transaction.c 66.1 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/transaction.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem transaction handling code; part of the ext2fs
 * journaling system.
 *
 * This file manages transactions (compound commits managed by the
 * journaling code) and handles (individual atomic operations by the
 * filesystem).
 */

#include <linux/time.h>
#include <linux/fs.h>
22
#include <linux/jbd2.h>
23 24 25 26 27
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/highmem.h>
J
Josef Bacik 已提交
28
#include <linux/hrtimer.h>
29 30
#include <linux/backing-dev.h>
#include <linux/module.h>
31

32 33
static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);

34
/*
35
 * jbd2_get_transaction: obtain a new transaction_t object.
36 37 38 39 40 41 42 43 44 45 46 47 48 49
 *
 * Simply allocate and initialise a new transaction.  Create it in
 * RUNNING state and add it to the current journal (which should not
 * have an existing running transaction: we only make a new transaction
 * once we have started to commit the old one).
 *
 * Preconditions:
 *	The journal MUST be locked.  We don't perform atomic mallocs on the
 *	new transaction	and we can't block without protecting against other
 *	processes trying to touch the journal while it is in transition.
 *
 */

static transaction_t *
50
jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 52 53
{
	transaction->t_journal = journal;
	transaction->t_state = T_RUNNING;
J
Josef Bacik 已提交
54
	transaction->t_start_time = ktime_get();
55 56 57
	transaction->t_tid = journal->j_transaction_sequence++;
	transaction->t_expires = jiffies + journal->j_commit_interval;
	spin_lock_init(&transaction->t_handle_lock);
58 59
	atomic_set(&transaction->t_updates, 0);
	atomic_set(&transaction->t_outstanding_credits, 0);
60
	atomic_set(&transaction->t_handle_count, 0);
61
	INIT_LIST_HEAD(&transaction->t_inode_list);
62
	INIT_LIST_HEAD(&transaction->t_private_list);
63 64

	/* Set up the commit timer for the new transaction. */
65
	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66 67 68 69
	add_timer(&journal->j_commit_timer);

	J_ASSERT(journal->j_running_transaction == NULL);
	journal->j_running_transaction = transaction;
70 71
	transaction->t_max_wait = 0;
	transaction->t_start = jiffies;
72 73 74 75 76 77 78 79 80 81 82 83

	return transaction;
}

/*
 * Handle management.
 *
 * A handle_t is an object which represents a single atomic update to a
 * filesystem, and which tracks all of the modifications which form part
 * of that one update.
 */

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/*
 * Update transiaction's maximum wait time, if debugging is enabled.
 *
 * In order for t_max_wait to be reliable, it must be protected by a
 * lock.  But doing so will mean that start_this_handle() can not be
 * run in parallel on SMP systems, which limits our scalability.  So
 * unless debugging is enabled, we no longer update t_max_wait, which
 * means that maximum wait time reported by the jbd2_run_stats
 * tracepoint will always be zero.
 */
static inline void update_t_max_wait(transaction_t *transaction)
{
#ifdef CONFIG_JBD2_DEBUG
	unsigned long ts = jiffies;

	if (jbd2_journal_enable_debug &&
	    time_after(transaction->t_start, ts)) {
		ts = jbd2_time_diff(ts, transaction->t_start);
		spin_lock(&transaction->t_handle_lock);
		if (ts > transaction->t_max_wait)
			transaction->t_max_wait = ts;
		spin_unlock(&transaction->t_handle_lock);
	}
#endif
}

110 111 112 113 114 115 116
/*
 * start_this_handle: Given a handle, deal with any locking or stalling
 * needed to make sure that there is enough journal space for the handle
 * to begin.  Attach the handle to a transaction and set up the
 * transaction's buffer credits.
 */

117 118
static int start_this_handle(journal_t *journal, handle_t *handle,
			     int gfp_mask)
119 120 121 122 123 124 125 126 127 128
{
	transaction_t *transaction;
	int needed;
	int nblocks = handle->h_buffer_credits;
	transaction_t *new_transaction = NULL;

	if (nblocks > journal->j_max_transaction_buffers) {
		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
		       current->comm, nblocks,
		       journal->j_max_transaction_buffers);
129
		return -ENOSPC;
130 131 132 133
	}

alloc_transaction:
	if (!journal->j_running_transaction) {
134
		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135
		if (!new_transaction) {
136 137 138 139 140 141 142 143 144 145 146 147
			/*
			 * If __GFP_FS is not present, then we may be
			 * being called from inside the fs writeback
			 * layer, so we MUST NOT fail.  Since
			 * __GFP_NOFAIL is going away, we will arrange
			 * to retry the allocation ourselves.
			 */
			if ((gfp_mask & __GFP_FS) == 0) {
				congestion_wait(BLK_RW_ASYNC, HZ/50);
				goto alloc_transaction;
			}
			return -ENOMEM;
148 149 150 151 152 153 154 155 156
		}
	}

	jbd_debug(3, "New handle %p going live.\n", handle);

	/*
	 * We need to hold j_state_lock until t_updates has been incremented,
	 * for proper journal barrier handling
	 */
157 158
repeat:
	read_lock(&journal->j_state_lock);
159
	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
160
	if (is_journal_aborted(journal) ||
161
	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
162
		read_unlock(&journal->j_state_lock);
163 164
		kfree(new_transaction);
		return -EROFS;
165 166 167 168
	}

	/* Wait on the journal's transaction barrier if necessary */
	if (journal->j_barrier_count) {
169
		read_unlock(&journal->j_state_lock);
170 171 172 173 174 175
		wait_event(journal->j_wait_transaction_locked,
				journal->j_barrier_count == 0);
		goto repeat;
	}

	if (!journal->j_running_transaction) {
176 177
		read_unlock(&journal->j_state_lock);
		if (!new_transaction)
178
			goto alloc_transaction;
179 180 181 182
		write_lock(&journal->j_state_lock);
		if (!journal->j_running_transaction) {
			jbd2_get_transaction(journal, new_transaction);
			new_transaction = NULL;
183
		}
184 185
		write_unlock(&journal->j_state_lock);
		goto repeat;
186 187 188 189 190 191 192 193 194 195 196 197 198
	}

	transaction = journal->j_running_transaction;

	/*
	 * If the current transaction is locked down for commit, wait for the
	 * lock to be released.
	 */
	if (transaction->t_state == T_LOCKED) {
		DEFINE_WAIT(wait);

		prepare_to_wait(&journal->j_wait_transaction_locked,
					&wait, TASK_UNINTERRUPTIBLE);
199
		read_unlock(&journal->j_state_lock);
200 201 202 203 204 205 206 207 208 209
		schedule();
		finish_wait(&journal->j_wait_transaction_locked, &wait);
		goto repeat;
	}

	/*
	 * If there is not enough space left in the log to write all potential
	 * buffers requested by this operation, we need to stall pending a log
	 * checkpoint to free some more log space.
	 */
210 211
	needed = atomic_add_return(nblocks,
				   &transaction->t_outstanding_credits);
212 213 214 215 216 217 218 219 220 221

	if (needed > journal->j_max_transaction_buffers) {
		/*
		 * If the current transaction is already too large, then start
		 * to commit it: we can then go back and attach this handle to
		 * a new transaction.
		 */
		DEFINE_WAIT(wait);

		jbd_debug(2, "Handle %p starting new commit...\n", handle);
222
		atomic_sub(nblocks, &transaction->t_outstanding_credits);
223 224
		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
				TASK_UNINTERRUPTIBLE);
225
		__jbd2_log_start_commit(journal, transaction->t_tid);
226
		read_unlock(&journal->j_state_lock);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		schedule();
		finish_wait(&journal->j_wait_transaction_locked, &wait);
		goto repeat;
	}

	/*
	 * The commit code assumes that it can get enough log space
	 * without forcing a checkpoint.  This is *critical* for
	 * correctness: a checkpoint of a buffer which is also
	 * associated with a committing transaction creates a deadlock,
	 * so commit simply cannot force through checkpoints.
	 *
	 * We must therefore ensure the necessary space in the journal
	 * *before* starting to dirty potentially checkpointed buffers
	 * in the new transaction.
	 *
	 * The worst part is, any transaction currently committing can
	 * reduce the free space arbitrarily.  Be careful to account for
	 * those buffers when checkpointing.
	 */

	/*
	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
	 * a _lot_ of headroom: 1/4 of the journal plus the size of
	 * the committing transaction.  Really, we only need to give it
	 * committing_transaction->t_outstanding_credits plus "enough" for
	 * the log control blocks.
254
	 * Also, this test is inconsistent with the matching one in
255
	 * jbd2_journal_extend().
256
	 */
257
	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
258
		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
259
		atomic_sub(nblocks, &transaction->t_outstanding_credits);
260 261 262 263 264 265
		read_unlock(&journal->j_state_lock);
		write_lock(&journal->j_state_lock);
		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
			__jbd2_log_wait_for_space(journal);
		write_unlock(&journal->j_state_lock);
		goto repeat;
266 267 268
	}

	/* OK, account for the buffers that this operation expects to
269 270
	 * use and add the handle to the running transaction. 
	 */
271
	update_t_max_wait(transaction);
272
	handle->h_transaction = transaction;
273
	atomic_inc(&transaction->t_updates);
274
	atomic_inc(&transaction->t_handle_count);
275
	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
276 277
		  handle, nblocks,
		  atomic_read(&transaction->t_outstanding_credits),
278
		  __jbd2_log_space_left(journal));
279
	read_unlock(&journal->j_state_lock);
280 281

	lock_map_acquire(&handle->h_lockdep_map);
282 283
	kfree(new_transaction);
	return 0;
284 285
}

M
Mingming Cao 已提交
286 287
static struct lock_class_key jbd2_handle_key;

288 289 290
/* Allocate a new handle.  This should probably be in a slab... */
static handle_t *new_handle(int nblocks)
{
M
Mingming Cao 已提交
291
	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
292 293 294 295 296 297
	if (!handle)
		return NULL;
	memset(handle, 0, sizeof(*handle));
	handle->h_buffer_credits = nblocks;
	handle->h_ref = 1;

M
Mingming Cao 已提交
298 299 300
	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
						&jbd2_handle_key, 0);

301 302 303 304
	return handle;
}

/**
305
 * handle_t *jbd2_journal_start() - Obtain a new handle.
306 307 308 309 310 311 312 313 314 315 316 317
 * @journal: Journal to start transaction on.
 * @nblocks: number of block buffer we might modify
 *
 * We make sure that the transaction can guarantee at least nblocks of
 * modified buffers in the log.  We block until the log can guarantee
 * that much space.
 *
 * This function is visible to journal users (like ext3fs), so is not
 * called with the journal already locked.
 *
 * Return a pointer to a newly allocated handle, or NULL on failure
 */
318
handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
{
	handle_t *handle = journal_current_handle();
	int err;

	if (!journal)
		return ERR_PTR(-EROFS);

	if (handle) {
		J_ASSERT(handle->h_transaction->t_journal == journal);
		handle->h_ref++;
		return handle;
	}

	handle = new_handle(nblocks);
	if (!handle)
		return ERR_PTR(-ENOMEM);

	current->journal_info = handle;

338
	err = start_this_handle(journal, handle, gfp_mask);
339
	if (err < 0) {
M
Mingming Cao 已提交
340
		jbd2_free_handle(handle);
341 342 343 344 345
		current->journal_info = NULL;
		handle = ERR_PTR(err);
	}
	return handle;
}
346 347 348 349 350 351 352 353 354
EXPORT_SYMBOL(jbd2__journal_start);


handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
{
	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
}
EXPORT_SYMBOL(jbd2_journal_start);

355 356

/**
357
 * int jbd2_journal_extend() - extend buffer credits.
358 359 360 361 362 363 364 365
 * @handle:  handle to 'extend'
 * @nblocks: nr blocks to try to extend by.
 *
 * Some transactions, such as large extends and truncates, can be done
 * atomically all at once or in several stages.  The operation requests
 * a credit for a number of buffer modications in advance, but can
 * extend its credit if it needs more.
 *
366
 * jbd2_journal_extend tries to give the running handle more buffer credits.
367 368 369 370 371 372 373 374 375
 * It does not guarantee that allocation - this is a best-effort only.
 * The calling process MUST be able to deal cleanly with a failure to
 * extend here.
 *
 * Return 0 on success, non-zero on failure.
 *
 * return code < 0 implies an error
 * return code > 0 implies normal transaction-full status.
 */
376
int jbd2_journal_extend(handle_t *handle, int nblocks)
377 378 379 380 381 382 383 384 385 386 387 388
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;
	int result;
	int wanted;

	result = -EIO;
	if (is_handle_aborted(handle))
		goto out;

	result = 1;

389
	read_lock(&journal->j_state_lock);
390 391 392 393 394 395 396 397 398

	/* Don't extend a locked-down transaction! */
	if (handle->h_transaction->t_state != T_RUNNING) {
		jbd_debug(3, "denied handle %p %d blocks: "
			  "transaction not running\n", handle, nblocks);
		goto error_out;
	}

	spin_lock(&transaction->t_handle_lock);
399
	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
400 401 402 403 404 405 406

	if (wanted > journal->j_max_transaction_buffers) {
		jbd_debug(3, "denied handle %p %d blocks: "
			  "transaction too large\n", handle, nblocks);
		goto unlock;
	}

407
	if (wanted > __jbd2_log_space_left(journal)) {
408 409 410 411 412 413
		jbd_debug(3, "denied handle %p %d blocks: "
			  "insufficient log space\n", handle, nblocks);
		goto unlock;
	}

	handle->h_buffer_credits += nblocks;
414
	atomic_add(nblocks, &transaction->t_outstanding_credits);
415 416 417 418 419 420
	result = 0;

	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
unlock:
	spin_unlock(&transaction->t_handle_lock);
error_out:
421
	read_unlock(&journal->j_state_lock);
422 423 424 425 426 427
out:
	return result;
}


/**
428
 * int jbd2_journal_restart() - restart a handle .
429 430 431 432 433 434
 * @handle:  handle to restart
 * @nblocks: nr credits requested
 *
 * Restart a handle for a multi-transaction filesystem
 * operation.
 *
435 436
 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 * to a running handle, a call to jbd2_journal_restart will commit the
437 438 439 440
 * handle's transaction so far and reattach the handle to a new
 * transaction capabable of guaranteeing the requested number of
 * credits.
 */
441
int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;
	int ret;

	/* If we've had an abort of any type, don't even think about
	 * actually doing the restart! */
	if (is_handle_aborted(handle))
		return 0;

	/*
	 * First unlink the handle from its current transaction, and start the
	 * commit on that.
	 */
456
	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
457 458
	J_ASSERT(journal_current_handle() == handle);

459
	read_lock(&journal->j_state_lock);
460
	spin_lock(&transaction->t_handle_lock);
461 462 463
	atomic_sub(handle->h_buffer_credits,
		   &transaction->t_outstanding_credits);
	if (atomic_dec_and_test(&transaction->t_updates))
464 465 466 467
		wake_up(&journal->j_wait_updates);
	spin_unlock(&transaction->t_handle_lock);

	jbd_debug(2, "restarting handle %p\n", handle);
468
	__jbd2_log_start_commit(journal, transaction->t_tid);
469
	read_unlock(&journal->j_state_lock);
470

471
	lock_map_release(&handle->h_lockdep_map);
472
	handle->h_buffer_credits = nblocks;
473
	ret = start_this_handle(journal, handle, gfp_mask);
474 475
	return ret;
}
476
EXPORT_SYMBOL(jbd2__journal_restart);
477 478


479 480 481 482 483 484
int jbd2_journal_restart(handle_t *handle, int nblocks)
{
	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
}
EXPORT_SYMBOL(jbd2_journal_restart);

485
/**
486
 * void jbd2_journal_lock_updates () - establish a transaction barrier.
487 488 489 490 491 492 493 494
 * @journal:  Journal to establish a barrier on.
 *
 * This locks out any further updates from being started, and blocks
 * until all existing updates have completed, returning only once the
 * journal is in a quiescent state with no updates running.
 *
 * The journal lock should not be held on entry.
 */
495
void jbd2_journal_lock_updates(journal_t *journal)
496 497 498
{
	DEFINE_WAIT(wait);

499
	write_lock(&journal->j_state_lock);
500 501 502 503 504 505 506 507 508 509
	++journal->j_barrier_count;

	/* Wait until there are no running updates */
	while (1) {
		transaction_t *transaction = journal->j_running_transaction;

		if (!transaction)
			break;

		spin_lock(&transaction->t_handle_lock);
510
		if (!atomic_read(&transaction->t_updates)) {
511 512 513 514 515 516
			spin_unlock(&transaction->t_handle_lock);
			break;
		}
		prepare_to_wait(&journal->j_wait_updates, &wait,
				TASK_UNINTERRUPTIBLE);
		spin_unlock(&transaction->t_handle_lock);
517
		write_unlock(&journal->j_state_lock);
518 519
		schedule();
		finish_wait(&journal->j_wait_updates, &wait);
520
		write_lock(&journal->j_state_lock);
521
	}
522
	write_unlock(&journal->j_state_lock);
523 524 525

	/*
	 * We have now established a barrier against other normal updates, but
526
	 * we also need to barrier against other jbd2_journal_lock_updates() calls
527 528 529 530 531 532 533
	 * to make sure that we serialise special journal-locked operations
	 * too.
	 */
	mutex_lock(&journal->j_barrier);
}

/**
534
 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
535 536
 * @journal:  Journal to release the barrier on.
 *
537
 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
538 539 540
 *
 * Should be called without the journal lock held.
 */
541
void jbd2_journal_unlock_updates (journal_t *journal)
542 543 544 545
{
	J_ASSERT(journal->j_barrier_count != 0);

	mutex_unlock(&journal->j_barrier);
546
	write_lock(&journal->j_state_lock);
547
	--journal->j_barrier_count;
548
	write_unlock(&journal->j_state_lock);
549 550 551
	wake_up(&journal->j_wait_transaction_locked);
}

552
static void warn_dirty_buffer(struct buffer_head *bh)
553
{
554
	char b[BDEVNAME_SIZE];
555

556 557 558 559 560
	printk(KERN_WARNING
	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
	       "There's a risk of filesystem corruption in case of system "
	       "crash.\n",
	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
}

/*
 * If the buffer is already part of the current transaction, then there
 * is nothing we need to do.  If it is already part of a prior
 * transaction which we are still committing to disk, then we need to
 * make sure that we do not overwrite the old copy: we do copy-out to
 * preserve the copy going to disk.  We also account the buffer against
 * the handle's metadata buffer credits (unless the buffer is already
 * part of the transaction, that is).
 *
 */
static int
do_get_write_access(handle_t *handle, struct journal_head *jh,
			int force_copy)
{
	struct buffer_head *bh;
	transaction_t *transaction;
	journal_t *journal;
	int error;
	char *frozen_buffer = NULL;
	int need_copy = 0;

	if (is_handle_aborted(handle))
		return -EROFS;

	transaction = handle->h_transaction;
	journal = transaction->t_journal;

590
	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

	JBUFFER_TRACE(jh, "entry");
repeat:
	bh = jh2bh(jh);

	/* @@@ Need to check for errors here at some point. */

	lock_buffer(bh);
	jbd_lock_bh_state(bh);

	/* We now hold the buffer lock so it is safe to query the buffer
	 * state.  Is the buffer dirty?
	 *
	 * If so, there are two possibilities.  The buffer may be
	 * non-journaled, and undergoing a quite legitimate writeback.
	 * Otherwise, it is journaled, and we don't expect dirty buffers
	 * in that state (the buffers should be marked JBD_Dirty
	 * instead.)  So either the IO is being done under our own
	 * control and this is a bug, or it's a third party IO such as
	 * dump(8) (which may leave the buffer scheduled for read ---
	 * ie. locked but not dirty) or tune2fs (which may actually have
	 * the buffer dirtied, ugh.)  */

	if (buffer_dirty(bh)) {
		/*
		 * First question: is this buffer already part of the current
		 * transaction or the existing committing transaction?
		 */
		if (jh->b_transaction) {
			J_ASSERT_JH(jh,
				jh->b_transaction == transaction ||
				jh->b_transaction ==
					journal->j_committing_transaction);
			if (jh->b_next_transaction)
				J_ASSERT_JH(jh, jh->b_next_transaction ==
							transaction);
627
			warn_dirty_buffer(bh);
628 629 630 631 632 633
		}
		/*
		 * In any case we need to clean the dirty flag and we must
		 * do it under the buffer lock to be sure we don't race
		 * with running write-out.
		 */
634 635 636
		JBUFFER_TRACE(jh, "Journalling dirty buffer");
		clear_buffer_dirty(bh);
		set_buffer_jbddirty(bh);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	}

	unlock_buffer(bh);

	error = -EROFS;
	if (is_handle_aborted(handle)) {
		jbd_unlock_bh_state(bh);
		goto out;
	}
	error = 0;

	/*
	 * The buffer is already part of this transaction if b_transaction or
	 * b_next_transaction points to it
	 */
	if (jh->b_transaction == transaction ||
	    jh->b_next_transaction == transaction)
		goto done;

656 657 658 659 660 661
	/*
	 * this is the first time this transaction is touching this buffer,
	 * reset the modified flag
	 */
       jh->b_modified = 0;

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	/*
	 * If there is already a copy-out version of this buffer, then we don't
	 * need to make another one
	 */
	if (jh->b_frozen_data) {
		JBUFFER_TRACE(jh, "has frozen data");
		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
		jh->b_next_transaction = transaction;
		goto done;
	}

	/* Is there data here we need to preserve? */

	if (jh->b_transaction && jh->b_transaction != transaction) {
		JBUFFER_TRACE(jh, "owned by older transaction");
		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
		J_ASSERT_JH(jh, jh->b_transaction ==
					journal->j_committing_transaction);

		/* There is one case we have to be very careful about.
		 * If the committing transaction is currently writing
		 * this buffer out to disk and has NOT made a copy-out,
		 * then we cannot modify the buffer contents at all
		 * right now.  The essence of copy-out is that it is the
		 * extra copy, not the primary copy, which gets
		 * journaled.  If the primary copy is already going to
		 * disk then we cannot do copy-out here. */

		if (jh->b_jlist == BJ_Shadow) {
			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
			wait_queue_head_t *wqh;

			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);

			JBUFFER_TRACE(jh, "on shadow: sleep");
			jbd_unlock_bh_state(bh);
			/* commit wakes up all shadow buffers after IO */
			for ( ; ; ) {
				prepare_to_wait(wqh, &wait.wait,
						TASK_UNINTERRUPTIBLE);
				if (jh->b_jlist != BJ_Shadow)
					break;
				schedule();
			}
			finish_wait(wqh, &wait.wait);
			goto repeat;
		}

		/* Only do the copy if the currently-owning transaction
		 * still needs it.  If it is on the Forget list, the
		 * committing transaction is past that stage.  The
		 * buffer had better remain locked during the kmalloc,
		 * but that should be true --- we hold the journal lock
		 * still and the buffer is already on the BUF_JOURNAL
		 * list so won't be flushed.
		 *
		 * Subtle point, though: if this is a get_undo_access,
		 * then we will be relying on the frozen_data to contain
		 * the new value of the committed_data record after the
		 * transaction, so we HAVE to force the frozen_data copy
		 * in that case. */

		if (jh->b_jlist != BJ_Forget || force_copy) {
			JBUFFER_TRACE(jh, "generate frozen data");
			if (!frozen_buffer) {
				JBUFFER_TRACE(jh, "allocate memory for buffer");
				jbd_unlock_bh_state(bh);
				frozen_buffer =
M
Mingming Cao 已提交
730
					jbd2_alloc(jh2bh(jh)->b_size,
731 732 733 734
							 GFP_NOFS);
				if (!frozen_buffer) {
					printk(KERN_EMERG
					       "%s: OOM for frozen_buffer\n",
735
					       __func__);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
					JBUFFER_TRACE(jh, "oom!");
					error = -ENOMEM;
					jbd_lock_bh_state(bh);
					goto done;
				}
				goto repeat;
			}
			jh->b_frozen_data = frozen_buffer;
			frozen_buffer = NULL;
			need_copy = 1;
		}
		jh->b_next_transaction = transaction;
	}


	/*
	 * Finally, if the buffer is not journaled right now, we need to make
	 * sure it doesn't get written to disk before the caller actually
	 * commits the new data
	 */
	if (!jh->b_transaction) {
		JBUFFER_TRACE(jh, "no transaction");
		J_ASSERT_JH(jh, !jh->b_next_transaction);
		jh->b_transaction = transaction;
		JBUFFER_TRACE(jh, "file as BJ_Reserved");
		spin_lock(&journal->j_list_lock);
762
		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
763 764 765 766 767 768 769 770 771 772 773 774
		spin_unlock(&journal->j_list_lock);
	}

done:
	if (need_copy) {
		struct page *page;
		int offset;
		char *source;

		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
			    "Possible IO failure.\n");
		page = jh2bh(jh)->b_page;
775
		offset = offset_in_page(jh2bh(jh)->b_data);
776
		source = kmap_atomic(page, KM_USER0);
777 778 779
		/* Fire data frozen trigger just before we copy the data */
		jbd2_buffer_frozen_trigger(jh, source + offset,
					   jh->b_triggers);
780 781
		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
		kunmap_atomic(source, KM_USER0);
J
Joel Becker 已提交
782 783 784 785 786 787

		/*
		 * Now that the frozen data is saved off, we need to store
		 * any matching triggers.
		 */
		jh->b_frozen_triggers = jh->b_triggers;
788 789 790 791 792 793 794
	}
	jbd_unlock_bh_state(bh);

	/*
	 * If we are about to journal a buffer, then any revoke pending on it is
	 * no longer valid
	 */
795
	jbd2_journal_cancel_revoke(handle, jh);
796 797 798

out:
	if (unlikely(frozen_buffer))	/* It's usually NULL */
M
Mingming Cao 已提交
799
		jbd2_free(frozen_buffer, bh->b_size);
800 801 802 803 804 805

	JBUFFER_TRACE(jh, "exit");
	return error;
}

/**
806
 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
807 808 809 810 811 812 813 814 815 816
 * @handle: transaction to add buffer modifications to
 * @bh:     bh to be used for metadata writes
 * @credits: variable that will receive credits for the buffer
 *
 * Returns an error code or 0 on success.
 *
 * In full data journalling mode the buffer may be of type BJ_AsyncData,
 * because we're write()ing a buffer which is also part of a shared mapping.
 */

817
int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
818
{
819
	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
820 821 822 823 824 825
	int rc;

	/* We do not want to get caught playing with fields which the
	 * log thread also manipulates.  Make sure that the buffer
	 * completes any outstanding IO before proceeding. */
	rc = do_get_write_access(handle, jh, 0);
826
	jbd2_journal_put_journal_head(jh);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	return rc;
}


/*
 * When the user wants to journal a newly created buffer_head
 * (ie. getblk() returned a new buffer and we are going to populate it
 * manually rather than reading off disk), then we need to keep the
 * buffer_head locked until it has been completely filled with new
 * data.  In this case, we should be able to make the assertion that
 * the bh is not already part of an existing transaction.
 *
 * The buffer should already be locked by the caller by this point.
 * There is no lock ranking violation: it was a newly created,
 * unlocked buffer beforehand. */

/**
844
 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
845 846 847 848 849
 * @handle: transaction to new buffer to
 * @bh: new buffer.
 *
 * Call this if you create a new bh.
 */
850
int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
851 852 853
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;
854
	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	int err;

	jbd_debug(5, "journal_head %p\n", jh);
	err = -EROFS;
	if (is_handle_aborted(handle))
		goto out;
	err = 0;

	JBUFFER_TRACE(jh, "entry");
	/*
	 * The buffer may already belong to this transaction due to pre-zeroing
	 * in the filesystem's new_block code.  It may also be on the previous,
	 * committing transaction's lists, but it HAS to be in Forget state in
	 * that case: the transaction must have deleted the buffer for it to be
	 * reused here.
	 */
	jbd_lock_bh_state(bh);
	spin_lock(&journal->j_list_lock);
	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
		jh->b_transaction == NULL ||
		(jh->b_transaction == journal->j_committing_transaction &&
			  jh->b_jlist == BJ_Forget)));

	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));

	if (jh->b_transaction == NULL) {
882 883 884 885 886 887 888 889 890
		/*
		 * Previous jbd2_journal_forget() could have left the buffer
		 * with jbddirty bit set because it was being committed. When
		 * the commit finished, we've filed the buffer for
		 * checkpointing and marked it dirty. Now we are reallocating
		 * the buffer so the transaction freeing it must have
		 * committed and so it's safe to clear the dirty bit.
		 */
		clear_buffer_dirty(jh2bh(jh));
891
		jh->b_transaction = transaction;
892 893 894 895

		/* first access by this transaction */
		jh->b_modified = 0;

896
		JBUFFER_TRACE(jh, "file as BJ_Reserved");
897
		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
898
	} else if (jh->b_transaction == journal->j_committing_transaction) {
899 900 901
		/* first access by this transaction */
		jh->b_modified = 0;

902 903 904 905 906 907 908 909 910 911 912 913 914 915
		JBUFFER_TRACE(jh, "set next transaction");
		jh->b_next_transaction = transaction;
	}
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh);

	/*
	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
	 * blocks which contain freed but then revoked metadata.  We need
	 * to cancel the revoke in case we end up freeing it yet again
	 * and the reallocating as data - this would cause a second revoke,
	 * which hits an assertion error.
	 */
	JBUFFER_TRACE(jh, "cancelling revoke");
916 917
	jbd2_journal_cancel_revoke(handle, jh);
	jbd2_journal_put_journal_head(jh);
918 919 920 921 922
out:
	return err;
}

/**
923
 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
924 925 926 927 928 929 930 931 932 933 934 935
 *     non-rewindable consequences
 * @handle: transaction
 * @bh: buffer to undo
 * @credits: store the number of taken credits here (if not NULL)
 *
 * Sometimes there is a need to distinguish between metadata which has
 * been committed to disk and that which has not.  The ext3fs code uses
 * this for freeing and allocating space, we have to make sure that we
 * do not reuse freed space until the deallocation has been committed,
 * since if we overwrote that space we would make the delete
 * un-rewindable in case of a crash.
 *
936
 * To deal with that, jbd2_journal_get_undo_access requests write access to a
937 938 939 940 941 942 943 944 945 946 947 948
 * buffer for parts of non-rewindable operations such as delete
 * operations on the bitmaps.  The journaling code must keep a copy of
 * the buffer's contents prior to the undo_access call until such time
 * as we know that the buffer has definitely been committed to disk.
 *
 * We never need to know which transaction the committed data is part
 * of, buffers touched here are guaranteed to be dirtied later and so
 * will be committed to a new transaction in due course, at which point
 * we can discard the old committed data pointer.
 *
 * Returns error number or 0 on success.
 */
949
int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
950 951
{
	int err;
952
	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	char *committed_data = NULL;

	JBUFFER_TRACE(jh, "entry");

	/*
	 * Do this first --- it can drop the journal lock, so we want to
	 * make sure that obtaining the committed_data is done
	 * atomically wrt. completion of any outstanding commits.
	 */
	err = do_get_write_access(handle, jh, 1);
	if (err)
		goto out;

repeat:
	if (!jh->b_committed_data) {
M
Mingming Cao 已提交
968
		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
969 970
		if (!committed_data) {
			printk(KERN_EMERG "%s: No memory for committed data\n",
971
				__func__);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
			err = -ENOMEM;
			goto out;
		}
	}

	jbd_lock_bh_state(bh);
	if (!jh->b_committed_data) {
		/* Copy out the current buffer contents into the
		 * preserved, committed copy. */
		JBUFFER_TRACE(jh, "generate b_committed data");
		if (!committed_data) {
			jbd_unlock_bh_state(bh);
			goto repeat;
		}

		jh->b_committed_data = committed_data;
		committed_data = NULL;
		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
	}
	jbd_unlock_bh_state(bh);
out:
993
	jbd2_journal_put_journal_head(jh);
994
	if (unlikely(committed_data))
M
Mingming Cao 已提交
995
		jbd2_free(committed_data, bh->b_size);
996 997 998
	return err;
}

J
Joel Becker 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/**
 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
 * @bh: buffer to trigger on
 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
 *
 * Set any triggers on this journal_head.  This is always safe, because
 * triggers for a committing buffer will be saved off, and triggers for
 * a running transaction will match the buffer in that transaction.
 *
 * Call with NULL to clear the triggers.
 */
void jbd2_journal_set_triggers(struct buffer_head *bh,
			       struct jbd2_buffer_trigger_type *type)
{
	struct journal_head *jh = bh2jh(bh);

	jh->b_triggers = type;
}

1018
void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
J
Joel Becker 已提交
1019 1020 1021 1022
				struct jbd2_buffer_trigger_type *triggers)
{
	struct buffer_head *bh = jh2bh(jh);

1023
	if (!triggers || !triggers->t_frozen)
J
Joel Becker 已提交
1024 1025
		return;

1026
	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
J
Joel Becker 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
}

void jbd2_buffer_abort_trigger(struct journal_head *jh,
			       struct jbd2_buffer_trigger_type *triggers)
{
	if (!triggers || !triggers->t_abort)
		return;

	triggers->t_abort(triggers, jh2bh(jh));
}



1040
/**
1041
 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
 * @handle: transaction to add buffer to.
 * @bh: buffer to mark
 *
 * mark dirty metadata which needs to be journaled as part of the current
 * transaction.
 *
 * The buffer is placed on the transaction's metadata list and is marked
 * as belonging to the transaction.
 *
 * Returns error number or 0 on success.
 *
 * Special care needs to be taken if the buffer already belongs to the
 * current committing transaction (in which case we should have frozen
 * data present for that commit).  In that case, we don't relink the
 * buffer: that only gets done when the old transaction finally
 * completes its commit.
 */
1059
int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;
	struct journal_head *jh = bh2jh(bh);

	jbd_debug(5, "journal_head %p\n", jh);
	JBUFFER_TRACE(jh, "entry");
	if (is_handle_aborted(handle))
		goto out;

	jbd_lock_bh_state(bh);

	if (jh->b_modified == 0) {
		/*
		 * This buffer's got modified and becoming part
		 * of the transaction. This needs to be done
		 * once a transaction -bzzz
		 */
		jh->b_modified = 1;
		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
		handle->h_buffer_credits--;
	}

	/*
	 * fastpath, to avoid expensive locking.  If this buffer is already
	 * on the running transaction's metadata list there is nothing to do.
	 * Nobody can take it off again because there is a handle open.
	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
	 * result in this test being false, so we go in and take the locks.
	 */
	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
		JBUFFER_TRACE(jh, "fastpath");
		J_ASSERT_JH(jh, jh->b_transaction ==
					journal->j_running_transaction);
		goto out_unlock_bh;
	}

	set_buffer_jbddirty(bh);

	/*
	 * Metadata already on the current transaction list doesn't
	 * need to be filed.  Metadata on another transaction's list must
	 * be committing, and will be refiled once the commit completes:
	 * leave it alone for now.
	 */
	if (jh->b_transaction != transaction) {
		JBUFFER_TRACE(jh, "already on other transaction");
		J_ASSERT_JH(jh, jh->b_transaction ==
					journal->j_committing_transaction);
		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
		/* And this case is illegal: we can't reuse another
		 * transaction's data buffer, ever. */
		goto out_unlock_bh;
	}

	/* That test should have eliminated the following case: */
1116
	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1117 1118 1119

	JBUFFER_TRACE(jh, "file as BJ_Metadata");
	spin_lock(&journal->j_list_lock);
1120
	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1121 1122 1123 1124 1125 1126 1127 1128 1129
	spin_unlock(&journal->j_list_lock);
out_unlock_bh:
	jbd_unlock_bh_state(bh);
out:
	JBUFFER_TRACE(jh, "exit");
	return 0;
}

/*
1130
 * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1131 1132 1133 1134
 * updates, if the update decided in the end that it didn't need access.
 *
 */
void
1135
jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1136 1137 1138 1139 1140
{
	BUFFER_TRACE(bh, "entry");
}

/**
1141
 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
 * @handle: transaction handle
 * @bh:     bh to 'forget'
 *
 * We can only do the bforget if there are no commits pending against the
 * buffer.  If the buffer is dirty in the current running transaction we
 * can safely unlink it.
 *
 * bh may not be a journalled buffer at all - it may be a non-JBD
 * buffer which came off the hashtable.  Check for this.
 *
 * Decrements bh->b_count by one.
 *
 * Allow this call even if the handle has aborted --- it may be part of
 * the caller's cleanup after an abort.
 */
1157
int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1158 1159 1160 1161 1162 1163
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;
	struct journal_head *jh;
	int drop_reserve = 0;
	int err = 0;
1164
	int was_modified = 0;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	BUFFER_TRACE(bh, "entry");

	jbd_lock_bh_state(bh);
	spin_lock(&journal->j_list_lock);

	if (!buffer_jbd(bh))
		goto not_jbd;
	jh = bh2jh(bh);

	/* Critical error: attempting to delete a bitmap buffer, maybe?
	 * Don't do any jbd operations, and return an error. */
	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
			 "inconsistent data on disk")) {
		err = -EIO;
		goto not_jbd;
	}

1183 1184 1185
	/* keep track of wether or not this transaction modified us */
	was_modified = jh->b_modified;

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/*
	 * The buffer's going from the transaction, we must drop
	 * all references -bzzz
	 */
	jh->b_modified = 0;

	if (jh->b_transaction == handle->h_transaction) {
		J_ASSERT_JH(jh, !jh->b_frozen_data);

		/* If we are forgetting a buffer which is already part
		 * of this transaction, then we can just drop it from
		 * the transaction immediately. */
		clear_buffer_dirty(bh);
		clear_buffer_jbddirty(bh);

		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");

1203 1204 1205 1206 1207 1208
		/*
		 * we only want to drop a reference if this transaction
		 * modified the buffer
		 */
		if (was_modified)
			drop_reserve = 1;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

		/*
		 * We are no longer going to journal this buffer.
		 * However, the commit of this transaction is still
		 * important to the buffer: the delete that we are now
		 * processing might obsolete an old log entry, so by
		 * committing, we can satisfy the buffer's checkpoint.
		 *
		 * So, if we have a checkpoint on the buffer, we should
		 * now refile the buffer on our BJ_Forget list so that
		 * we know to remove the checkpoint after we commit.
		 */

		if (jh->b_cp_transaction) {
1223 1224
			__jbd2_journal_temp_unlink_buffer(jh);
			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1225
		} else {
1226 1227
			__jbd2_journal_unfile_buffer(jh);
			jbd2_journal_remove_journal_head(bh);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
			__brelse(bh);
			if (!buffer_jbd(bh)) {
				spin_unlock(&journal->j_list_lock);
				jbd_unlock_bh_state(bh);
				__bforget(bh);
				goto drop;
			}
		}
	} else if (jh->b_transaction) {
		J_ASSERT_JH(jh, (jh->b_transaction ==
				 journal->j_committing_transaction));
		/* However, if the buffer is still owned by a prior
		 * (committing) transaction, we can't drop it yet... */
		JBUFFER_TRACE(jh, "belongs to older transaction");
		/* ... but we CAN drop it from the new transaction if we
		 * have also modified it since the original commit. */

		if (jh->b_next_transaction) {
			J_ASSERT(jh->b_next_transaction == transaction);
			jh->b_next_transaction = NULL;
1248 1249 1250 1251 1252 1253 1254

			/*
			 * only drop a reference if this transaction modified
			 * the buffer
			 */
			if (was_modified)
				drop_reserve = 1;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		}
	}

not_jbd:
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh);
	__brelse(bh);
drop:
	if (drop_reserve) {
		/* no need to reserve log space for this block -bzzz */
		handle->h_buffer_credits++;
	}
	return err;
}

/**
1271
 * int jbd2_journal_stop() - complete a transaction
1272 1273 1274 1275 1276 1277 1278 1279 1280
 * @handle: tranaction to complete.
 *
 * All done for a particular handle.
 *
 * There is not much action needed here.  We just return any remaining
 * buffer credits to the transaction and remove the handle.  The only
 * complication is that we need to start a commit operation if the
 * filesystem is marked for synchronous update.
 *
1281
 * jbd2_journal_stop itself will not usually return an error, but it may
1282
 * do so in unusual circumstances.  In particular, expect it to
1283
 * return -EIO if a jbd2_journal_abort has been executed since the
1284 1285
 * transaction began.
 */
1286
int jbd2_journal_stop(handle_t *handle)
1287 1288 1289
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;
1290 1291
	int err, wait_for_commit = 0;
	tid_t tid;
1292 1293 1294 1295 1296 1297
	pid_t pid;

	J_ASSERT(journal_current_handle() == handle);

	if (is_handle_aborted(handle))
		err = -EIO;
1298
	else {
1299
		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1300
		err = 0;
1301
	}
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

	if (--handle->h_ref > 0) {
		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
			  handle->h_ref);
		return err;
	}

	jbd_debug(4, "Handle %p going down\n", handle);

	/*
	 * Implement synchronous transaction batching.  If the handle
	 * was synchronous, don't force a commit immediately.  Let's
J
Josef Bacik 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	 * yield and let another thread piggyback onto this
	 * transaction.  Keep doing that while new threads continue to
	 * arrive.  It doesn't cost much - we're about to run a commit
	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
	 * operations by 30x or more...
	 *
	 * We try and optimize the sleep time against what the
	 * underlying disk can do, instead of having a static sleep
	 * time.  This is useful for the case where our storage is so
	 * fast that it is more optimal to go ahead and force a flush
	 * and wait for the transaction to be committed than it is to
	 * wait for an arbitrary amount of time for new writers to
	 * join the transaction.  We achieve this by measuring how
	 * long it takes to commit a transaction, and compare it with
	 * how long this transaction has been running, and if run time
	 * < commit time then we sleep for the delta and commit.  This
	 * greatly helps super fast disks that would see slowdowns as
	 * more threads started doing fsyncs.
1332
	 *
J
Josef Bacik 已提交
1333 1334 1335 1336
	 * But don't do this if this process was the most recent one
	 * to perform a synchronous write.  We do this to detect the
	 * case where a single process is doing a stream of sync
	 * writes.  No point in waiting for joiners in that case.
1337 1338 1339
	 */
	pid = current->pid;
	if (handle->h_sync && journal->j_last_sync_writer != pid) {
J
Josef Bacik 已提交
1340 1341
		u64 commit_time, trans_time;

1342
		journal->j_last_sync_writer = pid;
J
Josef Bacik 已提交
1343

1344
		read_lock(&journal->j_state_lock);
J
Josef Bacik 已提交
1345
		commit_time = journal->j_average_commit_time;
1346
		read_unlock(&journal->j_state_lock);
J
Josef Bacik 已提交
1347 1348 1349 1350

		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
						   transaction->t_start_time));

1351 1352
		commit_time = max_t(u64, commit_time,
				    1000*journal->j_min_batch_time);
J
Josef Bacik 已提交
1353
		commit_time = min_t(u64, commit_time,
1354
				    1000*journal->j_max_batch_time);
J
Josef Bacik 已提交
1355 1356 1357 1358 1359 1360 1361

		if (trans_time < commit_time) {
			ktime_t expires = ktime_add_ns(ktime_get(),
						       commit_time);
			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
		}
1362 1363
	}

1364 1365
	if (handle->h_sync)
		transaction->t_synchronous_commit = 1;
1366
	current->journal_info = NULL;
1367 1368
	atomic_sub(handle->h_buffer_credits,
		   &transaction->t_outstanding_credits);
1369 1370 1371 1372 1373 1374 1375 1376

	/*
	 * If the handle is marked SYNC, we need to set another commit
	 * going!  We also want to force a commit if the current
	 * transaction is occupying too much of the log, or if the
	 * transaction is too old now.
	 */
	if (handle->h_sync ||
1377 1378 1379
	    (atomic_read(&transaction->t_outstanding_credits) >
	     journal->j_max_transaction_buffers) ||
	    time_after_eq(jiffies, transaction->t_expires)) {
1380 1381 1382 1383 1384 1385 1386
		/* Do this even for aborted journals: an abort still
		 * completes the commit thread, it just doesn't write
		 * anything to disk. */

		jbd_debug(2, "transaction too old, requesting commit for "
					"handle %p\n", handle);
		/* This is non-blocking */
1387
		jbd2_log_start_commit(journal, transaction->t_tid);
1388 1389

		/*
1390
		 * Special case: JBD2_SYNC synchronous updates require us
1391 1392 1393
		 * to wait for the commit to complete.
		 */
		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1394
			wait_for_commit = 1;
1395 1396
	}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	/*
	 * Once we drop t_updates, if it goes to zero the transaction
	 * could start commiting on us and eventually disappear.  So
	 * once we do this, we must not dereference transaction
	 * pointer again.
	 */
	tid = transaction->t_tid;
	if (atomic_dec_and_test(&transaction->t_updates)) {
		wake_up(&journal->j_wait_updates);
		if (journal->j_barrier_count)
			wake_up(&journal->j_wait_transaction_locked);
	}

	if (wait_for_commit)
		err = jbd2_log_wait_commit(journal, tid);

1413
	lock_map_release(&handle->h_lockdep_map);
M
Mingming Cao 已提交
1414

M
Mingming Cao 已提交
1415
	jbd2_free_handle(handle);
1416 1417 1418
	return err;
}

R
Randy Dunlap 已提交
1419 1420
/**
 * int jbd2_journal_force_commit() - force any uncommitted transactions
1421 1422 1423 1424 1425 1426
 * @journal: journal to force
 *
 * For synchronous operations: force any uncommitted transactions
 * to disk.  May seem kludgy, but it reuses all the handle batching
 * code in a very simple manner.
 */
1427
int jbd2_journal_force_commit(journal_t *journal)
1428 1429 1430 1431
{
	handle_t *handle;
	int ret;

1432
	handle = jbd2_journal_start(journal, 1);
1433 1434 1435 1436
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
	} else {
		handle->h_sync = 1;
1437
		ret = jbd2_journal_stop(handle);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	}
	return ret;
}

/*
 *
 * List management code snippets: various functions for manipulating the
 * transaction buffer lists.
 *
 */

/*
 * Append a buffer to a transaction list, given the transaction's list head
 * pointer.
 *
 * j_list_lock is held.
 *
 * jbd_lock_bh_state(jh2bh(jh)) is held.
 */

static inline void
__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
{
	if (!*list) {
		jh->b_tnext = jh->b_tprev = jh;
		*list = jh;
	} else {
		/* Insert at the tail of the list to preserve order */
		struct journal_head *first = *list, *last = first->b_tprev;
		jh->b_tprev = last;
		jh->b_tnext = first;
		last->b_tnext = first->b_tprev = jh;
	}
}

/*
 * Remove a buffer from a transaction list, given the transaction's list
 * head pointer.
 *
 * Called with j_list_lock held, and the journal may not be locked.
 *
 * jbd_lock_bh_state(jh2bh(jh)) is held.
 */

static inline void
__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
{
	if (*list == jh) {
		*list = jh->b_tnext;
		if (*list == jh)
			*list = NULL;
	}
	jh->b_tprev->b_tnext = jh->b_tnext;
	jh->b_tnext->b_tprev = jh->b_tprev;
}

/*
 * Remove a buffer from the appropriate transaction list.
 *
 * Note that this function can *change* the value of
1498 1499 1500 1501
 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
 * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
 * of these pointers, it could go bad.  Generally the caller needs to re-read
 * the pointer from the transaction_t.
1502 1503 1504
 *
 * Called under j_list_lock.  The journal may not be locked.
 */
1505
void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
{
	struct journal_head **list = NULL;
	transaction_t *transaction;
	struct buffer_head *bh = jh2bh(jh);

	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
	transaction = jh->b_transaction;
	if (transaction)
		assert_spin_locked(&transaction->t_journal->j_list_lock);

	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
	if (jh->b_jlist != BJ_None)
1518
		J_ASSERT_JH(jh, transaction != NULL);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	switch (jh->b_jlist) {
	case BJ_None:
		return;
	case BJ_Metadata:
		transaction->t_nr_buffers--;
		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
		list = &transaction->t_buffers;
		break;
	case BJ_Forget:
		list = &transaction->t_forget;
		break;
	case BJ_IO:
		list = &transaction->t_iobuf_list;
		break;
	case BJ_Shadow:
		list = &transaction->t_shadow_list;
		break;
	case BJ_LogCtl:
		list = &transaction->t_log_list;
		break;
	case BJ_Reserved:
		list = &transaction->t_reserved_list;
		break;
	}

	__blist_del_buffer(list, jh);
	jh->b_jlist = BJ_None;
	if (test_clear_buffer_jbddirty(bh))
		mark_buffer_dirty(bh);	/* Expose it to the VM */
}

1551
void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1552
{
1553
	__jbd2_journal_temp_unlink_buffer(jh);
1554 1555 1556
	jh->b_transaction = NULL;
}

1557
void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1558 1559 1560
{
	jbd_lock_bh_state(jh2bh(jh));
	spin_lock(&journal->j_list_lock);
1561
	__jbd2_journal_unfile_buffer(jh);
1562 1563 1564 1565 1566
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(jh2bh(jh));
}

/*
1567
 * Called from jbd2_journal_try_to_free_buffers().
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
 *
 * Called under jbd_lock_bh_state(bh)
 */
static void
__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
{
	struct journal_head *jh;

	jh = bh2jh(bh);

	if (buffer_locked(bh) || buffer_dirty(bh))
		goto out;

1581
	if (jh->b_next_transaction != NULL)
1582 1583 1584
		goto out;

	spin_lock(&journal->j_list_lock);
1585
	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1586 1587 1588
		/* written-back checkpointed metadata buffer */
		if (jh->b_jlist == BJ_None) {
			JBUFFER_TRACE(jh, "remove from checkpoint list");
1589 1590
			__jbd2_journal_remove_checkpoint(jh);
			jbd2_journal_remove_journal_head(bh);
1591 1592 1593 1594 1595 1596 1597 1598 1599
			__brelse(bh);
		}
	}
	spin_unlock(&journal->j_list_lock);
out:
	return;
}

/**
1600
 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1601 1602
 * @journal: journal for operation
 * @page: to try and free
1603 1604 1605
 * @gfp_mask: we use the mask to detect how hard should we try to release
 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
 * release the buffers.
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 *
 *
 * For all the buffers on this page,
 * if they are fully written out ordered data, move them onto BUF_CLEAN
 * so try_to_free_buffers() can reap them.
 *
 * This function returns non-zero if we wish try_to_free_buffers()
 * to be called. We do this if the page is releasable by try_to_free_buffers().
 * We also do it if the page has locked or dirty buffers and the caller wants
 * us to perform sync or async writeout.
 *
 * This complicates JBD locking somewhat.  We aren't protected by the
 * BKL here.  We wish to remove the buffer from its committing or
1619
 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1620 1621 1622 1623
 *
 * This may *change* the value of transaction_t->t_datalist, so anyone
 * who looks at t_datalist needs to lock against this function.
 *
1624 1625
 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1626 1627 1628 1629 1630 1631 1632 1633
 * will come out of the lock with the buffer dirty, which makes it
 * ineligible for release here.
 *
 * Who else is affected by this?  hmm...  Really the only contender
 * is do_get_write_access() - it could be looking at the buffer while
 * journal_try_to_free_buffer() is changing its state.  But that
 * cannot happen because we never reallocate freed data as metadata
 * while the data is part of a transaction.  Yes?
1634 1635
 *
 * Return 0 on failure, 1 on success
1636
 */
1637
int jbd2_journal_try_to_free_buffers(journal_t *journal,
1638
				struct page *page, gfp_t gfp_mask)
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
{
	struct buffer_head *head;
	struct buffer_head *bh;
	int ret = 0;

	J_ASSERT(PageLocked(page));

	head = page_buffers(page);
	bh = head;
	do {
		struct journal_head *jh;

		/*
		 * We take our own ref against the journal_head here to avoid
		 * having to add tons of locking around each instance of
1654 1655
		 * jbd2_journal_remove_journal_head() and
		 * jbd2_journal_put_journal_head().
1656
		 */
1657
		jh = jbd2_journal_grab_journal_head(bh);
1658 1659 1660 1661 1662
		if (!jh)
			continue;

		jbd_lock_bh_state(bh);
		__journal_try_to_free_buffer(journal, bh);
1663
		jbd2_journal_put_journal_head(jh);
1664 1665 1666 1667
		jbd_unlock_bh_state(bh);
		if (buffer_jbd(bh))
			goto busy;
	} while ((bh = bh->b_this_page) != head);
1668

1669
	ret = try_to_free_buffers(page);
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
busy:
	return ret;
}

/*
 * This buffer is no longer needed.  If it is on an older transaction's
 * checkpoint list we need to record it on this transaction's forget list
 * to pin this buffer (and hence its checkpointing transaction) down until
 * this transaction commits.  If the buffer isn't on a checkpoint list, we
 * release it.
 * Returns non-zero if JBD no longer has an interest in the buffer.
 *
 * Called under j_list_lock.
 *
 * Called under jbd_lock_bh_state(bh).
 */
static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
{
	int may_free = 1;
	struct buffer_head *bh = jh2bh(jh);

1692
	__jbd2_journal_unfile_buffer(jh);
1693 1694 1695

	if (jh->b_cp_transaction) {
		JBUFFER_TRACE(jh, "on running+cp transaction");
1696 1697 1698 1699 1700 1701
		/*
		 * We don't want to write the buffer anymore, clear the
		 * bit so that we don't confuse checks in
		 * __journal_file_buffer
		 */
		clear_buffer_dirty(bh);
1702
		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1703 1704 1705
		may_free = 0;
	} else {
		JBUFFER_TRACE(jh, "on running transaction");
1706
		jbd2_journal_remove_journal_head(bh);
1707 1708 1709 1710 1711 1712
		__brelse(bh);
	}
	return may_free;
}

/*
1713
 * jbd2_journal_invalidatepage
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
 *
 * This code is tricky.  It has a number of cases to deal with.
 *
 * There are two invariants which this code relies on:
 *
 * i_size must be updated on disk before we start calling invalidatepage on the
 * data.
 *
 *  This is done in ext3 by defining an ext3_setattr method which
 *  updates i_size before truncate gets going.  By maintaining this
 *  invariant, we can be sure that it is safe to throw away any buffers
 *  attached to the current transaction: once the transaction commits,
 *  we know that the data will not be needed.
 *
 *  Note however that we can *not* throw away data belonging to the
 *  previous, committing transaction!
 *
 * Any disk blocks which *are* part of the previous, committing
 * transaction (and which therefore cannot be discarded immediately) are
 * not going to be reused in the new running transaction
 *
 *  The bitmap committed_data images guarantee this: any block which is
 *  allocated in one transaction and removed in the next will be marked
 *  as in-use in the committed_data bitmap, so cannot be reused until
 *  the next transaction to delete the block commits.  This means that
 *  leaving committing buffers dirty is quite safe: the disk blocks
 *  cannot be reallocated to a different file and so buffer aliasing is
 *  not possible.
 *
 *
 * The above applies mainly to ordered data mode.  In writeback mode we
 * don't make guarantees about the order in which data hits disk --- in
 * particular we don't guarantee that new dirty data is flushed before
 * transaction commit --- so it is always safe just to discard data
 * immediately in that mode.  --sct
 */

/*
 * The journal_unmap_buffer helper function returns zero if the buffer
 * concerned remains pinned as an anonymous buffer belonging to an older
 * transaction.
 *
 * We're outside-transaction here.  Either or both of j_running_transaction
 * and j_committing_transaction may be NULL.
 */
static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
{
	transaction_t *transaction;
	struct journal_head *jh;
	int may_free = 1;
	int ret;

	BUFFER_TRACE(bh, "entry");

	/*
	 * It is safe to proceed here without the j_list_lock because the
	 * buffers cannot be stolen by try_to_free_buffers as long as we are
	 * holding the page lock. --sct
	 */

	if (!buffer_jbd(bh))
		goto zap_buffer_unlocked;

1777
	/* OK, we have data buffer in journaled mode */
1778
	write_lock(&journal->j_state_lock);
1779 1780 1781
	jbd_lock_bh_state(bh);
	spin_lock(&journal->j_list_lock);

1782
	jh = jbd2_journal_grab_journal_head(bh);
1783 1784 1785
	if (!jh)
		goto zap_buffer_no_jh;

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/*
	 * We cannot remove the buffer from checkpoint lists until the
	 * transaction adding inode to orphan list (let's call it T)
	 * is committed.  Otherwise if the transaction changing the
	 * buffer would be cleaned from the journal before T is
	 * committed, a crash will cause that the correct contents of
	 * the buffer will be lost.  On the other hand we have to
	 * clear the buffer dirty bit at latest at the moment when the
	 * transaction marking the buffer as freed in the filesystem
	 * structures is committed because from that moment on the
	 * buffer can be reallocated and used by a different page.
	 * Since the block hasn't been freed yet but the inode has
	 * already been added to orphan list, it is safe for us to add
	 * the buffer to BJ_Forget list of the newest transaction.
	 */
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	transaction = jh->b_transaction;
	if (transaction == NULL) {
		/* First case: not on any transaction.  If it
		 * has no checkpoint link, then we can zap it:
		 * it's a writeback-mode buffer so we don't care
		 * if it hits disk safely. */
		if (!jh->b_cp_transaction) {
			JBUFFER_TRACE(jh, "not on any transaction: zap");
			goto zap_buffer;
		}

		if (!buffer_dirty(bh)) {
			/* bdflush has written it.  We can drop it now */
			goto zap_buffer;
		}

		/* OK, it must be in the journal but still not
		 * written fully to disk: it's metadata or
		 * journaled data... */

		if (journal->j_running_transaction) {
			/* ... and once the current transaction has
			 * committed, the buffer won't be needed any
			 * longer. */
			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
			ret = __dispose_buffer(jh,
					journal->j_running_transaction);
1828
			jbd2_journal_put_journal_head(jh);
1829 1830
			spin_unlock(&journal->j_list_lock);
			jbd_unlock_bh_state(bh);
1831
			write_unlock(&journal->j_state_lock);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
			return ret;
		} else {
			/* There is no currently-running transaction. So the
			 * orphan record which we wrote for this file must have
			 * passed into commit.  We must attach this buffer to
			 * the committing transaction, if it exists. */
			if (journal->j_committing_transaction) {
				JBUFFER_TRACE(jh, "give to committing trans");
				ret = __dispose_buffer(jh,
					journal->j_committing_transaction);
1842
				jbd2_journal_put_journal_head(jh);
1843 1844
				spin_unlock(&journal->j_list_lock);
				jbd_unlock_bh_state(bh);
1845
				write_unlock(&journal->j_state_lock);
1846 1847 1848 1849 1850 1851 1852 1853 1854
				return ret;
			} else {
				/* The orphan record's transaction has
				 * committed.  We can cleanse this buffer */
				clear_buffer_jbddirty(bh);
				goto zap_buffer;
			}
		}
	} else if (transaction == journal->j_committing_transaction) {
1855
		JBUFFER_TRACE(jh, "on committing transaction");
1856
		/*
1857 1858 1859 1860 1861 1862
		 * The buffer is committing, we simply cannot touch
		 * it. So we just set j_next_transaction to the
		 * running transaction (if there is one) and mark
		 * buffer as freed so that commit code knows it should
		 * clear dirty bits when it is done with the buffer.
		 */
1863
		set_buffer_freed(bh);
1864 1865
		if (journal->j_running_transaction && buffer_jbddirty(bh))
			jh->b_next_transaction = journal->j_running_transaction;
1866
		jbd2_journal_put_journal_head(jh);
1867 1868
		spin_unlock(&journal->j_list_lock);
		jbd_unlock_bh_state(bh);
1869
		write_unlock(&journal->j_state_lock);
1870 1871 1872 1873 1874 1875 1876 1877 1878
		return 0;
	} else {
		/* Good, the buffer belongs to the running transaction.
		 * We are writing our own transaction's data, not any
		 * previous one's, so it is safe to throw it away
		 * (remember that we expect the filesystem to have set
		 * i_size already for this truncate so recovery will not
		 * expose the disk blocks we are discarding here.) */
		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1879
		JBUFFER_TRACE(jh, "on running transaction");
1880 1881 1882 1883
		may_free = __dispose_buffer(jh, transaction);
	}

zap_buffer:
1884
	jbd2_journal_put_journal_head(jh);
1885 1886 1887
zap_buffer_no_jh:
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh);
1888
	write_unlock(&journal->j_state_lock);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
zap_buffer_unlocked:
	clear_buffer_dirty(bh);
	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
	clear_buffer_mapped(bh);
	clear_buffer_req(bh);
	clear_buffer_new(bh);
	bh->b_bdev = NULL;
	return may_free;
}

/**
1900
 * void jbd2_journal_invalidatepage()
1901 1902 1903 1904 1905 1906 1907
 * @journal: journal to use for flush...
 * @page:    page to flush
 * @offset:  length of page to invalidate.
 *
 * Reap page buffers containing data after offset in page.
 *
 */
1908
void jbd2_journal_invalidatepage(journal_t *journal,
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		      struct page *page,
		      unsigned long offset)
{
	struct buffer_head *head, *bh, *next;
	unsigned int curr_off = 0;
	int may_free = 1;

	if (!PageLocked(page))
		BUG();
	if (!page_has_buffers(page))
		return;

	/* We will potentially be playing with lists other than just the
	 * data lists (especially for journaled data mode), so be
	 * cautious in our locking. */

	head = bh = page_buffers(page);
	do {
		unsigned int next_off = curr_off + bh->b_size;
		next = bh->b_this_page;

		if (offset <= curr_off) {
			/* This block is wholly outside the truncation point */
			lock_buffer(bh);
			may_free &= journal_unmap_buffer(journal, bh);
			unlock_buffer(bh);
		}
		curr_off = next_off;
		bh = next;

	} while (bh != head);

	if (!offset) {
		if (may_free && try_to_free_buffers(page))
			J_ASSERT(!page_has_buffers(page));
	}
}

/*
 * File a buffer on the given transaction list.
 */
1950
void __jbd2_journal_file_buffer(struct journal_head *jh,
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
			transaction_t *transaction, int jlist)
{
	struct journal_head **list = NULL;
	int was_dirty = 0;
	struct buffer_head *bh = jh2bh(jh);

	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
	assert_spin_locked(&transaction->t_journal->j_list_lock);

	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1962
				jh->b_transaction == NULL);
1963 1964 1965 1966 1967 1968

	if (jh->b_transaction && jh->b_jlist == jlist)
		return;

	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1969 1970 1971 1972 1973 1974 1975 1976 1977
		/*
		 * For metadata buffers, we track dirty bit in buffer_jbddirty
		 * instead of buffer_dirty. We should not see a dirty bit set
		 * here because we clear it in do_get_write_access but e.g.
		 * tune2fs can modify the sb and set the dirty bit at any time
		 * so we try to gracefully handle that.
		 */
		if (buffer_dirty(bh))
			warn_dirty_buffer(bh);
1978 1979 1980 1981 1982 1983
		if (test_clear_buffer_dirty(bh) ||
		    test_clear_buffer_jbddirty(bh))
			was_dirty = 1;
	}

	if (jh->b_transaction)
1984
		__jbd2_journal_temp_unlink_buffer(jh);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	jh->b_transaction = transaction;

	switch (jlist) {
	case BJ_None:
		J_ASSERT_JH(jh, !jh->b_committed_data);
		J_ASSERT_JH(jh, !jh->b_frozen_data);
		return;
	case BJ_Metadata:
		transaction->t_nr_buffers++;
		list = &transaction->t_buffers;
		break;
	case BJ_Forget:
		list = &transaction->t_forget;
		break;
	case BJ_IO:
		list = &transaction->t_iobuf_list;
		break;
	case BJ_Shadow:
		list = &transaction->t_shadow_list;
		break;
	case BJ_LogCtl:
		list = &transaction->t_log_list;
		break;
	case BJ_Reserved:
		list = &transaction->t_reserved_list;
		break;
	}

	__blist_add_buffer(list, jh);
	jh->b_jlist = jlist;

	if (was_dirty)
		set_buffer_jbddirty(bh);
}

2020
void jbd2_journal_file_buffer(struct journal_head *jh,
2021 2022 2023 2024
				transaction_t *transaction, int jlist)
{
	jbd_lock_bh_state(jh2bh(jh));
	spin_lock(&transaction->t_journal->j_list_lock);
2025
	__jbd2_journal_file_buffer(jh, transaction, jlist);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	spin_unlock(&transaction->t_journal->j_list_lock);
	jbd_unlock_bh_state(jh2bh(jh));
}

/*
 * Remove a buffer from its current buffer list in preparation for
 * dropping it from its current transaction entirely.  If the buffer has
 * already started to be used by a subsequent transaction, refile the
 * buffer on that transaction's metadata list.
 *
 * Called under journal->j_list_lock
 *
 * Called under jbd_lock_bh_state(jh2bh(jh))
 */
2040
void __jbd2_journal_refile_buffer(struct journal_head *jh)
2041
{
2042
	int was_dirty, jlist;
2043 2044 2045 2046 2047 2048 2049 2050
	struct buffer_head *bh = jh2bh(jh);

	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
	if (jh->b_transaction)
		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);

	/* If the buffer is now unused, just drop it. */
	if (jh->b_next_transaction == NULL) {
2051
		__jbd2_journal_unfile_buffer(jh);
2052 2053 2054 2055 2056 2057 2058 2059 2060
		return;
	}

	/*
	 * It has been modified by a later transaction: add it to the new
	 * transaction's metadata list.
	 */

	was_dirty = test_clear_buffer_jbddirty(bh);
2061
	__jbd2_journal_temp_unlink_buffer(jh);
2062 2063
	jh->b_transaction = jh->b_next_transaction;
	jh->b_next_transaction = NULL;
2064 2065 2066 2067 2068 2069 2070
	if (buffer_freed(bh))
		jlist = BJ_Forget;
	else if (jh->b_modified)
		jlist = BJ_Metadata;
	else
		jlist = BJ_Reserved;
	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);

	if (was_dirty)
		set_buffer_jbddirty(bh);
}

/*
 * For the unlocked version of this call, also make sure that any
 * hanging journal_head is cleaned up if necessary.
 *
2081
 * __jbd2_journal_refile_buffer is usually called as part of a single locked
2082 2083 2084
 * operation on a buffer_head, in which the caller is probably going to
 * be hooking the journal_head onto other lists.  In that case it is up
 * to the caller to remove the journal_head if necessary.  For the
2085
 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2086 2087 2088 2089 2090
 * doing anything else to the buffer so we need to do the cleanup
 * ourselves to avoid a jh leak.
 *
 * *** The journal_head may be freed by this call! ***
 */
2091
void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2092 2093 2094 2095 2096 2097
{
	struct buffer_head *bh = jh2bh(jh);

	jbd_lock_bh_state(bh);
	spin_lock(&journal->j_list_lock);

2098
	__jbd2_journal_refile_buffer(jh);
2099
	jbd_unlock_bh_state(bh);
2100
	jbd2_journal_remove_journal_head(bh);
2101 2102 2103 2104

	spin_unlock(&journal->j_list_lock);
	__brelse(bh);
}
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

/*
 * File inode in the inode list of the handle's transaction
 */
int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
{
	transaction_t *transaction = handle->h_transaction;
	journal_t *journal = transaction->t_journal;

	if (is_handle_aborted(handle))
		return -EIO;

	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
			transaction->t_tid);

	/*
	 * First check whether inode isn't already on the transaction's
	 * lists without taking the lock. Note that this check is safe
	 * without the lock as we cannot race with somebody removing inode
	 * from the transaction. The reason is that we remove inode from the
	 * transaction only in journal_release_jbd_inode() and when we commit
	 * the transaction. We are guarded from the first case by holding
	 * a reference to the inode. We are safe against the second case
	 * because if jinode->i_transaction == transaction, commit code
	 * cannot touch the transaction because we hold reference to it,
	 * and if jinode->i_next_transaction == transaction, commit code
	 * will only file the inode where we want it.
	 */
	if (jinode->i_transaction == transaction ||
	    jinode->i_next_transaction == transaction)
		return 0;

	spin_lock(&journal->j_list_lock);

	if (jinode->i_transaction == transaction ||
	    jinode->i_next_transaction == transaction)
		goto done;

	/* On some different transaction's list - should be
	 * the committing one */
	if (jinode->i_transaction) {
		J_ASSERT(jinode->i_next_transaction == NULL);
		J_ASSERT(jinode->i_transaction ==
					journal->j_committing_transaction);
		jinode->i_next_transaction = transaction;
		goto done;
	}
	/* Not on any transaction list... */
	J_ASSERT(!jinode->i_next_transaction);
	jinode->i_transaction = transaction;
	list_add(&jinode->i_list, &transaction->t_inode_list);
done:
	spin_unlock(&journal->j_list_lock);

	return 0;
}

/*
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
 * File truncate and transaction commit interact with each other in a
 * non-trivial way.  If a transaction writing data block A is
 * committing, we cannot discard the data by truncate until we have
 * written them.  Otherwise if we crashed after the transaction with
 * write has committed but before the transaction with truncate has
 * committed, we could see stale data in block A.  This function is a
 * helper to solve this problem.  It starts writeout of the truncated
 * part in case it is in the committing transaction.
 *
 * Filesystem code must call this function when inode is journaled in
 * ordered mode before truncation happens and after the inode has been
 * placed on orphan list with the new inode size. The second condition
 * avoids the race that someone writes new data and we start
 * committing the transaction after this function has been called but
 * before a transaction for truncate is started (and furthermore it
 * allows us to optimize the case where the addition to orphan list
 * happens in the same transaction as write --- we don't have to write
 * any data in such case).
2181
 */
2182 2183
int jbd2_journal_begin_ordered_truncate(journal_t *journal,
					struct jbd2_inode *jinode,
2184 2185
					loff_t new_size)
{
2186
	transaction_t *inode_trans, *commit_trans;
2187 2188
	int ret = 0;

2189 2190
	/* This is a quick check to avoid locking if not necessary */
	if (!jinode->i_transaction)
2191
		goto out;
2192 2193 2194
	/* Locks are here just to force reading of recent values, it is
	 * enough that the transaction was not committing before we started
	 * a transaction adding the inode to orphan list */
2195
	read_lock(&journal->j_state_lock);
2196
	commit_trans = journal->j_committing_transaction;
2197
	read_unlock(&journal->j_state_lock);
2198 2199 2200 2201 2202
	spin_lock(&journal->j_list_lock);
	inode_trans = jinode->i_transaction;
	spin_unlock(&journal->j_list_lock);
	if (inode_trans == commit_trans) {
		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2203 2204 2205 2206 2207 2208 2209
			new_size, LLONG_MAX);
		if (ret)
			jbd2_journal_abort(journal, ret);
	}
out:
	return ret;
}