adv7180.c 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * adv7180.c Analog Devices ADV7180 video decoder driver
 * Copyright (c) 2009 Intel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
25
#include <linux/slab.h>
26 27 28
#include <media/v4l2-ioctl.h>
#include <linux/videodev2.h>
#include <media/v4l2-device.h>
29
#include <media/v4l2-ctrls.h>
30
#include <media/v4l2-chip-ident.h>
31
#include <linux/mutex.h>
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#define ADV7180_INPUT_CONTROL_REG			0x00
#define ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM	0x00
#define ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM_PED 0x10
#define ADV7180_INPUT_CONTROL_AD_PAL_N_NTSC_J_SECAM	0x20
#define ADV7180_INPUT_CONTROL_AD_PAL_N_NTSC_M_SECAM	0x30
#define ADV7180_INPUT_CONTROL_NTSC_J			0x40
#define ADV7180_INPUT_CONTROL_NTSC_M			0x50
#define ADV7180_INPUT_CONTROL_PAL60			0x60
#define ADV7180_INPUT_CONTROL_NTSC_443			0x70
#define ADV7180_INPUT_CONTROL_PAL_BG			0x80
#define ADV7180_INPUT_CONTROL_PAL_N			0x90
#define ADV7180_INPUT_CONTROL_PAL_M			0xa0
#define ADV7180_INPUT_CONTROL_PAL_M_PED			0xb0
#define ADV7180_INPUT_CONTROL_PAL_COMB_N		0xc0
#define ADV7180_INPUT_CONTROL_PAL_COMB_N_PED		0xd0
#define ADV7180_INPUT_CONTROL_PAL_SECAM			0xe0
#define ADV7180_INPUT_CONTROL_PAL_SECAM_PED		0xf0
50
#define ADV7180_INPUT_CONTROL_INSEL_MASK		0x0f
51

52 53
#define ADV7180_EXTENDED_OUTPUT_CONTROL_REG		0x04
#define ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS		0xC5
54

55 56
#define ADV7180_AUTODETECT_ENABLE_REG			0x07
#define ADV7180_AUTODETECT_DEFAULT			0x7f
57
/* Contrast */
58
#define ADV7180_CON_REG		0x08	/*Unsigned */
59 60 61 62
#define ADV7180_CON_MIN		0
#define ADV7180_CON_DEF		128
#define ADV7180_CON_MAX		255
/* Brightness*/
63
#define ADV7180_BRI_REG		0x0a	/*Signed */
64 65 66 67
#define ADV7180_BRI_MIN		-128
#define ADV7180_BRI_DEF		0
#define ADV7180_BRI_MAX		127
/* Hue */
68
#define ADV7180_HUE_REG		0x0b	/*Signed, inverted */
69 70 71
#define ADV7180_HUE_MIN		-127
#define ADV7180_HUE_DEF		0
#define ADV7180_HUE_MAX		128
72

73 74
#define ADV7180_ADI_CTRL_REG				0x0e
#define ADV7180_ADI_CTRL_IRQ_SPACE			0x20
75

76 77 78 79 80
#define ADV7180_PWR_MAN_REG		0x0f
#define ADV7180_PWR_MAN_ON		0x04
#define ADV7180_PWR_MAN_OFF		0x24
#define ADV7180_PWR_MAN_RES		0x80

81 82 83
#define ADV7180_STATUS1_REG				0x10
#define ADV7180_STATUS1_IN_LOCK		0x01
#define ADV7180_STATUS1_AUTOD_MASK	0x70
84 85 86 87 88 89 90 91 92 93 94 95
#define ADV7180_STATUS1_AUTOD_NTSM_M_J	0x00
#define ADV7180_STATUS1_AUTOD_NTSC_4_43 0x10
#define ADV7180_STATUS1_AUTOD_PAL_M	0x20
#define ADV7180_STATUS1_AUTOD_PAL_60	0x30
#define ADV7180_STATUS1_AUTOD_PAL_B_G	0x40
#define ADV7180_STATUS1_AUTOD_SECAM	0x50
#define ADV7180_STATUS1_AUTOD_PAL_COMB	0x60
#define ADV7180_STATUS1_AUTOD_SECAM_525	0x70

#define ADV7180_IDENT_REG 0x11
#define ADV7180_ID_7180 0x18

96 97 98 99
#define ADV7180_ICONF1_ADI		0x40
#define ADV7180_ICONF1_ACTIVE_LOW	0x01
#define ADV7180_ICONF1_PSYNC_ONLY	0x10
#define ADV7180_ICONF1_ACTIVE_TO_CLR	0xC0
100
/* Saturation */
101 102
#define ADV7180_SD_SAT_CB_REG	0xe3	/*Unsigned */
#define ADV7180_SD_SAT_CR_REG	0xe4	/*Unsigned */
103 104 105
#define ADV7180_SAT_MIN		0
#define ADV7180_SAT_DEF		128
#define ADV7180_SAT_MAX		255
106

107 108 109 110 111 112 113 114 115 116 117
#define ADV7180_IRQ1_LOCK	0x01
#define ADV7180_IRQ1_UNLOCK	0x02
#define ADV7180_ISR1_ADI	0x42
#define ADV7180_ICR1_ADI	0x43
#define ADV7180_IMR1_ADI	0x44
#define ADV7180_IMR2_ADI	0x48
#define ADV7180_IRQ3_AD_CHANGE	0x08
#define ADV7180_ISR3_ADI	0x4A
#define ADV7180_ICR3_ADI	0x4B
#define ADV7180_IMR3_ADI	0x4C
#define ADV7180_IMR4_ADI	0x50
118

119 120 121
#define ADV7180_NTSC_V_BIT_END_REG	0xE6
#define ADV7180_NTSC_V_BIT_END_MANUAL_NVEND	0x4F

122
struct adv7180_state {
123
	struct v4l2_ctrl_handler ctrl_hdl;
124
	struct v4l2_subdev	sd;
125 126 127
	struct work_struct	work;
	struct mutex		mutex; /* mutual excl. when accessing chip */
	int			irq;
128 129
	v4l2_std_id		curr_norm;
	bool			autodetect;
130
	u8			input;
131
};
132 133 134
#define to_adv7180_sd(_ctrl) (&container_of(_ctrl->handler,		\
					    struct adv7180_state,	\
					    ctrl_hdl)->sd)
135

136
static v4l2_std_id adv7180_std_to_v4l2(u8 status1)
137
{
138 139 140 141
	/* in case V4L2_IN_ST_NO_SIGNAL */
	if (!(status1 & ADV7180_STATUS1_IN_LOCK))
		return V4L2_STD_UNKNOWN;

142 143
	switch (status1 & ADV7180_STATUS1_AUTOD_MASK) {
	case ADV7180_STATUS1_AUTOD_NTSM_M_J:
144
		return V4L2_STD_NTSC;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	case ADV7180_STATUS1_AUTOD_NTSC_4_43:
		return V4L2_STD_NTSC_443;
	case ADV7180_STATUS1_AUTOD_PAL_M:
		return V4L2_STD_PAL_M;
	case ADV7180_STATUS1_AUTOD_PAL_60:
		return V4L2_STD_PAL_60;
	case ADV7180_STATUS1_AUTOD_PAL_B_G:
		return V4L2_STD_PAL;
	case ADV7180_STATUS1_AUTOD_SECAM:
		return V4L2_STD_SECAM;
	case ADV7180_STATUS1_AUTOD_PAL_COMB:
		return V4L2_STD_PAL_Nc | V4L2_STD_PAL_N;
	case ADV7180_STATUS1_AUTOD_SECAM_525:
		return V4L2_STD_SECAM;
	default:
		return V4L2_STD_UNKNOWN;
	}
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static int v4l2_std_to_adv7180(v4l2_std_id std)
{
	if (std == V4L2_STD_PAL_60)
		return ADV7180_INPUT_CONTROL_PAL60;
	if (std == V4L2_STD_NTSC_443)
		return ADV7180_INPUT_CONTROL_NTSC_443;
	if (std == V4L2_STD_PAL_N)
		return ADV7180_INPUT_CONTROL_PAL_N;
	if (std == V4L2_STD_PAL_M)
		return ADV7180_INPUT_CONTROL_PAL_M;
	if (std == V4L2_STD_PAL_Nc)
		return ADV7180_INPUT_CONTROL_PAL_COMB_N;

	if (std & V4L2_STD_PAL)
		return ADV7180_INPUT_CONTROL_PAL_BG;
	if (std & V4L2_STD_NTSC)
		return ADV7180_INPUT_CONTROL_NTSC_M;
	if (std & V4L2_STD_SECAM)
		return ADV7180_INPUT_CONTROL_PAL_SECAM;

	return -EINVAL;
}

187 188 189 190 191 192 193 194 195
static u32 adv7180_status_to_v4l2(u8 status1)
{
	if (!(status1 & ADV7180_STATUS1_IN_LOCK))
		return V4L2_IN_ST_NO_SIGNAL;

	return 0;
}

static int __adv7180_status(struct i2c_client *client, u32 *status,
196
			    v4l2_std_id *std)
197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	int status1 = i2c_smbus_read_byte_data(client, ADV7180_STATUS1_REG);

	if (status1 < 0)
		return status1;

	if (status)
		*status = adv7180_status_to_v4l2(status1);
	if (std)
		*std = adv7180_std_to_v4l2(status1);

	return 0;
}

211 212 213 214 215 216 217
static inline struct adv7180_state *to_state(struct v4l2_subdev *sd)
{
	return container_of(sd, struct adv7180_state, sd);
}

static int adv7180_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
{
218
	struct adv7180_state *state = to_state(sd);
219 220 221
	int err = mutex_lock_interruptible(&state->mutex);
	if (err)
		return err;
222

223 224
	/* when we are interrupt driven we know the state */
	if (!state->autodetect || state->irq > 0)
225 226 227 228
		*std = state->curr_norm;
	else
		err = __adv7180_status(v4l2_get_subdevdata(sd), NULL, std);

229
	mutex_unlock(&state->mutex);
230
	return err;
231
}
232

233 234 235 236 237 238 239 240 241 242
static int adv7180_s_routing(struct v4l2_subdev *sd, u32 input,
			     u32 output, u32 config)
{
	struct adv7180_state *state = to_state(sd);
	int ret = mutex_lock_interruptible(&state->mutex);
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (ret)
		return ret;

243
	/* We cannot discriminate between LQFP and 40-pin LFCSP, so accept
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	 * all inputs and let the card driver take care of validation
	 */
	if ((input & ADV7180_INPUT_CONTROL_INSEL_MASK) != input)
		goto out;

	ret = i2c_smbus_read_byte_data(client, ADV7180_INPUT_CONTROL_REG);

	if (ret < 0)
		goto out;

	ret &= ~ADV7180_INPUT_CONTROL_INSEL_MASK;
	ret = i2c_smbus_write_byte_data(client,
					ADV7180_INPUT_CONTROL_REG, ret | input);
	state->input = input;
out:
	mutex_unlock(&state->mutex);
	return ret;
}

263 264
static int adv7180_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
265 266 267 268 269 270 271 272
	struct adv7180_state *state = to_state(sd);
	int ret = mutex_lock_interruptible(&state->mutex);
	if (ret)
		return ret;

	ret = __adv7180_status(v4l2_get_subdevdata(sd), status, NULL);
	mutex_unlock(&state->mutex);
	return ret;
273 274 275
}

static int adv7180_g_chip_ident(struct v4l2_subdev *sd,
276
				struct v4l2_dbg_chip_ident *chip)
277 278 279 280 281 282
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_ADV7180, 0);
}

283 284 285 286
static int adv7180_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
{
	struct adv7180_state *state = to_state(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
287 288 289
	int ret = mutex_lock_interruptible(&state->mutex);
	if (ret)
		return ret;
290 291 292

	/* all standards -> autodetect */
	if (std == V4L2_STD_ALL) {
293 294 295 296
		ret =
		    i2c_smbus_write_byte_data(client, ADV7180_INPUT_CONTROL_REG,
				ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM
					      | state->input);
297 298 299
		if (ret < 0)
			goto out;

300
		__adv7180_status(client, NULL, &state->curr_norm);
301 302 303 304 305 306 307
		state->autodetect = true;
	} else {
		ret = v4l2_std_to_adv7180(std);
		if (ret < 0)
			goto out;

		ret = i2c_smbus_write_byte_data(client,
308 309
						ADV7180_INPUT_CONTROL_REG,
						ret | state->input);
310 311 312 313 314 315 316 317
		if (ret < 0)
			goto out;

		state->curr_norm = std;
		state->autodetect = false;
	}
	ret = 0;
out:
318
	mutex_unlock(&state->mutex);
319 320 321
	return ret;
}

322
static int adv7180_s_ctrl(struct v4l2_ctrl *ctrl)
323
{
324
	struct v4l2_subdev *sd = to_adv7180_sd(ctrl);
325 326 327
	struct adv7180_state *state = to_state(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret = mutex_lock_interruptible(&state->mutex);
328 329
	int val;

330 331
	if (ret)
		return ret;
332
	val = ctrl->val;
333 334
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
335
		ret = i2c_smbus_write_byte_data(client, ADV7180_BRI_REG, val);
336 337 338
		break;
	case V4L2_CID_HUE:
		/*Hue is inverted according to HSL chart */
339
		ret = i2c_smbus_write_byte_data(client, ADV7180_HUE_REG, -val);
340 341
		break;
	case V4L2_CID_CONTRAST:
342
		ret = i2c_smbus_write_byte_data(client, ADV7180_CON_REG, val);
343 344 345 346 347 348
		break;
	case V4L2_CID_SATURATION:
		/*
		 *This could be V4L2_CID_BLUE_BALANCE/V4L2_CID_RED_BALANCE
		 *Let's not confuse the user, everybody understands saturation
		 */
349 350
		ret = i2c_smbus_write_byte_data(client, ADV7180_SD_SAT_CB_REG,
						val);
351 352
		if (ret < 0)
			break;
353 354
		ret = i2c_smbus_write_byte_data(client, ADV7180_SD_SAT_CR_REG,
						val);
355 356 357 358 359 360 361 362 363
		break;
	default:
		ret = -EINVAL;
	}

	mutex_unlock(&state->mutex);
	return ret;
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static const struct v4l2_ctrl_ops adv7180_ctrl_ops = {
	.s_ctrl = adv7180_s_ctrl,
};

static int adv7180_init_controls(struct adv7180_state *state)
{
	v4l2_ctrl_handler_init(&state->ctrl_hdl, 4);

	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
			  V4L2_CID_BRIGHTNESS, ADV7180_BRI_MIN,
			  ADV7180_BRI_MAX, 1, ADV7180_BRI_DEF);
	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
			  V4L2_CID_CONTRAST, ADV7180_CON_MIN,
			  ADV7180_CON_MAX, 1, ADV7180_CON_DEF);
	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
			  V4L2_CID_SATURATION, ADV7180_SAT_MIN,
			  ADV7180_SAT_MAX, 1, ADV7180_SAT_DEF);
	v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
			  V4L2_CID_HUE, ADV7180_HUE_MIN,
			  ADV7180_HUE_MAX, 1, ADV7180_HUE_DEF);
	state->sd.ctrl_handler = &state->ctrl_hdl;
	if (state->ctrl_hdl.error) {
		int err = state->ctrl_hdl.error;

		v4l2_ctrl_handler_free(&state->ctrl_hdl);
		return err;
	}
	v4l2_ctrl_handler_setup(&state->ctrl_hdl);

	return 0;
}
static void adv7180_exit_controls(struct adv7180_state *state)
{
	v4l2_ctrl_handler_free(&state->ctrl_hdl);
}

400 401
static const struct v4l2_subdev_video_ops adv7180_video_ops = {
	.querystd = adv7180_querystd,
402
	.g_input_status = adv7180_g_input_status,
403
	.s_routing = adv7180_s_routing,
404 405 406 407
};

static const struct v4l2_subdev_core_ops adv7180_core_ops = {
	.g_chip_ident = adv7180_g_chip_ident,
408
	.s_std = adv7180_s_std,
409 410 411 412 413 414 415
};

static const struct v4l2_subdev_ops adv7180_ops = {
	.core = &adv7180_core_ops,
	.video = &adv7180_video_ops,
};

416 417 418
static void adv7180_work(struct work_struct *work)
{
	struct adv7180_state *state = container_of(work, struct adv7180_state,
419
						   work);
420 421 422 423 424
	struct i2c_client *client = v4l2_get_subdevdata(&state->sd);
	u8 isr3;

	mutex_lock(&state->mutex);
	i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG,
425
				  ADV7180_ADI_CTRL_IRQ_SPACE);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	isr3 = i2c_smbus_read_byte_data(client, ADV7180_ISR3_ADI);
	/* clear */
	i2c_smbus_write_byte_data(client, ADV7180_ICR3_ADI, isr3);
	i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG, 0);

	if (isr3 & ADV7180_IRQ3_AD_CHANGE && state->autodetect)
		__adv7180_status(client, NULL, &state->curr_norm);
	mutex_unlock(&state->mutex);

	enable_irq(state->irq);
}

static irqreturn_t adv7180_irq(int irq, void *devid)
{
	struct adv7180_state *state = devid;

	schedule_work(&state->work);

	disable_irq_nosync(state->irq);

	return IRQ_HANDLED;
}

449
static int init_device(struct i2c_client *client, struct adv7180_state *state)
450 451 452 453
{
	int ret;

	/* Initialize adv7180 */
454
	/* Enable autodetection */
455 456 457 458 459 460 461
	if (state->autodetect) {
		ret =
		    i2c_smbus_write_byte_data(client, ADV7180_INPUT_CONTROL_REG,
				ADV7180_INPUT_CONTROL_AD_PAL_BG_NTSC_J_SECAM
					      | state->input);
		if (ret < 0)
			return ret;
462

463 464 465 466 467 468 469 470 471 472
		ret =
		    i2c_smbus_write_byte_data(client,
					      ADV7180_AUTODETECT_ENABLE_REG,
					      ADV7180_AUTODETECT_DEFAULT);
		if (ret < 0)
			return ret;
	} else {
		ret = v4l2_std_to_adv7180(state->curr_norm);
		if (ret < 0)
			return ret;
473

474 475 476 477 478 479 480
		ret =
		    i2c_smbus_write_byte_data(client, ADV7180_INPUT_CONTROL_REG,
					      ret | state->input);
		if (ret < 0)
			return ret;

	}
481 482
	/* ITU-R BT.656-4 compatible */
	ret = i2c_smbus_write_byte_data(client,
483 484
			ADV7180_EXTENDED_OUTPUT_CONTROL_REG,
			ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS);
485
	if (ret < 0)
486 487 488 489 490 491 492 493
		return ret;

	/* Manually set V bit end position in NTSC mode */
	ret = i2c_smbus_write_byte_data(client,
					ADV7180_NTSC_V_BIT_END_REG,
					ADV7180_NTSC_V_BIT_END_MANUAL_NVEND);
	if (ret < 0)
		return ret;
494 495 496 497 498 499

	/* read current norm */
	__adv7180_status(client, NULL, &state->curr_norm);

	/* register for interrupts */
	if (state->irq > 0) {
500
		ret = request_irq(state->irq, adv7180_irq, 0, KBUILD_MODNAME,
501
				  state);
502
		if (ret)
503
			return ret;
504 505

		ret = i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG,
506
						ADV7180_ADI_CTRL_IRQ_SPACE);
507
		if (ret < 0)
508
			return ret;
509 510 511

		/* config the Interrupt pin to be active low */
		ret = i2c_smbus_write_byte_data(client, ADV7180_ICONF1_ADI,
512 513
						ADV7180_ICONF1_ACTIVE_LOW |
						ADV7180_ICONF1_PSYNC_ONLY);
514
		if (ret < 0)
515
			return ret;
516 517 518

		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR1_ADI, 0);
		if (ret < 0)
519
			return ret;
520 521 522

		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR2_ADI, 0);
		if (ret < 0)
523
			return ret;
524 525 526

		/* enable AD change interrupts interrupts */
		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR3_ADI,
527
						ADV7180_IRQ3_AD_CHANGE);
528
		if (ret < 0)
529
			return ret;
530 531 532

		ret = i2c_smbus_write_byte_data(client, ADV7180_IMR4_ADI, 0);
		if (ret < 0)
533
			return ret;
534 535

		ret = i2c_smbus_write_byte_data(client, ADV7180_ADI_CTRL_REG,
536
						0);
537
		if (ret < 0)
538
			return ret;
539 540
	}

541 542 543
	return 0;
}

544 545
static int adv7180_probe(struct i2c_client *client,
			 const struct i2c_device_id *id)
546 547 548 549 550 551 552 553 554 555 556 557
{
	struct adv7180_state *state;
	struct v4l2_subdev *sd;
	int ret;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;

	v4l_info(client, "chip found @ 0x%02x (%s)\n",
		 client->addr, client->adapter->name);

558
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
559 560 561 562 563 564 565 566 567 568 569 570 571
	if (state == NULL) {
		ret = -ENOMEM;
		goto err;
	}

	state->irq = client->irq;
	INIT_WORK(&state->work, adv7180_work);
	mutex_init(&state->mutex);
	state->autodetect = true;
	state->input = 0;
	sd = &state->sd;
	v4l2_i2c_subdev_init(sd, client, &adv7180_ops);

572 573
	ret = adv7180_init_controls(state);
	if (ret)
574
		goto err_unreg_subdev;
575 576 577
	ret = init_device(client, state);
	if (ret)
		goto err_free_ctrl;
578
	return 0;
579

580 581
err_free_ctrl:
	adv7180_exit_controls(state);
582 583 584 585
err_unreg_subdev:
	mutex_destroy(&state->mutex);
	v4l2_device_unregister_subdev(sd);
err:
586
	printk(KERN_ERR KBUILD_MODNAME ": Failed to probe: %d\n", ret);
587
	return ret;
588 589
}

590
static int adv7180_remove(struct i2c_client *client)
591 592
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
593 594 595 596 597 598 599 600 601 602 603 604 605
	struct adv7180_state *state = to_state(sd);

	if (state->irq > 0) {
		free_irq(client->irq, state);
		if (cancel_work_sync(&state->work)) {
			/*
			 * Work was pending, therefore we need to enable
			 * IRQ here to balance the disable_irq() done in the
			 * interrupt handler.
			 */
			enable_irq(state->irq);
		}
	}
606

607
	mutex_destroy(&state->mutex);
608 609 610 611 612
	v4l2_device_unregister_subdev(sd);
	return 0;
}

static const struct i2c_device_id adv7180_id[] = {
613
	{KBUILD_MODNAME, 0},
614 615 616
	{},
};

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
#ifdef CONFIG_PM
static int adv7180_suspend(struct i2c_client *client, pm_message_t state)
{
	int ret;

	ret = i2c_smbus_write_byte_data(client, ADV7180_PWR_MAN_REG,
					ADV7180_PWR_MAN_OFF);
	if (ret < 0)
		return ret;
	return 0;
}

static int adv7180_resume(struct i2c_client *client)
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
	struct adv7180_state *state = to_state(sd);
	int ret;

	ret = i2c_smbus_write_byte_data(client, ADV7180_PWR_MAN_REG,
					ADV7180_PWR_MAN_ON);
	if (ret < 0)
		return ret;
	ret = init_device(client, state);
	if (ret < 0)
		return ret;
	return 0;
}
#endif

646 647 648 649
MODULE_DEVICE_TABLE(i2c, adv7180_id);

static struct i2c_driver adv7180_driver = {
	.driver = {
650
		   .owner = THIS_MODULE,
651
		   .name = KBUILD_MODNAME,
652 653
		   },
	.probe = adv7180_probe,
654
	.remove = adv7180_remove,
655 656 657 658 659
#ifdef CONFIG_PM
	.suspend = adv7180_suspend,
	.resume = adv7180_resume,
#endif
	.id_table = adv7180_id,
660 661
};

662
module_i2c_driver(adv7180_driver);
663 664 665 666

MODULE_DESCRIPTION("Analog Devices ADV7180 video decoder driver");
MODULE_AUTHOR("Mocean Laboratories");
MODULE_LICENSE("GPL v2");