
	dmtc0	t1, $4, 2	/* restore SP from UserLocal */
	PTR_SUBU sp, t0, PT_SIZE
	RESTORE_ALL
	jr	ra
	nop
EXPORT(nlm_reset_entry_end)

LEAF(nlm_init_boot_cpu)
#ifdef CONFIG_CPU_XLP
	xlp_config_lsu
#endif
	jr	ra
	nop
END(nlm_init_boot_cpu)