i2c-img-scb.c 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
 *
 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * There are three ways that this I2C controller can be driven:
 *
 * - Raw control of the SDA and SCK signals.
 *
 *   This corresponds to MODE_RAW, which takes control of the signals
 *   directly for a certain number of clock cycles (the INT_TIMING
 *   interrupt can be used for timing).
 *
 * - Atomic commands. A low level I2C symbol (such as generate
 *   start/stop/ack/nack bit, generate byte, receive byte, and receive
 *   ACK) is given to the hardware, with detection of completion by bits
 *   in the LINESTAT register.
 *
 *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
 *   state machine in the interrupt handler to compose/react to I2C
 *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
 *   which emits a simple fixed sequence of atomic mode commands.
 *
 *   Due to software control, the use of atomic commands usually results
 *   in suboptimal use of the bus, with gaps between the I2C symbols while
 *   the driver decides what to do next.
 *
 * - Automatic mode. A bus address, and whether to read/write is
 *   specified, and the hardware takes care of the I2C state machine,
 *   using a FIFO to send/receive bytes of data to an I2C slave. The
 *   driver just has to keep the FIFO drained or filled in response to the
 *   appropriate FIFO interrupts.
 *
 *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
 *   with control of repeated start bits between I2C messages.
 *
 *   Use of automatic mode and the FIFO can make much more efficient use
 *   of the bus compared to individual atomic commands, with potentially
 *   no wasted time between I2C symbols or I2C messages.
 *
 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
 * the bus), MODE_ATOMIC must be used since automatic mode is normally
 * started by the writing of data into the FIFO.
 *
 * The other modes are used in specific circumstances where MODE_ATOMIC and
 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
 * it is in a sane state.
 *
 * Notice that the driver implements a timer-based timeout mechanism.
 * The reason for this mechanism is to reduce the number of interrupts
 * received in automatic mode.
 *
 * The driver would get a slave event and transaction done interrupts for
 * each atomic mode command that gets completed. However, these events are
 * not needed in automatic mode, becase those atomic mode commands are
 * managed automatically by the hardware.
 *
 * In practice, normal I2C transactions will be complete well before you
 * get the timer interrupt, as the timer is re-scheduled during FIFO
 * maintenance and disabled after the transaction is complete.
 *
 * In this way normal automatic mode operation isn't impacted by
 * unnecessary interrupts, but the exceptional abort condition can still be
 * detected (with a slight delay).
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/timer.h>

/* Register offsets */

#define SCB_STATUS_REG			0x00
#define SCB_OVERRIDE_REG		0x04
#define SCB_READ_ADDR_REG		0x08
#define SCB_READ_COUNT_REG		0x0c
#define SCB_WRITE_ADDR_REG		0x10
#define SCB_READ_DATA_REG		0x14
#define SCB_WRITE_DATA_REG		0x18
#define SCB_FIFO_STATUS_REG		0x1c
#define SCB_CONTROL_SOFT_RESET		0x1f
#define SCB_CLK_SET_REG			0x3c
#define SCB_INT_STATUS_REG		0x40
#define SCB_INT_CLEAR_REG		0x44
#define SCB_INT_MASK_REG		0x48
#define SCB_CONTROL_REG			0x4c
#define SCB_TIME_TPL_REG		0x50
#define SCB_TIME_TPH_REG		0x54
#define SCB_TIME_TP2S_REG		0x58
#define SCB_TIME_TBI_REG		0x60
#define SCB_TIME_TSL_REG		0x64
#define SCB_TIME_TDL_REG		0x68
#define SCB_TIME_TSDL_REG		0x6c
#define SCB_TIME_TSDH_REG		0x70
#define SCB_READ_XADDR_REG		0x74
#define SCB_WRITE_XADDR_REG		0x78
#define SCB_WRITE_COUNT_REG		0x7c
#define SCB_CORE_REV_REG		0x80
#define SCB_TIME_TCKH_REG		0x84
#define SCB_TIME_TCKL_REG		0x88
#define SCB_FIFO_FLUSH_REG		0x8c
#define SCB_READ_FIFO_REG		0x94
#define SCB_CLEAR_REG			0x98

/* SCB_CONTROL_REG bits */

#define SCB_CONTROL_CLK_ENABLE		0x1e0
#define SCB_CONTROL_TRANSACTION_HALT	0x200

#define FIFO_READ_FULL			BIT(0)
#define FIFO_READ_EMPTY			BIT(1)
#define FIFO_WRITE_FULL			BIT(2)
#define FIFO_WRITE_EMPTY		BIT(3)

/* SCB_CLK_SET_REG bits */
#define SCB_FILT_DISABLE		BIT(31)
#define SCB_FILT_BYPASS			BIT(30)
#define SCB_FILT_INC_MASK		0x7f
#define SCB_FILT_INC_SHIFT		16
#define SCB_INC_MASK			0x7f
#define SCB_INC_SHIFT			8

/* SCB_INT_*_REG bits */

#define INT_BUS_INACTIVE		BIT(0)
#define INT_UNEXPECTED_START		BIT(1)
#define INT_SCLK_LOW_TIMEOUT		BIT(2)
#define INT_SDAT_LOW_TIMEOUT		BIT(3)
#define INT_WRITE_ACK_ERR		BIT(4)
#define INT_ADDR_ACK_ERR		BIT(5)
#define INT_FIFO_FULL			BIT(9)
#define INT_FIFO_FILLING		BIT(10)
#define INT_FIFO_EMPTY			BIT(11)
#define INT_FIFO_EMPTYING		BIT(12)
#define INT_TRANSACTION_DONE		BIT(15)
#define INT_SLAVE_EVENT			BIT(16)
154
#define INT_MASTER_HALTED		BIT(17)
155
#define INT_TIMING			BIT(18)
156
#define INT_STOP_DETECTED		BIT(19)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

#define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)

/* Level interrupts need clearing after handling instead of before */
#define INT_LEVEL			0x01e00

/* Don't allow any interrupts while the clock may be off */
#define INT_ENABLE_MASK_INACTIVE	0x00000

/* Interrupt masks for the different driver modes */

#define INT_ENABLE_MASK_RAW		INT_TIMING

#define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
					 INT_SLAVE_EVENT      | \
					 INT_ADDR_ACK_ERR     | \
					 INT_WRITE_ACK_ERR)

#define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
					 INT_ADDR_ACK_ERR     | \
					 INT_WRITE_ACK_ERR    | \
					 INT_FIFO_FULL        | \
					 INT_FIFO_FILLING     | \
180
					 INT_FIFO_EMPTY       | \
181
					 INT_MASTER_HALTED    | \
182
					 INT_STOP_DETECTED)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

#define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
					 INT_ADDR_ACK_ERR     | \
					 INT_WRITE_ACK_ERR)

/* SCB_STATUS_REG fields */

#define LINESTAT_SCLK_LINE_STATUS	BIT(0)
#define LINESTAT_SCLK_EN		BIT(1)
#define LINESTAT_SDAT_LINE_STATUS	BIT(2)
#define LINESTAT_SDAT_EN		BIT(3)
#define LINESTAT_DET_START_STATUS	BIT(4)
#define LINESTAT_DET_STOP_STATUS	BIT(5)
#define LINESTAT_DET_ACK_STATUS		BIT(6)
#define LINESTAT_DET_NACK_STATUS	BIT(7)
#define LINESTAT_BUS_IDLE		BIT(8)
#define LINESTAT_T_DONE_STATUS		BIT(9)
#define LINESTAT_SCLK_OUT_STATUS	BIT(10)
#define LINESTAT_SDAT_OUT_STATUS	BIT(11)
#define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
#define LINESTAT_START_BIT_DET		BIT(13)
#define LINESTAT_STOP_BIT_DET		BIT(14)
#define LINESTAT_ACK_DET		BIT(15)
#define LINESTAT_NACK_DET		BIT(16)
#define LINESTAT_INPUT_HELD_V		BIT(17)
#define LINESTAT_ABORT_DET		BIT(18)
#define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
#define LINESTAT_INPUT_DATA		0xff000000
#define LINESTAT_INPUT_DATA_SHIFT	24

#define LINESTAT_CLEAR_SHIFT		13
#define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)

/* SCB_OVERRIDE_REG fields */

#define OVERRIDE_SCLK_OVR		BIT(0)
#define OVERRIDE_SCLKEN_OVR		BIT(1)
#define OVERRIDE_SDAT_OVR		BIT(2)
#define OVERRIDE_SDATEN_OVR		BIT(3)
#define OVERRIDE_MASTER			BIT(9)
#define OVERRIDE_LINE_OVR_EN		BIT(10)
#define OVERRIDE_DIRECT			BIT(11)
#define OVERRIDE_CMD_SHIFT		4
#define OVERRIDE_CMD_MASK		0x1f
#define OVERRIDE_DATA_SHIFT		24

#define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
					 OVERRIDE_SCLKEN_OVR)
#define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
					 OVERRIDE_SCLKEN_OVR | \
					 OVERRIDE_SCLK_OVR)
#define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
					 OVERRIDE_SDATEN_OVR)
#define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
					 OVERRIDE_SDATEN_OVR | \
					 OVERRIDE_SDAT_OVR)

/* OVERRIDE_CMD values */

#define CMD_PAUSE			0x00
#define CMD_GEN_DATA			0x01
#define CMD_GEN_START			0x02
#define CMD_GEN_STOP			0x03
#define CMD_GEN_ACK			0x04
#define CMD_GEN_NACK			0x05
#define CMD_RET_DATA			0x08
#define CMD_RET_ACK			0x09

/* Fixed timing values */

#define TIMEOUT_TBI			0x0
#define TIMEOUT_TSL			0xffff
#define TIMEOUT_TDL			0x0

/* Transaction timeout */

#define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))

/*
 * Worst incs are 1 (innacurate) and 16*256 (irregular).
 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
 * in the middle of the valid range (0-127).
 */
#define SCB_OPT_INC		64

/* Setup the clock enable filtering for 25 ns */
#define SCB_FILT_GLITCH		25

/*
 * Bits to return from interrupt handler functions for different modes.
 * This delays completion until we've finished with the registers, so that the
 * function waiting for completion can safely disable the clock to save power.
 */
#define ISR_COMPLETE_M		BIT(31)
#define ISR_FATAL_M		BIT(30)
#define ISR_WAITSTOP		BIT(29)
#define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
#define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
#define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)

enum img_i2c_mode {
	MODE_INACTIVE,
	MODE_RAW,
	MODE_ATOMIC,
	MODE_AUTOMATIC,
	MODE_SEQUENCE,
	MODE_FATAL,
	MODE_WAITSTOP,
	MODE_SUSPEND,
};

/* Timing parameters for i2c modes (in ns) */
struct img_i2c_timings {
	const char *name;
	unsigned int max_bitrate;
	unsigned int tckh, tckl, tsdh, tsdl;
	unsigned int tp2s, tpl, tph;
};

/* The timings array must be ordered from slower to faster */
static struct img_i2c_timings timings[] = {
	/* Standard mode */
	{
		.name = "standard",
		.max_bitrate = 100000,
		.tckh = 4000,
		.tckl = 4700,
		.tsdh = 4700,
		.tsdl = 8700,
		.tp2s = 4700,
		.tpl = 4700,
		.tph = 4000,
	},
	/* Fast mode */
	{
		.name = "fast",
		.max_bitrate = 400000,
		.tckh = 600,
		.tckl = 1300,
		.tsdh = 600,
		.tsdl = 1200,
		.tp2s = 1300,
		.tpl = 600,
		.tph = 600,
	},
};

/* Reset dance */
static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
				  CMD_GEN_DATA, 0xff,
				  CMD_RET_ACK,
				  CMD_GEN_START,
				  CMD_GEN_STOP,
				  0 };
/* Just issue a stop (after an abort condition) */
static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
				  0 };

/* We're interested in different interrupts depending on the mode */
static unsigned int img_i2c_int_enable_by_mode[] = {
	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
	[MODE_FATAL]     = 0,
	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
	[MODE_SUSPEND]   = 0,
};

/* Atomic command names */
static const char * const img_i2c_atomic_cmd_names[] = {
	[CMD_PAUSE]	= "PAUSE",
	[CMD_GEN_DATA]	= "GEN_DATA",
	[CMD_GEN_START]	= "GEN_START",
	[CMD_GEN_STOP]	= "GEN_STOP",
	[CMD_GEN_ACK]	= "GEN_ACK",
	[CMD_GEN_NACK]	= "GEN_NACK",
	[CMD_RET_DATA]	= "RET_DATA",
	[CMD_RET_ACK]	= "RET_ACK",
};

struct img_i2c {
	struct i2c_adapter adap;

	void __iomem *base;

	/*
	 * The scb core clock is used to get the input frequency, and to disable
	 * it after every set of transactions to save some power.
	 */
	struct clk *scb_clk, *sys_clk;
	unsigned int bitrate;
	bool need_wr_rd_fence;

	/* state */
	struct completion msg_complete;
	spinlock_t lock;	/* lock before doing anything with the state */
	struct i2c_msg msg;

	/* After the last transaction, wait for a stop bit */
	bool last_msg;
	int msg_status;

	enum img_i2c_mode mode;
	u32 int_enable;		/* depends on mode */
	u32 line_status;	/* line status over command */

	/*
	 * To avoid slave event interrupts in automatic mode, use a timer to
	 * poll the abort condition if we don't get an interrupt for too long.
	 */
	struct timer_list check_timer;
	bool t_halt;

	/* atomic mode state */
	bool at_t_done;
	bool at_slave_event;
	int at_cur_cmd;
	u8 at_cur_data;

	/* Sequence: either reset or stop. See img_i2c_sequence. */
	u8 *seq;

	/* raw mode */
	unsigned int raw_timeout;
};

static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
{
	writel(value, i2c->base + offset);
}

static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
{
	return readl(i2c->base + offset);
}

/*
 * The code to read from the master read fifo, and write to the master
 * write fifo, checks a bit in an SCB register before every byte to
 * ensure that the fifo is not full (write fifo) or empty (read fifo).
 * Due to clock domain crossing inside the SCB block the updated value
 * of this bit is only visible after 2 cycles.
 *
 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
 * revision register), and it's called after reading from or writing to the
 * fifos to ensure that subsequent reads of the fifo status bits do not read
 * stale values.
 */
static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
{
	if (i2c->need_wr_rd_fence) {
		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
	}
}

static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
{
	i2c->mode = mode;
	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
	i2c->line_status = 0;
}

static void img_i2c_raw_op(struct img_i2c *i2c)
{
	i2c->raw_timeout = 0;
	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
		OVERRIDE_SCLKEN_OVR |
		OVERRIDE_SDATEN_OVR |
		OVERRIDE_MASTER |
		OVERRIDE_LINE_OVR_EN |
		OVERRIDE_DIRECT |
		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
}

static const char *img_i2c_atomic_op_name(unsigned int cmd)
{
	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
		return "UNKNOWN";
	return img_i2c_atomic_cmd_names[cmd];
}

/* Send a single atomic mode command to the hardware */
static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
{
	i2c->at_cur_cmd = cmd;
	i2c->at_cur_data = data;

	/* work around lack of data setup time when generating data */
	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);

		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
			/* hold the data line down for a moment */
			img_i2c_switch_mode(i2c, MODE_RAW);
			img_i2c_raw_op(i2c);
			return;
		}
	}

	dev_dbg(i2c->adap.dev.parent,
		"atomic cmd=%s (%d) data=%#x\n",
		img_i2c_atomic_op_name(cmd), cmd, data);
	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
	i2c->at_slave_event = false;
	i2c->line_status = 0;

	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
		OVERRIDE_MASTER |
		OVERRIDE_DIRECT |
		(data << OVERRIDE_DATA_SHIFT));
}

/* Start a transaction in atomic mode */
static void img_i2c_atomic_start(struct img_i2c *i2c)
{
	img_i2c_switch_mode(i2c, MODE_ATOMIC);
	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
}

static void img_i2c_soft_reset(struct img_i2c *i2c)
{
	i2c->t_halt = false;
	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
	img_i2c_writel(i2c, SCB_CONTROL_REG,
		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
}

516 517 518 519 520 521 522 523 524 525 526
/*
 * Enable or release transaction halt for control of repeated starts.
 * In version 3.3 of the IP when transaction halt is set, an interrupt
 * will be generated after each byte of a transfer instead of after
 * every transfer but before the stop bit.
 * Due to this behaviour we have to be careful that every time we
 * release the transaction halt we have to re-enable it straight away
 * so that we only process a single byte, not doing so will result in
 * all remaining bytes been processed and a stop bit being issued,
 * which will prevent us having a repeated start.
 */
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
{
	u32 val;

	if (i2c->t_halt == t_halt)
		return;
	i2c->t_halt = t_halt;
	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
	if (t_halt)
		val |= SCB_CONTROL_TRANSACTION_HALT;
	else
		val &= ~SCB_CONTROL_TRANSACTION_HALT;
	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
}

/* Drain data from the FIFO into the buffer (automatic mode) */
static void img_i2c_read_fifo(struct img_i2c *i2c)
{
	while (i2c->msg.len) {
		u32 fifo_status;
		u8 data;

549
		img_i2c_wr_rd_fence(i2c);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
		if (fifo_status & FIFO_READ_EMPTY)
			break;

		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
		*i2c->msg.buf = data;

		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
		i2c->msg.len--;
		i2c->msg.buf++;
	}
}

/* Fill the FIFO with data from the buffer (automatic mode) */
static void img_i2c_write_fifo(struct img_i2c *i2c)
{
	while (i2c->msg.len) {
		u32 fifo_status;

569
		img_i2c_wr_rd_fence(i2c);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
		if (fifo_status & FIFO_WRITE_FULL)
			break;

		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
		i2c->msg.len--;
		i2c->msg.buf++;
	}

	/* Disable fifo emptying interrupt if nothing more to write */
	if (!i2c->msg.len)
		i2c->int_enable &= ~INT_FIFO_EMPTYING;
}

/* Start a read transaction in automatic mode */
static void img_i2c_read(struct img_i2c *i2c)
{
	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
	if (!i2c->last_msg)
		i2c->int_enable |= INT_SLAVE_EVENT;

	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);

	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
}

/* Start a write transaction in automatic mode */
static void img_i2c_write(struct img_i2c *i2c)
{
	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
	if (!i2c->last_msg)
		i2c->int_enable |= INT_SLAVE_EVENT;

	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);

	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
	img_i2c_write_fifo(i2c);

	/* img_i2c_write_fifo() may modify int_enable */
	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
}

/*
 * Indicate that the transaction is complete. This is called from the
 * ISR to wake up the waiting thread, after which the ISR must not
 * access any more SCB registers.
 */
static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
{
	img_i2c_switch_mode(i2c, MODE_INACTIVE);
	if (status) {
		i2c->msg_status = status;
		img_i2c_transaction_halt(i2c, false);
	}
	complete(&i2c->msg_complete);
}

static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
					u32 int_status, u32 line_status)
{
	/* Stay in raw mode for this, so we don't just loop infinitely */
	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
	img_i2c_switch_mode(i2c, MODE_ATOMIC);
	return 0;
}

static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
				u32 line_status)
{
	if (int_status & INT_TIMING) {
		if (i2c->raw_timeout == 0)
			return img_i2c_raw_atomic_delay_handler(i2c,
				int_status, line_status);
		--i2c->raw_timeout;
	}
	return 0;
}

static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
{
	static const unsigned int continue_bits[] = {
		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
	};
	int next_cmd = -1;
	u8 next_data = 0x00;

	if (int_status & INT_SLAVE_EVENT)
		i2c->at_slave_event = true;
	if (int_status & INT_TRANSACTION_DONE)
		i2c->at_t_done = true;

	if (!i2c->at_slave_event || !i2c->at_t_done)
		return 0;

	/* wait if no continue bits are set */
	if (i2c->at_cur_cmd >= 0 &&
	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];

		if (cont_bits) {
			cont_bits |= LINESTAT_ABORT_DET;
			if (!(i2c->line_status & cont_bits))
				return 0;
		}
	}

	/* follow the sequence of commands in i2c->seq */
	next_cmd = *i2c->seq;
	/* stop on a nil */
	if (!next_cmd) {
		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
		return ISR_COMPLETE(0);
	}
	/* when generating data, the next byte is the data */
	if (next_cmd == CMD_GEN_DATA) {
		++i2c->seq;
		next_data = *i2c->seq;
	}
	++i2c->seq;
	img_i2c_atomic_op(i2c, next_cmd, next_data);

	return 0;
}

static void img_i2c_reset_start(struct img_i2c *i2c)
{
	/* Initiate the magic dance */
	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
	i2c->seq = img_i2c_reset_seq;
	i2c->at_slave_event = true;
	i2c->at_t_done = true;
	i2c->at_cur_cmd = -1;

	/* img_i2c_reset_seq isn't empty so the following won't fail */
	img_i2c_sequence(i2c, 0);
}

static void img_i2c_stop_start(struct img_i2c *i2c)
{
	/* Initiate a stop bit sequence */
	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
	i2c->seq = img_i2c_stop_seq;
	i2c->at_slave_event = true;
	i2c->at_t_done = true;
	i2c->at_cur_cmd = -1;

	/* img_i2c_stop_seq isn't empty so the following won't fail */
	img_i2c_sequence(i2c, 0);
}

static unsigned int img_i2c_atomic(struct img_i2c *i2c,
				   u32 int_status,
				   u32 line_status)
{
	int next_cmd = -1;
	u8 next_data = 0x00;

	if (int_status & INT_SLAVE_EVENT)
		i2c->at_slave_event = true;
	if (int_status & INT_TRANSACTION_DONE)
		i2c->at_t_done = true;

	if (!i2c->at_slave_event || !i2c->at_t_done)
		goto next_atomic_cmd;
	if (i2c->line_status & LINESTAT_ABORT_DET) {
		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
		next_cmd = CMD_GEN_STOP;
		i2c->msg_status = -EIO;
		goto next_atomic_cmd;
	}

	/* i2c->at_cur_cmd may have completed */
	switch (i2c->at_cur_cmd) {
	case CMD_GEN_START:
		next_cmd = CMD_GEN_DATA;
754
		next_data = i2c_8bit_addr_from_msg(&i2c->msg);
755 756 757 758 759 760
		break;
	case CMD_GEN_DATA:
		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
			next_cmd = CMD_RET_ACK;
		break;
	case CMD_RET_ACK:
761 762 763
		if (i2c->line_status & LINESTAT_ACK_DET ||
		    (i2c->line_status & LINESTAT_NACK_DET &&
		    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
			if (i2c->msg.len == 0) {
				next_cmd = CMD_GEN_STOP;
			} else if (i2c->msg.flags & I2C_M_RD) {
				next_cmd = CMD_RET_DATA;
			} else {
				next_cmd = CMD_GEN_DATA;
				next_data = *i2c->msg.buf;
				--i2c->msg.len;
				++i2c->msg.buf;
			}
		} else if (i2c->line_status & LINESTAT_NACK_DET) {
			i2c->msg_status = -EIO;
			next_cmd = CMD_GEN_STOP;
		}
		break;
	case CMD_RET_DATA:
		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
			*i2c->msg.buf = (i2c->line_status &
						LINESTAT_INPUT_DATA)
					>> LINESTAT_INPUT_DATA_SHIFT;
			--i2c->msg.len;
			++i2c->msg.buf;
			if (i2c->msg.len)
				next_cmd = CMD_GEN_ACK;
			else
				next_cmd = CMD_GEN_NACK;
		}
		break;
	case CMD_GEN_ACK:
		if (i2c->line_status & LINESTAT_ACK_DET) {
			next_cmd = CMD_RET_DATA;
		} else {
			i2c->msg_status = -EIO;
			next_cmd = CMD_GEN_STOP;
		}
		break;
	case CMD_GEN_NACK:
		next_cmd = CMD_GEN_STOP;
		break;
	case CMD_GEN_STOP:
		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
		return ISR_COMPLETE(0);
	default:
		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
			i2c->at_cur_cmd);
		i2c->msg_status = -EIO;
		next_cmd = CMD_GEN_STOP;
		break;
	}

next_atomic_cmd:
	if (next_cmd != -1) {
		/* don't actually stop unless we're the last transaction */
		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
						!i2c->last_msg)
			return ISR_COMPLETE(0);
		img_i2c_atomic_op(i2c, next_cmd, next_data);
	}
	return 0;
}

/*
 * Timer function to check if something has gone wrong in automatic mode (so we
 * don't have to handle so many interrupts just to catch an exception).
 */
static void img_i2c_check_timer(unsigned long arg)
{
	struct img_i2c *i2c = (struct img_i2c *)arg;
	unsigned long flags;
	unsigned int line_status;

	spin_lock_irqsave(&i2c->lock, flags);
	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);

	/* check for an abort condition */
	if (line_status & LINESTAT_ABORT_DET) {
		dev_dbg(i2c->adap.dev.parent,
			"abort condition detected by check timer\n");
		/* enable slave event interrupt mask to trigger irq */
		img_i2c_writel(i2c, SCB_INT_MASK_REG,
			       i2c->int_enable | INT_SLAVE_EVENT);
	}

	spin_unlock_irqrestore(&i2c->lock, flags);
}

static unsigned int img_i2c_auto(struct img_i2c *i2c,
				 unsigned int int_status,
				 unsigned int line_status)
{
	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
		return ISR_COMPLETE(EIO);

	if (line_status & LINESTAT_ABORT_DET) {
		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
		/* empty the read fifo */
		if ((i2c->msg.flags & I2C_M_RD) &&
		    (int_status & INT_FIFO_FULL_FILLING))
			img_i2c_read_fifo(i2c);
		/* use atomic mode and try to force a stop bit */
		i2c->msg_status = -EIO;
		img_i2c_stop_start(i2c);
		return 0;
	}

	/* Enable transaction halt on start bit */
870
	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
871
		img_i2c_transaction_halt(i2c, !i2c->last_msg);
872 873 874 875 876 877
		/* we're no longer interested in the slave event */
		i2c->int_enable &= ~INT_SLAVE_EVENT;
	}

	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));

878 879 880 881 882 883 884
	if (int_status & INT_STOP_DETECTED) {
		/* Drain remaining data in FIFO and complete transaction */
		if (i2c->msg.flags & I2C_M_RD)
			img_i2c_read_fifo(i2c);
		return ISR_COMPLETE(0);
	}

885
	if (i2c->msg.flags & I2C_M_RD) {
886
		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
887 888 889 890 891
			img_i2c_read_fifo(i2c);
			if (i2c->msg.len == 0)
				return ISR_WAITSTOP;
		}
	} else {
892 893 894
		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
			if ((int_status & INT_FIFO_EMPTY) &&
			    i2c->msg.len == 0)
895 896 897 898
				return ISR_WAITSTOP;
			img_i2c_write_fifo(i2c);
		}
	}
899 900 901 902 903 904 905 906
	if (int_status & INT_MASTER_HALTED) {
		/*
		 * Release and then enable transaction halt, to
		 * allow only a single byte to proceed.
		 */
		img_i2c_transaction_halt(i2c, false);
		img_i2c_transaction_halt(i2c, !i2c->last_msg);
	}
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	return 0;
}

static irqreturn_t img_i2c_isr(int irq, void *dev_id)
{
	struct img_i2c *i2c = (struct img_i2c *)dev_id;
	u32 int_status, line_status;
	/* We handle transaction completion AFTER accessing registers */
	unsigned int hret;

	/* Read interrupt status register. */
	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
	/* Clear detected interrupts. */
	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);

	/*
	 * Read line status and clear it until it actually is clear.  We have
	 * to be careful not to lose any line status bits that get latched.
	 */
	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
	if (line_status & LINESTAT_LATCHED) {
		img_i2c_writel(i2c, SCB_CLEAR_REG,
			      (line_status & LINESTAT_LATCHED)
				>> LINESTAT_CLEAR_SHIFT);
		img_i2c_wr_rd_fence(i2c);
	}

	spin_lock(&i2c->lock);

	/* Keep track of line status bits received */
	i2c->line_status &= ~LINESTAT_INPUT_DATA;
	i2c->line_status |= line_status;

	/*
	 * Certain interrupts indicate that sclk low timeout is not
	 * a problem. If any of these are set, just continue.
	 */
	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
	    !(int_status & (INT_SLAVE_EVENT |
			    INT_FIFO_EMPTY |
			    INT_FIFO_FULL))) {
		dev_crit(i2c->adap.dev.parent,
			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
			 i2c->msg.addr);
		hret = ISR_FATAL(EIO);
		goto out;
	}

	if (i2c->mode == MODE_ATOMIC)
		hret = img_i2c_atomic(i2c, int_status, line_status);
	else if (i2c->mode == MODE_AUTOMATIC)
		hret = img_i2c_auto(i2c, int_status, line_status);
	else if (i2c->mode == MODE_SEQUENCE)
		hret = img_i2c_sequence(i2c, int_status);
	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
			 (line_status & LINESTAT_STOP_BIT_DET))
		hret = ISR_COMPLETE(0);
	else if (i2c->mode == MODE_RAW)
		hret = img_i2c_raw(i2c, int_status, line_status);
	else
		hret = 0;

	/* Clear detected level interrupts. */
	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);

out:
	if (hret & ISR_WAITSTOP) {
		/*
		 * Only wait for stop on last message.
		 * Also we may already have detected the stop bit.
		 */
		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
			hret = ISR_COMPLETE(0);
		else
			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
	}

	/* now we've finished using regs, handle transaction completion */
	if (hret & ISR_COMPLETE_M) {
		int status = -(hret & ISR_STATUS_M);

		img_i2c_complete_transaction(i2c, status);
		if (hret & ISR_FATAL_M)
			img_i2c_switch_mode(i2c, MODE_FATAL);
	}

	/* Enable interrupts (int_enable may be altered by changing mode) */
	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);

	spin_unlock(&i2c->lock);

	return IRQ_HANDLED;
}

/* Force a bus reset sequence and wait for it to complete */
static int img_i2c_reset_bus(struct img_i2c *i2c)
{
	unsigned long flags;
1007
	unsigned long time_left;
1008 1009 1010 1011 1012 1013

	spin_lock_irqsave(&i2c->lock, flags);
	reinit_completion(&i2c->msg_complete);
	img_i2c_reset_start(i2c);
	spin_unlock_irqrestore(&i2c->lock, flags);

1014 1015 1016
	time_left = wait_for_completion_timeout(&i2c->msg_complete,
					      IMG_I2C_TIMEOUT);
	if (time_left == 0)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		return -ETIMEDOUT;
	return 0;
}

static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
			int num)
{
	struct img_i2c *i2c = i2c_get_adapdata(adap);
	bool atomic = false;
	int i, ret;
1027
	unsigned long time_left;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	if (i2c->mode == MODE_SUSPEND) {
		WARN(1, "refusing to service transaction in suspended state\n");
		return -EIO;
	}

	if (i2c->mode == MODE_FATAL)
		return -EIO;

	for (i = 0; i < num; i++) {
		/*
		 * 0 byte reads are not possible because the slave could try
		 * and pull the data line low, preventing a stop bit.
		 */
1042
		if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1043 1044 1045 1046 1047
			return -EIO;
		/*
		 * 0 byte writes are possible and used for probing, but we
		 * cannot do them in automatic mode, so use atomic mode
		 * instead.
1048 1049 1050
		 *
		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
		 * in atomic mode.
1051
		 */
1052 1053 1054
		if (!msgs[i].len ||
		    (msgs[i].flags & I2C_M_IGNORE_NAK))
			atomic = true;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	}

	ret = clk_prepare_enable(i2c->scb_clk);
	if (ret)
		return ret;

	for (i = 0; i < num; i++) {
		struct i2c_msg *msg = &msgs[i];
		unsigned long flags;

		spin_lock_irqsave(&i2c->lock, flags);

		/*
		 * Make a copy of the message struct. We mustn't modify the
		 * original or we'll confuse drivers and i2c-dev.
		 */
		i2c->msg = *msg;
		i2c->msg_status = 0;

		/*
		 * After the last message we must have waited for a stop bit.
		 * Not waiting can cause problems when the clock is disabled
		 * before the stop bit is sent, and the linux I2C interface
		 * requires separate transfers not to joined with repeated
		 * start.
		 */
		i2c->last_msg = (i == num - 1);
		reinit_completion(&i2c->msg_complete);

1084 1085 1086 1087 1088 1089 1090 1091 1092
		/*
		 * Clear line status and all interrupts before starting a
		 * transfer, as we may have unserviced interrupts from
		 * previous transfers that might be handled in the context
		 * of the new transfer.
		 */
		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);

1093
		if (atomic) {
1094
			img_i2c_atomic_start(i2c);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		} else {
			/*
			 * Enable transaction halt if not the last message in
			 * the queue so that we can control repeated starts.
			 */
			img_i2c_transaction_halt(i2c, !i2c->last_msg);

			if (msg->flags & I2C_M_RD)
				img_i2c_read(i2c);
			else
				img_i2c_write(i2c);

			/*
			 * Release and then enable transaction halt, to
			 * allow only a single byte to proceed.
			 * This doesn't have an effect on the initial transfer
			 * but will allow the following transfers to start
			 * processing if the previous transfer was marked as
			 * complete while the i2c block was halted.
			 */
			img_i2c_transaction_halt(i2c, false);
			img_i2c_transaction_halt(i2c, !i2c->last_msg);
		}
1118 1119
		spin_unlock_irqrestore(&i2c->lock, flags);

1120 1121
		time_left = wait_for_completion_timeout(&i2c->msg_complete,
						      IMG_I2C_TIMEOUT);
1122 1123
		del_timer_sync(&i2c->check_timer);

1124
		if (time_left == 0) {
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			dev_err(adap->dev.parent, "i2c transfer timed out\n");
			i2c->msg_status = -ETIMEDOUT;
			break;
		}

		if (i2c->msg_status)
			break;
	}

	clk_disable_unprepare(i2c->scb_clk);

	return i2c->msg_status ? i2c->msg_status : num;
}

static u32 img_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm img_i2c_algo = {
	.master_xfer = img_i2c_xfer,
	.functionality = img_i2c_func,
};

static int img_i2c_init(struct img_i2c *i2c)
{
	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
	unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
	struct img_i2c_timings timing;
	u32 rev;

	ret = clk_prepare_enable(i2c->scb_clk);
	if (ret)
		return ret;

	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
	if ((rev & 0x00ffffff) < 0x00020200) {
		dev_info(i2c->adap.dev.parent,
			 "Unknown hardware revision (%d.%d.%d.%d)\n",
			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
			 (rev >> 8) & 0xff, rev & 0xff);
		clk_disable_unprepare(i2c->scb_clk);
		return -EINVAL;
	}

1170 1171
	/* Fencing enabled by default. */
	i2c->need_wr_rd_fence = true;
1172 1173 1174 1175 1176 1177 1178 1179 1180

	/* Determine what mode we're in from the bitrate */
	timing = timings[0];
	for (i = 0; i < ARRAY_SIZE(timings); i++) {
		if (i2c->bitrate <= timings[i].max_bitrate) {
			timing = timings[i];
			break;
		}
	}
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
		dev_warn(i2c->adap.dev.parent,
			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
			 i2c->bitrate,
			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
		timing = timings[ARRAY_SIZE(timings) - 1];
		i2c->bitrate = timing.max_bitrate;
	}

	bitrate_khz = i2c->bitrate / 1000;
	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	/* Find the prescale that would give us that inc (approx delay = 0) */
	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
	prescale = clamp_t(unsigned int, prescale, 1, 8);
	clk_khz /= prescale;

	/* Setup the clock increment value */
	inc = (256 * 16 * bitrate_khz) / clk_khz;

	/*
	 * The clock generation logic allows to filter glitches on the bus.
	 * This filter is able to remove bus glitches shorter than 50ns.
	 * If the clock enable rate is greater than 20 MHz, no filtering
	 * is required, so we need to disable it.
	 * If it's between the 20-40 MHz range, there's no need to divide
	 * the clock to get a filter.
	 */
	if (clk_khz < 20000) {
		filt = SCB_FILT_DISABLE;
	} else if (clk_khz < 40000) {
		filt = SCB_FILT_BYPASS;
	} else {
		/* Calculate filter clock */
		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));

		/* Scale up if needed */
		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
			inc++;

		if (filt > SCB_FILT_INC_MASK)
			filt = SCB_FILT_INC_MASK;

		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
	}
	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);

	/* Obtain the clock period of the fx16 clock in ns */
	clk_period = (256 * 1000000) / (clk_khz * inc);

	/* Calculate the bitrate in terms of internal clock pulses */
	int_bitrate = 1000000 / (bitrate_khz * clk_period);
	if ((1000000 % (bitrate_khz * clk_period)) >=
	    ((bitrate_khz * clk_period) / 2))
		int_bitrate++;

1238 1239 1240 1241 1242 1243
	/*
	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
	 * values from there if they don't meet minimum timing requirements
	 */
	tckh = int_bitrate / 2;
	tckl = int_bitrate - tckh;
1244

1245 1246
	/* Adjust TCKH and TCKL values */
	data = DIV_ROUND_UP(timing.tckl, clk_period);
1247

1248 1249 1250 1251
	if (tckl < data) {
		tckl = data;
		tckh = int_bitrate - tckl;
	}
1252

1253 1254
	if (tckh > 0)
		--tckh;
1255 1256

	if (tckl > 0)
1257
		--tckl;
1258

1259 1260
	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1261 1262

	/* Setup TSDH value */
1263
	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

	if (tsdh > 1)
		data = tsdh - 1;
	else
		data = 0x01;
	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);

	/* This value is used later */
	tsdh = data;

	/* Setup TPL value */
	data = timing.tpl / clk_period;
	if (data > 0)
		--data;
	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);

	/* Setup TPH value */
	data = timing.tph / clk_period;
	if (data > 0)
		--data;
	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);

	/* Setup TSDL value to TPL + TSDH + 2 */
	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);

	/* Setup TP2S value */
	data = timing.tp2s / clk_period;
	if (data > 0)
		--data;
	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);

	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);

	/* Take module out of soft reset and enable clocks */
	img_i2c_soft_reset(i2c);

	/* Disable all interrupts */
	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);

	/* Clear all interrupts */
	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);

	/* Clear the scb_line_status events */
	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);

	/* Enable interrupts */
	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);

	/* Perform a synchronous sequence to reset the bus */
	ret = img_i2c_reset_bus(i2c);

	clk_disable_unprepare(i2c->scb_clk);

	return ret;
}

static int img_i2c_probe(struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct img_i2c *i2c;
	struct resource *res;
	int irq, ret;
	u32 val;

	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i2c->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(i2c->base))
		return PTR_ERR(i2c->base);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "can't get irq number\n");
		return irq;
	}

	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
	if (IS_ERR(i2c->sys_clk)) {
		dev_err(&pdev->dev, "can't get system clock\n");
		return PTR_ERR(i2c->sys_clk);
	}

	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
	if (IS_ERR(i2c->scb_clk)) {
		dev_err(&pdev->dev, "can't get core clock\n");
		return PTR_ERR(i2c->scb_clk);
	}

	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
			       pdev->name, i2c);
	if (ret) {
		dev_err(&pdev->dev, "can't request irq %d\n", irq);
		return ret;
	}

	/* Set up the exception check timer */
	init_timer(&i2c->check_timer);
	i2c->check_timer.function = img_i2c_check_timer;
	i2c->check_timer.data = (unsigned long)i2c;

	i2c->bitrate = timings[0].max_bitrate;
	if (!of_property_read_u32(node, "clock-frequency", &val))
		i2c->bitrate = val;

	i2c_set_adapdata(&i2c->adap, i2c);
	i2c->adap.dev.parent = &pdev->dev;
	i2c->adap.dev.of_node = node;
	i2c->adap.owner = THIS_MODULE;
	i2c->adap.algo = &img_i2c_algo;
	i2c->adap.retries = 5;
	i2c->adap.nr = pdev->id;
	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");

	img_i2c_switch_mode(i2c, MODE_INACTIVE);
	spin_lock_init(&i2c->lock);
	init_completion(&i2c->msg_complete);

	platform_set_drvdata(pdev, i2c);

	ret = clk_prepare_enable(i2c->sys_clk);
	if (ret)
		return ret;

	ret = img_i2c_init(i2c);
	if (ret)
		goto disable_clk;

	ret = i2c_add_numbered_adapter(&i2c->adap);
1397
	if (ret < 0)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		goto disable_clk;

	return 0;

disable_clk:
	clk_disable_unprepare(i2c->sys_clk);
	return ret;
}

static int img_i2c_remove(struct platform_device *dev)
{
	struct img_i2c *i2c = platform_get_drvdata(dev);

	i2c_del_adapter(&i2c->adap);
	clk_disable_unprepare(i2c->sys_clk);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int img_i2c_suspend(struct device *dev)
{
	struct img_i2c *i2c = dev_get_drvdata(dev);

	img_i2c_switch_mode(i2c, MODE_SUSPEND);

	clk_disable_unprepare(i2c->sys_clk);

	return 0;
}

static int img_i2c_resume(struct device *dev)
{
	struct img_i2c *i2c = dev_get_drvdata(dev);
	int ret;

	ret = clk_prepare_enable(i2c->sys_clk);
	if (ret)
		return ret;

	img_i2c_init(i2c);

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);

static const struct of_device_id img_scb_i2c_match[] = {
	{ .compatible = "img,scb-i2c" },
	{ }
};
MODULE_DEVICE_TABLE(of, img_scb_i2c_match);

static struct platform_driver img_scb_i2c_driver = {
	.driver = {
		.name		= "img-i2c-scb",
		.of_match_table	= img_scb_i2c_match,
		.pm		= &img_i2c_pm,
	},
	.probe = img_i2c_probe,
	.remove = img_i2c_remove,
};
module_platform_driver(img_scb_i2c_driver);

MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
MODULE_DESCRIPTION("IMG host I2C driver");
MODULE_LICENSE("GPL v2");