vmstat.c 52.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7 8 9 10
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
11
 *  Copyright (C) 2008-2014 Christoph Lameter
12
 */
13
#include <linux/fs.h>
14
#include <linux/mm.h>
A
Alexey Dobriyan 已提交
15
#include <linux/err.h>
16
#include <linux/module.h>
17
#include <linux/slab.h>
18
#include <linux/cpu.h>
19
#include <linux/cpumask.h>
A
Adrian Bunk 已提交
20
#include <linux/vmstat.h>
A
Andrew Morton 已提交
21 22 23
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
A
Alexey Dobriyan 已提交
24
#include <linux/sched.h>
25
#include <linux/math64.h>
26
#include <linux/writeback.h>
27
#include <linux/compaction.h>
28
#include <linux/mm_inline.h>
29 30
#include <linux/page_ext.h>
#include <linux/page_owner.h>
31 32

#include "internal.h"
33

34 35
#define NUMA_STATS_THRESHOLD (U16_MAX - 2)

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#ifdef CONFIG_NUMA
int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;

/* zero numa counters within a zone */
static void zero_zone_numa_counters(struct zone *zone)
{
	int item, cpu;

	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
		atomic_long_set(&zone->vm_numa_stat[item], 0);
		for_each_online_cpu(cpu)
			per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
						= 0;
	}
}

/* zero numa counters of all the populated zones */
static void zero_zones_numa_counters(void)
{
	struct zone *zone;

	for_each_populated_zone(zone)
		zero_zone_numa_counters(zone);
}

/* zero global numa counters */
static void zero_global_numa_counters(void)
{
	int item;

	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
		atomic_long_set(&vm_numa_stat[item], 0);
}

static void invalid_numa_statistics(void)
{
	zero_zones_numa_counters();
	zero_global_numa_counters();
}

static DEFINE_MUTEX(vm_numa_stat_lock);

int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79
		void *buffer, size_t *length, loff_t *ppos)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
{
	int ret, oldval;

	mutex_lock(&vm_numa_stat_lock);
	if (write)
		oldval = sysctl_vm_numa_stat;
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (ret || !write)
		goto out;

	if (oldval == sysctl_vm_numa_stat)
		goto out;
	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
		static_branch_enable(&vm_numa_stat_key);
		pr_info("enable numa statistics\n");
	} else {
		static_branch_disable(&vm_numa_stat_key);
		invalid_numa_statistics();
		pr_info("disable numa statistics, and clear numa counters\n");
	}

out:
	mutex_unlock(&vm_numa_stat_lock);
	return ret;
}
#endif

107 108 109 110
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

111
static void sum_vm_events(unsigned long *ret)
112
{
C
Christoph Lameter 已提交
113
	int cpu;
114 115 116 117
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

118
	for_each_online_cpu(cpu) {
119 120 121 122 123 124 125 126 127 128 129 130 131 132
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
K
KOSAKI Motohiro 已提交
133
	get_online_cpus();
134
	sum_vm_events(ret);
K
KOSAKI Motohiro 已提交
135
	put_online_cpus();
136
}
137
EXPORT_SYMBOL_GPL(all_vm_events);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}

#endif /* CONFIG_VM_EVENT_COUNTERS */

158 159 160 161 162
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
163
atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164
atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 166
atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
EXPORT_SYMBOL(vm_zone_stat);
167
EXPORT_SYMBOL(vm_numa_stat);
168
EXPORT_SYMBOL(vm_node_stat);
169 170 171

#ifdef CONFIG_SMP

172
int calculate_pressure_threshold(struct zone *zone)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

196
int calculate_normal_threshold(struct zone *zone)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

231
	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232 233 234 235 236 237 238 239 240 241

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
242 243

/*
244
 * Refresh the thresholds for each zone.
245
 */
246
void refresh_zone_stat_thresholds(void)
247
{
248
	struct pglist_data *pgdat;
249 250 251 252
	struct zone *zone;
	int cpu;
	int threshold;

253 254 255 256 257 258 259
	/* Zero current pgdat thresholds */
	for_each_online_pgdat(pgdat) {
		for_each_online_cpu(cpu) {
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
		}
	}

260
	for_each_populated_zone(zone) {
261
		struct pglist_data *pgdat = zone->zone_pgdat;
262 263
		unsigned long max_drift, tolerate_drift;

264
		threshold = calculate_normal_threshold(zone);
265

266 267 268
		for_each_online_cpu(cpu) {
			int pgdat_threshold;

269 270
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
271

272 273 274 275 276 277
			/* Base nodestat threshold on the largest populated zone. */
			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
				= max(threshold, pgdat_threshold);
		}

278 279 280 281 282 283 284 285 286 287
		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
288
	}
289 290
}

291 292
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
293 294 295 296 297 298 299 300 301 302 303
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

304
		threshold = (*calculate_pressure)(zone);
305
		for_each_online_cpu(cpu)
306 307 308 309 310
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

311
/*
312 313 314
 * For use when we know that interrupts are disabled,
 * or when we know that preemption is disabled and that
 * particular counter cannot be updated from interrupt context.
315 316
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317
			   long delta)
318
{
319 320
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
321
	long x;
322 323 324
	long t;

	x = delta + __this_cpu_read(*p);
325

326
	t = __this_cpu_read(pcp->stat_threshold);
327

328
	if (unlikely(x > t || x < -t)) {
329 330 331
		zone_page_state_add(x, zone, item);
		x = 0;
	}
332
	__this_cpu_write(*p, x);
333 334 335
}
EXPORT_SYMBOL(__mod_zone_page_state);

336 337 338 339 340 341 342 343
void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
				long delta)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long x;
	long t;

344 345 346 347 348
	if (vmstat_item_in_bytes(item)) {
		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
		delta >>= PAGE_SHIFT;
	}

349 350 351 352 353 354 355 356 357 358 359 360
	x = delta + __this_cpu_read(*p);

	t = __this_cpu_read(pcp->stat_threshold);

	if (unlikely(x > t || x < -t)) {
		node_page_state_add(x, pgdat, item);
		x = 0;
	}
	__this_cpu_write(*p, x);
}
EXPORT_SYMBOL(__mod_node_page_state);

361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
374 375 376
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
377 378 379 380 381 382 383
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
384
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
385
{
386 387 388
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
389

390
	v = __this_cpu_inc_return(*p);
391 392 393
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
394

395 396
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
397 398
	}
}
399

400 401 402 403 404 405
void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

406 407
	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));

408 409 410 411 412 413 414 415 416 417
	v = __this_cpu_inc_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v + overstep, pgdat, item);
		__this_cpu_write(*p, -overstep);
	}
}

418 419 420 421
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
422 423
EXPORT_SYMBOL(__inc_zone_page_state);

424 425 426 427 428 429
void __inc_node_page_state(struct page *page, enum node_stat_item item)
{
	__inc_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__inc_node_page_state);

430
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
431
{
432 433 434
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
435

436
	v = __this_cpu_dec_return(*p);
437 438 439
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
440

441 442
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
443 444
	}
}
445

446 447 448 449 450 451
void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

452 453
	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));

454 455 456 457 458 459 460 461 462 463
	v = __this_cpu_dec_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v - overstep, pgdat, item);
		__this_cpu_write(*p, overstep);
	}
}

464 465 466 467
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
468 469
EXPORT_SYMBOL(__dec_zone_page_state);

470 471 472 473 474 475
void __dec_node_page_state(struct page *page, enum node_stat_item item)
{
	__dec_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__dec_node_page_state);

476
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
477 478 479 480 481 482 483 484 485 486 487 488
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
489 490
static inline void mod_zone_state(struct zone *zone,
       enum zone_stat_item item, long delta, int overstep_mode)
491 492 493 494 495 496 497 498 499 500 501
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
502 503 504 505 506 507
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
528
			 long delta)
529
{
530
	mod_zone_state(zone, item, delta, 0);
531 532 533 534 535
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
536
	mod_zone_state(page_zone(page), item, 1, 1);
537 538 539 540 541
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
542
	mod_zone_state(page_zone(page), item, -1, -1);
543 544
}
EXPORT_SYMBOL(dec_zone_page_state);
545 546 547 548 549 550 551 552

static inline void mod_node_state(struct pglist_data *pgdat,
       enum node_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long o, n, t, z;

553 554 555 556 557
	if (vmstat_item_in_bytes(item)) {
		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
		delta >>= PAGE_SHIFT;
	}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	do {
		z = 0;  /* overflow to node counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a node.
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to node counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		node_page_state_add(z, pgdat, item);
}

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	mod_node_state(pgdat, item, delta, 0);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	mod_node_state(pgdat, item, 1, 1);
}

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_node_page_state);
612 613 614 615 616
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
617
			 long delta)
618 619 620 621 622 623 624 625 626
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

627 628 629 630 631 632 633
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
634
	__inc_zone_state(zone, item);
635 636 637 638 639 640 641 642 643
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
644
	__dec_zone_page_state(page, item);
645 646 647 648
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_state);

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_node_page_state(pgdat, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;
	struct pglist_data *pgdat;

	pgdat = page_pgdat(page);
	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__dec_node_page_state(page, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_node_page_state);
#endif
692 693 694 695 696

/*
 * Fold a differential into the global counters.
 * Returns the number of counters updated.
 */
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
#ifdef CONFIG_NUMA
static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
{
	int i;
	int changes = 0;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (zone_diff[i]) {
			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
		if (numa_diff[i]) {
			atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		if (node_diff[i]) {
			atomic_long_add(node_diff[i], &vm_node_stat[i]);
			changes++;
	}
	return changes;
}
#else
723
static int fold_diff(int *zone_diff, int *node_diff)
C
Christoph Lameter 已提交
724 725
{
	int i;
726
	int changes = 0;
C
Christoph Lameter 已提交
727 728

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
729 730 731 732 733 734 735 736
		if (zone_diff[i]) {
			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		if (node_diff[i]) {
			atomic_long_add(node_diff[i], &vm_node_stat[i]);
737 738 739
			changes++;
	}
	return changes;
C
Christoph Lameter 已提交
740
}
741
#endif /* CONFIG_NUMA */
C
Christoph Lameter 已提交
742

743
/*
744
 * Update the zone counters for the current cpu.
745
 *
746 747 748 749 750 751 752 753 754 755
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
756 757
 *
 * The function returns the number of global counters updated.
758
 */
759
static int refresh_cpu_vm_stats(bool do_pagesets)
760
{
761
	struct pglist_data *pgdat;
762 763
	struct zone *zone;
	int i;
764
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
765 766 767
#ifdef CONFIG_NUMA
	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
#endif
768
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
769
	int changes = 0;
770

771
	for_each_populated_zone(zone) {
772
		struct per_cpu_pageset __percpu *p = zone->pageset;
773

774 775
		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
			int v;
776

777 778
			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
			if (v) {
779 780

				atomic_long_add(v, &zone->vm_stat[i]);
781
				global_zone_diff[i] += v;
782 783
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
784
				__this_cpu_write(p->expire, 3);
785
#endif
786
			}
787
		}
788
#ifdef CONFIG_NUMA
789 790 791 792 793 794 795 796 797 798 799 800
		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
			int v;

			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
			if (v) {

				atomic_long_add(v, &zone->vm_numa_stat[i]);
				global_numa_diff[i] += v;
				__this_cpu_write(p->expire, 3);
			}
		}

801 802 803 804 805 806 807 808 809 810
		if (do_pagesets) {
			cond_resched();
			/*
			 * Deal with draining the remote pageset of this
			 * processor
			 *
			 * Check if there are pages remaining in this pageset
			 * if not then there is nothing to expire.
			 */
			if (!__this_cpu_read(p->expire) ||
811
			       !__this_cpu_read(p->pcp.count))
812
				continue;
813

814 815 816 817 818 819 820
			/*
			 * We never drain zones local to this processor.
			 */
			if (zone_to_nid(zone) == numa_node_id()) {
				__this_cpu_write(p->expire, 0);
				continue;
			}
821

822 823
			if (__this_cpu_dec_return(p->expire))
				continue;
824

825 826 827 828
			if (__this_cpu_read(p->pcp.count)) {
				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
				changes++;
			}
829
		}
830
#endif
831
	}
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			int v;

			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
			if (v) {
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
		}
	}

847 848 849 850
#ifdef CONFIG_NUMA
	changes += fold_diff(global_zone_diff, global_numa_diff,
			     global_node_diff);
#else
851
	changes += fold_diff(global_zone_diff, global_node_diff);
852
#endif
853
	return changes;
854 855
}

856 857 858 859 860 861 862
/*
 * Fold the data for an offline cpu into the global array.
 * There cannot be any access by the offline cpu and therefore
 * synchronization is simplified.
 */
void cpu_vm_stats_fold(int cpu)
{
863
	struct pglist_data *pgdat;
864 865
	struct zone *zone;
	int i;
866
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
867 868 869
#ifdef CONFIG_NUMA
	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
#endif
870
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
871 872 873 874 875 876 877 878 879 880 881 882 883

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p;

		p = per_cpu_ptr(zone->pageset, cpu);

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			if (p->vm_stat_diff[i]) {
				int v;

				v = p->vm_stat_diff[i];
				p->vm_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_stat[i]);
884
				global_zone_diff[i] += v;
885
			}
886 887 888 889 890 891 892 893 894 895 896 897

#ifdef CONFIG_NUMA
		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
			if (p->vm_numa_stat_diff[i]) {
				int v;

				v = p->vm_numa_stat_diff[i];
				p->vm_numa_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_numa_stat[i]);
				global_numa_diff[i] += v;
			}
#endif
898 899
	}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat *p;

		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
			if (p->vm_node_stat_diff[i]) {
				int v;

				v = p->vm_node_stat_diff[i];
				p->vm_node_stat_diff[i] = 0;
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
	}

916 917 918
#ifdef CONFIG_NUMA
	fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
#else
919
	fold_diff(global_zone_diff, global_node_diff);
920
#endif
921 922
}

923 924 925 926
/*
 * this is only called if !populated_zone(zone), which implies no other users of
 * pset->vm_stat_diff[] exsist.
 */
927 928 929 930 931 932 933 934 935
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
936
			atomic_long_add(v, &vm_zone_stat[i]);
937
		}
938 939 940 941 942 943 944 945 946 947 948

#ifdef CONFIG_NUMA
	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
		if (pset->vm_numa_stat_diff[i]) {
			int v = pset->vm_numa_stat_diff[i];

			pset->vm_numa_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_numa_stat[i]);
			atomic_long_add(v, &vm_numa_stat[i]);
		}
#endif
949
}
950 951
#endif

952
#ifdef CONFIG_NUMA
953 954 955 956
void __inc_numa_state(struct zone *zone,
				 enum numa_stat_item item)
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
957 958
	u16 __percpu *p = pcp->vm_numa_stat_diff + item;
	u16 v;
959 960 961

	v = __this_cpu_inc_return(*p);

962 963 964
	if (unlikely(v > NUMA_STATS_THRESHOLD)) {
		zone_numa_state_add(v, zone, item);
		__this_cpu_write(*p, 0);
965 966 967
	}
}

968
/*
969 970 971
 * Determine the per node value of a stat item. This function
 * is called frequently in a NUMA machine, so try to be as
 * frugal as possible.
972
 */
973 974
unsigned long sum_zone_node_page_state(int node,
				 enum zone_stat_item item)
975 976
{
	struct zone *zones = NODE_DATA(node)->node_zones;
977 978
	int i;
	unsigned long count = 0;
979

980 981 982 983
	for (i = 0; i < MAX_NR_ZONES; i++)
		count += zone_page_state(zones + i, item);

	return count;
984 985
}

986 987 988 989
/*
 * Determine the per node value of a numa stat item. To avoid deviation,
 * the per cpu stat number in vm_numa_stat_diff[] is also included.
 */
990 991 992 993 994 995 996 997
unsigned long sum_zone_numa_state(int node,
				 enum numa_stat_item item)
{
	struct zone *zones = NODE_DATA(node)->node_zones;
	int i;
	unsigned long count = 0;

	for (i = 0; i < MAX_NR_ZONES; i++)
998
		count += zone_numa_state_snapshot(zones + i, item);
999 1000 1001 1002

	return count;
}

1003 1004 1005
/*
 * Determine the per node value of a stat item.
 */
1006 1007
unsigned long node_page_state_pages(struct pglist_data *pgdat,
				    enum node_stat_item item)
1008 1009 1010 1011 1012 1013 1014 1015
{
	long x = atomic_long_read(&pgdat->vm_stat[item]);
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}
1016 1017 1018 1019 1020 1021 1022 1023

unsigned long node_page_state(struct pglist_data *pgdat,
			      enum node_stat_item item)
{
	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));

	return node_page_state_pages(pgdat, item);
}
1024 1025
#endif

1026
#ifdef CONFIG_COMPACTION
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
1068 1069 1070 1071 1072 1073 1074 1075

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
1076
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1077 1078 1079
{
	unsigned long requested = 1UL << order;

1080 1081 1082
	if (WARN_ON_ONCE(order >= MAX_ORDER))
		return 0;

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
1098 1099 1100 1101 1102 1103 1104 1105 1106

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
1107 1108
#endif

1109 1110
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
    defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
1133
	/* enum zone_stat_item counters */
1134
	"nr_free_pages",
M
Minchan Kim 已提交
1135 1136 1137 1138 1139
	"nr_zone_inactive_anon",
	"nr_zone_active_anon",
	"nr_zone_inactive_file",
	"nr_zone_active_file",
	"nr_zone_unevictable",
1140
	"nr_zone_write_pending",
1141 1142 1143
	"nr_mlock",
	"nr_page_table_pages",
	"nr_kernel_stack",
1144 1145 1146
#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
	"nr_shadow_call_stack",
#endif
1147
	"nr_bounce",
M
Minchan Kim 已提交
1148 1149 1150
#if IS_ENABLED(CONFIG_ZSMALLOC)
	"nr_zspages",
#endif
1151 1152 1153
	"nr_free_cma",

	/* enum numa_stat_item counters */
1154 1155 1156 1157 1158 1159 1160 1161
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
1162

1163
	/* enum node_stat_item counters */
M
Mel Gorman 已提交
1164 1165 1166 1167 1168
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
1169 1170
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
M
Mel Gorman 已提交
1171 1172
	"nr_isolated_anon",
	"nr_isolated_file",
1173
	"workingset_nodes",
1174 1175
	"workingset_refault",
	"workingset_activate",
1176
	"workingset_restore",
1177
	"workingset_nodereclaim",
1178 1179
	"nr_anon_pages",
	"nr_mapped",
1180 1181 1182 1183 1184 1185 1186
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_writeback_temp",
	"nr_shmem",
	"nr_shmem_hugepages",
	"nr_shmem_pmdmapped",
S
Song Liu 已提交
1187 1188
	"nr_file_hugepages",
	"nr_file_pmdmapped",
1189
	"nr_anon_transparent_hugepages",
1190 1191 1192 1193
	"nr_vmscan_write",
	"nr_vmscan_immediate_reclaim",
	"nr_dirtied",
	"nr_written",
1194
	"nr_kernel_misc_reclaimable",
1195 1196
	"nr_foll_pin_acquired",
	"nr_foll_pin_released",
M
Mel Gorman 已提交
1197

1198
	/* enum writeback_stat_item counters */
1199 1200 1201
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

1202
#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1203
	/* enum vm_event_item counters */
1204 1205 1206 1207 1208 1209
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")
1210 1211
	TEXTS_FOR_ZONES("allocstall")
	TEXTS_FOR_ZONES("pgskip")
1212 1213 1214 1215

	"pgfree",
	"pgactivate",
	"pgdeactivate",
1216
	"pglazyfree",
1217 1218 1219

	"pgfault",
	"pgmajfault",
M
Minchan Kim 已提交
1220
	"pglazyfreed",
1221

M
Mel Gorman 已提交
1222 1223 1224 1225 1226
	"pgrefill",
	"pgsteal_kswapd",
	"pgsteal_direct",
	"pgscan_kswapd",
	"pgscan_direct",
1227
	"pgscan_direct_throttle",
1228 1229 1230 1231
	"pgscan_anon",
	"pgscan_file",
	"pgsteal_anon",
	"pgsteal_file",
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"pageoutrun",

	"pgrotated",

1245 1246
	"drop_pagecache",
	"drop_slab",
1247
	"oom_kill",
1248

1249 1250
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
1251
	"numa_huge_pte_updates",
1252 1253 1254 1255
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
1256 1257 1258 1259
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
1260
#ifdef CONFIG_COMPACTION
1261 1262 1263
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
1264 1265 1266
	"compact_stall",
	"compact_fail",
	"compact_success",
1267
	"compact_daemon_wake",
1268 1269
	"compact_daemon_migrate_scanned",
	"compact_daemon_free_scanned",
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
1287
	"thp_fault_fallback_charge",
1288 1289
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
1290
	"thp_file_alloc",
1291
	"thp_file_fallback",
1292
	"thp_file_fallback_charge",
1293
	"thp_file_mapped",
1294 1295
	"thp_split_page",
	"thp_split_page_failed",
1296
	"thp_deferred_split_page",
1297
	"thp_split_pmd",
1298 1299 1300
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
	"thp_split_pud",
#endif
1301 1302
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
1303
	"thp_swpout",
1304
	"thp_swpout_fallback",
1305
#endif
1306 1307 1308 1309 1310 1311 1312
#ifdef CONFIG_MEMORY_BALLOON
	"balloon_inflate",
	"balloon_deflate",
#ifdef CONFIG_BALLOON_COMPACTION
	"balloon_migrate",
#endif
#endif /* CONFIG_MEMORY_BALLOON */
1313
#ifdef CONFIG_DEBUG_TLBFLUSH
D
Dave Hansen 已提交
1314 1315 1316 1317
	"nr_tlb_remote_flush",
	"nr_tlb_remote_flush_received",
	"nr_tlb_local_flush_all",
	"nr_tlb_local_flush_one",
1318
#endif /* CONFIG_DEBUG_TLBFLUSH */
1319

D
Davidlohr Bueso 已提交
1320 1321 1322 1323
#ifdef CONFIG_DEBUG_VM_VMACACHE
	"vmacache_find_calls",
	"vmacache_find_hits",
#endif
1324 1325 1326 1327
#ifdef CONFIG_SWAP
	"swap_ra",
	"swap_ra_hit",
#endif
1328
#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1329
};
1330
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1331

A
Andrew Morton 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
     defined(CONFIG_PROC_FS)
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;

	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

1359 1360 1361 1362
/*
 * Walk zones in a node and print using a callback.
 * If @assert_populated is true, only use callback for zones that are populated.
 */
A
Andrew Morton 已提交
1363
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1364
		bool assert_populated, bool nolock,
A
Andrew Morton 已提交
1365 1366 1367 1368 1369 1370 1371
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1372
		if (assert_populated && !populated_zone(zone))
A
Andrew Morton 已提交
1373 1374
			continue;

1375 1376
		if (!nolock)
			spin_lock_irqsave(&zone->lock, flags);
A
Andrew Morton 已提交
1377
		print(m, pgdat, zone);
1378 1379
		if (!nolock)
			spin_unlock_irqrestore(&zone->lock, flags);
A
Andrew Morton 已提交
1380 1381 1382 1383
	}
}
#endif

1384
#ifdef CONFIG_PROC_FS
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
1402
	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;
1420
			bool overflow = false;
1421 1422 1423

			area = &(zone->free_area[order]);

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
			list_for_each(curr, &area->free_list[mtype]) {
				/*
				 * Cap the free_list iteration because it might
				 * be really large and we are under a spinlock
				 * so a long time spent here could trigger a
				 * hard lockup detector. Anyway this is a
				 * debugging tool so knowing there is a handful
				 * of pages of this order should be more than
				 * sufficient.
				 */
				if (++freecount >= 100000) {
					overflow = true;
					break;
				}
			}
			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
			spin_unlock_irq(&zone->lock);
			cond_resched();
			spin_lock_irq(&zone->lock);
1443
		}
1444 1445
		seq_putc(m, '\n');
	}
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

1460
	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
1471
	unsigned long end_pfn = zone_end_pfn(zone);
1472 1473 1474 1475 1476
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

1477 1478
		page = pfn_to_online_page(pfn);
		if (!page)
1479 1480
			continue;

1481 1482
		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
1483
			continue;
1484

1485 1486 1487
		if (page_zone(page) != zone)
			continue;

1488 1489
		mtype = get_pageblock_migratetype(page);

1490 1491
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
1492 1493 1494 1495 1496 1497 1498 1499 1500
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

S
SeongJae Park 已提交
1501
/* Print out the number of pageblocks for each migratetype */
1502 1503 1504 1505 1506 1507 1508 1509 1510
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
1511 1512
	walk_zones_in_node(m, pgdat, true, false,
		pagetypeinfo_showblockcount_print);
1513 1514 1515 1516

	return 0;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * Print out the number of pageblocks for each migratetype that contain pages
 * of other types. This gives an indication of how well fallbacks are being
 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
 * to determine what is going on
 */
static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
{
#ifdef CONFIG_PAGE_OWNER
	int mtype;

1528
	if (!static_branch_unlikely(&page_owner_inited))
1529 1530 1531 1532 1533 1534 1535 1536 1537
		return;

	drain_all_pages(NULL);

	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');

1538 1539
	walk_zones_in_node(m, pgdat, true, true,
		pagetypeinfo_showmixedcount_print);
1540 1541 1542
#endif /* CONFIG_PAGE_OWNER */
}

1543 1544 1545 1546 1547 1548 1549 1550
/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

1551
	/* check memoryless node */
1552
	if (!node_state(pgdat->node_id, N_MEMORY))
1553 1554
		return 0;

1555 1556 1557 1558 1559
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);
1560
	pagetypeinfo_showmixedcount(m, pgdat);
1561

1562 1563 1564
	return 0;
}

1565
static const struct seq_operations fragmentation_op = {
1566 1567 1568 1569 1570 1571
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

1572
static const struct seq_operations pagetypeinfo_op = {
1573 1574 1575 1576 1577 1578
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *compare = &pgdat->node_zones[zid];

		if (populated_zone(compare))
			return zone == compare;
	}

	return false;
}

1593 1594
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
1595
{
1596 1597
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1598 1599 1600
	if (is_zone_first_populated(pgdat, zone)) {
		seq_printf(m, "\n  per-node stats");
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1601
			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1602
				   node_page_state_pages(pgdat, i));
1603 1604
		}
	}
1605 1606 1607 1608 1609 1610
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
		   "\n        spanned  %lu"
1611 1612
		   "\n        present  %lu"
		   "\n        managed  %lu",
1613
		   zone_page_state(zone, NR_FREE_PAGES),
1614 1615 1616
		   min_wmark_pages(zone),
		   low_wmark_pages(zone),
		   high_wmark_pages(zone),
1617
		   zone->spanned_pages,
1618
		   zone->present_pages,
1619
		   zone_managed_pages(zone));
1620

1621 1622 1623 1624 1625 1626
	/* If unpopulated, no other information is useful */
	if (!populated_zone(zone)) {
		seq_putc(m, '\n');
		return;
	}

1627
	seq_printf(m,
1628
		   "\n        protection: (%ld",
1629 1630
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1631
		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1632 1633 1634
	seq_putc(m, ')');

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1635 1636
		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
			   zone_page_state(zone, i));
1637

1638 1639
#ifdef CONFIG_NUMA
	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1640 1641
		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
			   zone_numa_state_snapshot(zone, i));
1642 1643
#endif

1644
	seq_printf(m, "\n  pagesets");
1645 1646 1647
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

1648
		pageset = per_cpu_ptr(zone->pageset, i);
1649 1650 1651 1652 1653 1654 1655 1656 1657
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
1658
#ifdef CONFIG_SMP
1659 1660
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
1661
#endif
1662
	}
1663
	seq_printf(m,
M
Mel Gorman 已提交
1664
		   "\n  node_unreclaimable:  %u"
1665
		   "\n  start_pfn:           %lu",
1666
		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1667
		   zone->zone_start_pfn);
1668 1669 1670 1671
	seq_putc(m, '\n');
}

/*
1672 1673 1674 1675
 * Output information about zones in @pgdat.  All zones are printed regardless
 * of whether they are populated or not: lowmem_reserve_ratio operates on the
 * set of all zones and userspace would not be aware of such zones if they are
 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1676 1677 1678 1679
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
1680
	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1681 1682 1683
	return 0;
}

1684
static const struct seq_operations zoneinfo_op = {
1685 1686 1687 1688 1689 1690 1691
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

1692 1693 1694 1695 1696 1697
#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
			 NR_VM_NUMA_STAT_ITEMS + \
			 NR_VM_NODE_STAT_ITEMS + \
			 NR_VM_WRITEBACK_STAT_ITEMS + \
			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
			  NR_VM_EVENT_ITEMS : 0))
1698

1699 1700
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
1701
	unsigned long *v;
1702
	int i;
1703

1704
	if (*pos >= NR_VMSTAT_ITEMS)
1705
		return NULL;
1706

1707 1708
	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1709 1710
	m->private = v;
	if (!v)
1711
		return ERR_PTR(-ENOMEM);
1712
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1713
		v[i] = global_zone_page_state(i);
1714 1715
	v += NR_VM_ZONE_STAT_ITEMS;

1716 1717 1718 1719 1720 1721
#ifdef CONFIG_NUMA
	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
		v[i] = global_numa_state(i);
	v += NR_VM_NUMA_STAT_ITEMS;
#endif

1722
	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1723
		v[i] = global_node_page_state_pages(i);
1724 1725
	v += NR_VM_NODE_STAT_ITEMS;

1726 1727 1728 1729
	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
			    v + NR_DIRTY_THRESHOLD);
	v += NR_VM_WRITEBACK_STAT_ITEMS;

1730
#ifdef CONFIG_VM_EVENT_COUNTERS
1731 1732 1733
	all_vm_events(v);
	v[PGPGIN] /= 2;		/* sectors -> kbytes */
	v[PGPGOUT] /= 2;
1734
#endif
1735
	return (unsigned long *)m->private + *pos;
1736 1737 1738 1739 1740
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
1741
	if (*pos >= NR_VMSTAT_ITEMS)
1742 1743 1744 1745 1746 1747 1748 1749
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;
A
Alexey Dobriyan 已提交
1750 1751

	seq_puts(m, vmstat_text[off]);
1752
	seq_put_decimal_ull(m, " ", *l);
A
Alexey Dobriyan 已提交
1753
	seq_putc(m, '\n');
1754 1755 1756 1757 1758 1759 1760 1761

	if (off == NR_VMSTAT_ITEMS - 1) {
		/*
		 * We've come to the end - add any deprecated counters to avoid
		 * breaking userspace which might depend on them being present.
		 */
		seq_puts(m, "nr_unstable 0\n");
	}
1762 1763 1764 1765 1766 1767 1768 1769 1770
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

1771
static const struct seq_operations vmstat_op = {
1772 1773 1774 1775 1776 1777 1778
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};
#endif /* CONFIG_PROC_FS */

1779
#ifdef CONFIG_SMP
1780
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1781
int sysctl_stat_interval __read_mostly = HZ;
1782

1783 1784 1785 1786 1787 1788 1789
#ifdef CONFIG_PROC_FS
static void refresh_vm_stats(struct work_struct *work)
{
	refresh_cpu_vm_stats(true);
}

int vmstat_refresh(struct ctl_table *table, int write,
1790
		   void *buffer, size_t *lenp, loff_t *ppos)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
{
	long val;
	int err;
	int i;

	/*
	 * The regular update, every sysctl_stat_interval, may come later
	 * than expected: leaving a significant amount in per_cpu buckets.
	 * This is particularly misleading when checking a quantity of HUGE
	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
	 * which can equally be echo'ed to or cat'ted from (by root),
	 * can be used to update the stats just before reading them.
	 *
1804
	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1805 1806 1807 1808 1809 1810 1811
	 * transiently negative values, report an error here if any of
	 * the stats is negative, so we know to go looking for imbalance.
	 */
	err = schedule_on_each_cpu(refresh_vm_stats);
	if (err)
		return err;
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1812
		val = atomic_long_read(&vm_zone_stat[i]);
1813
		if (val < 0) {
1814
			pr_warn("%s: %s %ld\n",
1815
				__func__, zone_stat_name(i), val);
1816
			err = -EINVAL;
1817 1818
		}
	}
1819 1820 1821 1822 1823
#ifdef CONFIG_NUMA
	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
		val = atomic_long_read(&vm_numa_stat[i]);
		if (val < 0) {
			pr_warn("%s: %s %ld\n",
1824
				__func__, numa_stat_name(i), val);
1825 1826 1827 1828
			err = -EINVAL;
		}
	}
#endif
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	if (err)
		return err;
	if (write)
		*ppos += *lenp;
	else
		*lenp = 0;
	return 0;
}
#endif /* CONFIG_PROC_FS */

1839 1840
static void vmstat_update(struct work_struct *w)
{
1841
	if (refresh_cpu_vm_stats(true)) {
1842 1843 1844 1845 1846
		/*
		 * Counters were updated so we expect more updates
		 * to occur in the future. Keep on running the
		 * update worker thread.
		 */
1847
		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1848 1849
				this_cpu_ptr(&vmstat_work),
				round_jiffies_relative(sysctl_stat_interval));
1850 1851 1852
	}
}

1853 1854 1855 1856 1857
/*
 * Switch off vmstat processing and then fold all the remaining differentials
 * until the diffs stay at zero. The function is used by NOHZ and can only be
 * invoked when tick processing is not active.
 */
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
/*
 * Check if the diffs for a certain cpu indicate that
 * an update is needed.
 */
static bool need_update(int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);

		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1870
#ifdef CONFIG_NUMA
1871
		BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1872
#endif
1873

1874 1875 1876
		/*
		 * The fast way of checking if there are any vmstat diffs.
		 */
1877 1878
		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
			       sizeof(p->vm_stat_diff[0])))
1879
			return true;
1880
#ifdef CONFIG_NUMA
1881 1882
		if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
			       sizeof(p->vm_numa_stat_diff[0])))
1883 1884
			return true;
#endif
1885 1886 1887 1888
	}
	return false;
}

1889 1890 1891 1892 1893
/*
 * Switch off vmstat processing and then fold all the remaining differentials
 * until the diffs stay at zero. The function is used by NOHZ and can only be
 * invoked when tick processing is not active.
 */
1894 1895 1896 1897 1898
void quiet_vmstat(void)
{
	if (system_state != SYSTEM_RUNNING)
		return;

1899
	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		return;

	if (!need_update(smp_processor_id()))
		return;

	/*
	 * Just refresh counters and do not care about the pending delayed
	 * vmstat_update. It doesn't fire that often to matter and canceling
	 * it would be too expensive from this path.
	 * vmstat_shepherd will take care about that for us.
	 */
	refresh_cpu_vm_stats(false);
}

1914 1915 1916 1917 1918 1919 1920 1921
/*
 * Shepherd worker thread that checks the
 * differentials of processors that have their worker
 * threads for vm statistics updates disabled because of
 * inactivity.
 */
static void vmstat_shepherd(struct work_struct *w);

1922
static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1923 1924 1925 1926 1927 1928 1929

static void vmstat_shepherd(struct work_struct *w)
{
	int cpu;

	get_online_cpus();
	/* Check processors whose vmstat worker threads have been disabled */
1930
	for_each_online_cpu(cpu) {
1931
		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1932

1933
		if (!delayed_work_pending(dw) && need_update(cpu))
1934
			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1935
	}
1936 1937 1938
	put_online_cpus();

	schedule_delayed_work(&shepherd,
A
Anton Blanchard 已提交
1939
		round_jiffies_relative(sysctl_stat_interval));
1940 1941
}

1942
static void __init start_shepherd_timer(void)
1943
{
1944 1945 1946
	int cpu;

	for_each_possible_cpu(cpu)
1947
		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1948 1949 1950 1951
			vmstat_update);

	schedule_delayed_work(&shepherd,
		round_jiffies_relative(sysctl_stat_interval));
1952 1953
}

1954 1955
static void __init init_cpu_node_state(void)
{
1956
	int node;
1957

1958 1959 1960 1961
	for_each_online_node(node) {
		if (cpumask_weight(cpumask_of_node(node)) > 0)
			node_set_state(node, N_CPU);
	}
1962 1963
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static int vmstat_cpu_online(unsigned int cpu)
{
	refresh_zone_stat_thresholds();
	node_set_state(cpu_to_node(cpu), N_CPU);
	return 0;
}

static int vmstat_cpu_down_prep(unsigned int cpu)
{
	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
	return 0;
}

static int vmstat_cpu_dead(unsigned int cpu)
1978
{
1979
	const struct cpumask *node_cpus;
1980
	int node;
1981

1982 1983 1984
	node = cpu_to_node(cpu);

	refresh_zone_stat_thresholds();
1985 1986
	node_cpus = cpumask_of_node(node);
	if (cpumask_weight(node_cpus) > 0)
1987
		return 0;
1988 1989

	node_clear_state(node, N_CPU);
1990
	return 0;
1991 1992
}

1993
#endif
1994

1995 1996
struct workqueue_struct *mm_percpu_wq;

1997
void __init init_mm_internals(void)
1998
{
1999
	int ret __maybe_unused;
2000

2001
	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2002 2003

#ifdef CONFIG_SMP
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
					NULL, vmstat_cpu_dead);
	if (ret < 0)
		pr_err("vmstat: failed to register 'dead' hotplug state\n");

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
					vmstat_cpu_online,
					vmstat_cpu_down_prep);
	if (ret < 0)
		pr_err("vmstat: failed to register 'online' hotplug state\n");

	get_online_cpus();
2016
	init_cpu_node_state();
2017
	put_online_cpus();
2018

2019
	start_shepherd_timer();
2020 2021
#endif
#ifdef CONFIG_PROC_FS
2022
	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2023
	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2024 2025
	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2026
#endif
2027
}
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)

/*
 * Return an index indicating how much of the available free memory is
 * unusable for an allocation of the requested size.
 */
static int unusable_free_index(unsigned int order,
				struct contig_page_info *info)
{
	/* No free memory is interpreted as all free memory is unusable */
	if (info->free_pages == 0)
		return 1000;

	/*
	 * Index should be a value between 0 and 1. Return a value to 3
	 * decimal places.
	 *
	 * 0 => no fragmentation
	 * 1 => high fragmentation
	 */
	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);

}

static void unusable_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
		index = unusable_free_index(order, &info);
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display unusable free space index
 *
 * The unusable free space index measures how much of the available free
 * memory cannot be used to satisfy an allocation of a given size and is a
 * value between 0 and 1. The higher the value, the more of free memory is
 * unusable and by implication, the worse the external fragmentation is. This
 * can be expressed as a percentage by multiplying by 100.
 */
static int unusable_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* check memoryless node */
2086
	if (!node_state(pgdat->node_id, N_MEMORY))
2087 2088
		return 0;

2089
	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2090 2091 2092 2093

	return 0;
}

2094
static const struct seq_operations unusable_sops = {
2095 2096 2097 2098 2099 2100
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= unusable_show,
};

2101
DEFINE_SEQ_ATTRIBUTE(unusable);
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
static void extfrag_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;

	/* Alloc on stack as interrupts are disabled for zone walk */
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
2117
		index = __fragmentation_index(order, &info);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display fragmentation index for orders that allocations would fail for
 */
static int extfrag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

2131
	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2132 2133 2134 2135

	return 0;
}

2136
static const struct seq_operations extfrag_sops = {
2137 2138 2139 2140 2141 2142
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= extfrag_show,
};

2143
DEFINE_SEQ_ATTRIBUTE(extfrag);
2144

2145 2146
static int __init extfrag_debug_init(void)
{
2147 2148
	struct dentry *extfrag_debug_root;

2149 2150
	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);

2151
	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2152
			    &unusable_fops);
2153

2154
	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2155
			    &extfrag_fops);
2156

2157 2158 2159 2160 2161
	return 0;
}

module_init(extfrag_debug_init);
#endif