vega10_hwmgr.c 172.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
23 24 25

#include <linux/delay.h>
#include <linux/fb.h>
26
#include <linux/module.h>
27
#include <linux/pci.h>
28 29 30 31 32 33 34 35 36 37 38 39
#include <linux/slab.h>

#include "hwmgr.h"
#include "amd_powerplay.h"
#include "hardwaremanager.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "cgs_common.h"
#include "vega10_powertune.h"
#include "smu9.h"
#include "smu9_driver_if.h"
#include "vega10_inc.h"
40
#include "soc15_common.h"
41 42
#include "pppcielanes.h"
#include "vega10_hwmgr.h"
43
#include "vega10_smumgr.h"
44 45 46 47 48 49
#include "vega10_processpptables.h"
#include "vega10_pptable.h"
#include "vega10_thermal.h"
#include "pp_debug.h"
#include "amd_pcie_helpers.h"
#include "ppinterrupt.h"
50
#include "pp_overdriver.h"
51
#include "pp_thermal.h"
52
#include "vega10_baco.h"
53

54 55 56
#include "smuio/smuio_9_0_offset.h"
#include "smuio/smuio_9_0_sh_mask.h"

57 58
#define HBM_MEMORY_CHANNEL_WIDTH    128

59
static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
#define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0

//DF_CS_AON0_DramBaseAddress0
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
typedef enum {
	CLK_SMNCLK = 0,
	CLK_SOCCLK,
	CLK_MP0CLK,
	CLK_MP1CLK,
	CLK_LCLK,
	CLK_DCEFCLK,
	CLK_VCLK,
	CLK_DCLK,
	CLK_ECLK,
	CLK_UCLK,
	CLK_GFXCLK,
	CLK_COUNT,
} CLOCK_ID_e;

91
static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
92

93
static struct vega10_power_state *cast_phw_vega10_power_state(
94 95 96 97 98 99 100 101 102
				  struct pp_hw_power_state *hw_ps)
{
	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
				"Invalid Powerstate Type!",
				 return NULL;);

	return (struct vega10_power_state *)hw_ps;
}

103
static const struct vega10_power_state *cast_const_phw_vega10_power_state(
104 105 106 107 108 109 110 111 112 113 114
				 const struct pp_hw_power_state *hw_ps)
{
	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
				"Invalid Powerstate Type!",
				 return NULL;);

	return (const struct vega10_power_state *)hw_ps;
}

static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
{
115
	struct vega10_hwmgr *data = hwmgr->backend;
116 117 118 119 120 121 122

	data->registry_data.sclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
	data->registry_data.socclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
	data->registry_data.mclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
123 124
	data->registry_data.pcie_dpm_key_disabled =
			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
125 126 127 128 129 130 131 132 133 134

	data->registry_data.dcefclk_dpm_key_disabled =
			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;

	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
		data->registry_data.power_containment_support = 1;
		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
		data->registry_data.enable_tdc_limit_feature = 1;
	}

135
	data->registry_data.clock_stretcher_support =
136
			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
137

138 139 140
	data->registry_data.ulv_support =
			hwmgr->feature_mask & PP_ULV_MASK ? true : false;

141 142
	data->registry_data.sclk_deep_sleep_support =
			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
143

144 145 146 147 148 149
	data->registry_data.disable_water_mark = 0;

	data->registry_data.fan_control_support = 1;
	data->registry_data.thermal_support = 1;
	data->registry_data.fw_ctf_enabled = 1;

150 151
	data->registry_data.avfs_support =
		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
152 153 154 155 156 157
	data->registry_data.led_dpm_enabled = 1;

	data->registry_data.vr0hot_enabled = 1;
	data->registry_data.vr1hot_enabled = 1;
	data->registry_data.regulator_hot_gpio_support = 1;

158 159 160 161 162 163 164 165 166 167 168 169 170
	data->registry_data.didt_support = 1;
	if (data->registry_data.didt_support) {
		data->registry_data.didt_mode = 6;
		data->registry_data.sq_ramping_support = 1;
		data->registry_data.db_ramping_support = 0;
		data->registry_data.td_ramping_support = 0;
		data->registry_data.tcp_ramping_support = 0;
		data->registry_data.dbr_ramping_support = 0;
		data->registry_data.edc_didt_support = 1;
		data->registry_data.gc_didt_support = 0;
		data->registry_data.psm_didt_support = 0;
	}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;

	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
}

static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
{
193
	struct vega10_hwmgr *data = hwmgr->backend;
194 195
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
196
	struct amdgpu_device *adev = hwmgr->adev;
197 198 199 200 201 202 203 204 205 206 207 208 209 210

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DynamicPatchPowerState);

	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ControlVDDCI);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableSMU7ThermalManagement);

211
	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
212 213 214
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_UVDPowerGating);

215
	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_VCEPowerGating);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UnTabledHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_FanSpeedInTableIsRPM);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ODFuzzyFanControlSupport);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_DynamicPowerManagement);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SMC);

	/* power tune caps */
	/* assume disabled */
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PowerContainment);
238 239
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DiDtSupport);
240 241 242 243 244 245 246 247
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SQRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DBRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TDRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TCPRamping);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DBRRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DiDtEDCEnable);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_GCEDC);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PSM);

	if (data->registry_data.didt_support) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
		if (data->registry_data.sq_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
		if (data->registry_data.db_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
		if (data->registry_data.td_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
		if (data->registry_data.tcp_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
		if (data->registry_data.dbr_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
		if (data->registry_data.edc_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
		if (data->registry_data.gc_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
		if (data->registry_data.psm_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
	}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

	if (data->registry_data.power_containment_support)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_PowerContainment);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_CAC);

	if (table_info->tdp_table->usClockStretchAmount &&
			data->registry_data.clock_stretcher_support)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ClockStretcher);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UVDDPM);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_VCEDPM);

	return 0;
}

301 302 303 304 305 306 307 308 309 310
static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
	struct vega10_odn_vddc_lookup_table *od_lookup_table;
	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
311
	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
312
	uint32_t i;
313 314 315 316 317 318 319
	int result;

	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
	if (!result) {
		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
	}
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	od_lookup_table = &odn_table->vddc_lookup_table;
	vddc_lookup_table = table_info->vddc_lookup_table;

	for (i = 0; i < vddc_lookup_table->count; i++)
		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;

	od_lookup_table->count = vddc_lookup_table->count;

	dep_table[0] = table_info->vdd_dep_on_sclk;
	dep_table[1] = table_info->vdd_dep_on_mclk;
	dep_table[2] = table_info->vdd_dep_on_socclk;
	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;

	for (i = 0; i < 3; i++)
		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);

	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
		odn_table->min_vddc = dep_table[0]->entries[0].vddc;

	i = od_table[2]->count - 1;
345 346 347 348 349 350
	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
					od_table[2]->entries[i].clk;
	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
					odn_table->max_vddc :
					od_table[2]->entries[i].vddc;
351 352 353 354

	return 0;
}

355 356
static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
357
	struct vega10_hwmgr *data = hwmgr->backend;
358
	int i;
359
	uint32_t sub_vendor_id, hw_revision;
360
	uint32_t top32, bottom32;
361
	struct amdgpu_device *adev = hwmgr->adev;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

	vega10_initialize_power_tune_defaults(hwmgr);

	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
		data->smu_features[i].smu_feature_id = 0xffff;
		data->smu_features[i].smu_feature_bitmap = 1 << i;
		data->smu_features[i].enabled = false;
		data->smu_features[i].supported = false;
	}

	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
			FEATURE_DPM_PREFETCHER_BIT;
	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
			FEATURE_DPM_GFXCLK_BIT;
	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
			FEATURE_DPM_UCLK_BIT;
	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
			FEATURE_DPM_SOCCLK_BIT;
	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
			FEATURE_DPM_UVD_BIT;
	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
			FEATURE_DPM_VCE_BIT;
	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
			FEATURE_DPM_MP0CLK_BIT;
	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
			FEATURE_DPM_LINK_BIT;
	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
			FEATURE_DPM_DCEFCLK_BIT;
	data->smu_features[GNLD_ULV].smu_feature_id =
			FEATURE_ULV_BIT;
	data->smu_features[GNLD_AVFS].smu_feature_id =
			FEATURE_AVFS_BIT;
	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
			FEATURE_DS_GFXCLK_BIT;
	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
			FEATURE_DS_SOCCLK_BIT;
	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
			FEATURE_DS_LCLK_BIT;
	data->smu_features[GNLD_PPT].smu_feature_id =
			FEATURE_PPT_BIT;
	data->smu_features[GNLD_TDC].smu_feature_id =
			FEATURE_TDC_BIT;
	data->smu_features[GNLD_THERMAL].smu_feature_id =
			FEATURE_THERMAL_BIT;
	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
			FEATURE_GFX_PER_CU_CG_BIT;
	data->smu_features[GNLD_RM].smu_feature_id =
			FEATURE_RM_BIT;
	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
			FEATURE_DS_DCEFCLK_BIT;
	data->smu_features[GNLD_ACDC].smu_feature_id =
			FEATURE_ACDC_BIT;
	data->smu_features[GNLD_VR0HOT].smu_feature_id =
			FEATURE_VR0HOT_BIT;
	data->smu_features[GNLD_VR1HOT].smu_feature_id =
			FEATURE_VR1HOT_BIT;
	data->smu_features[GNLD_FW_CTF].smu_feature_id =
			FEATURE_FW_CTF_BIT;
	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
			FEATURE_LED_DISPLAY_BIT;
	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
			FEATURE_FAN_CONTROL_BIT;
424
	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
425
	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
426
	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
427 428 429 430 431 432 433 434 435 436 437 438 439

	if (!data->registry_data.prefetcher_dpm_key_disabled)
		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;

	if (!data->registry_data.sclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_GFXCLK].supported = true;

	if (!data->registry_data.mclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_UCLK].supported = true;

	if (!data->registry_data.socclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_SOCCLK].supported = true;

440
	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
441 442
		data->smu_features[GNLD_DPM_UVD].supported = true;

443
	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
444 445 446 447 448 449 450 451
		data->smu_features[GNLD_DPM_VCE].supported = true;

	if (!data->registry_data.pcie_dpm_key_disabled)
		data->smu_features[GNLD_DPM_LINK].supported = true;

	if (!data->registry_data.dcefclk_dpm_key_disabled)
		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;

452 453
	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
	    data->registry_data.sclk_deep_sleep_support) {
454 455 456
		data->smu_features[GNLD_DS_GFXCLK].supported = true;
		data->smu_features[GNLD_DS_SOCCLK].supported = true;
		data->smu_features[GNLD_DS_LCLK].supported = true;
457
		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	}

	if (data->registry_data.enable_pkg_pwr_tracking_feature)
		data->smu_features[GNLD_PPT].supported = true;

	if (data->registry_data.enable_tdc_limit_feature)
		data->smu_features[GNLD_TDC].supported = true;

	if (data->registry_data.thermal_support)
		data->smu_features[GNLD_THERMAL].supported = true;

	if (data->registry_data.fan_control_support)
		data->smu_features[GNLD_FAN_CONTROL].supported = true;

	if (data->registry_data.fw_ctf_enabled)
		data->smu_features[GNLD_FW_CTF].supported = true;

	if (data->registry_data.avfs_support)
		data->smu_features[GNLD_AVFS].supported = true;

	if (data->registry_data.led_dpm_enabled)
		data->smu_features[GNLD_LED_DISPLAY].supported = true;

	if (data->registry_data.vr1hot_enabled)
		data->smu_features[GNLD_VR1HOT].supported = true;

	if (data->registry_data.vr0hot_enabled)
		data->smu_features[GNLD_VR0HOT].supported = true;

487 488 489
	smum_send_msg_to_smc(hwmgr,
			PPSMC_MSG_GetSmuVersion,
			&hwmgr->smu_version);
490
		/* ACG firmware has major version 5 */
491
	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
492
		data->smu_features[GNLD_ACG].supported = true;
493 494 495
	if (data->registry_data.didt_support)
		data->smu_features[GNLD_DIDT].supported = true;

496 497 498 499 500 501 502 503 504
	hw_revision = adev->pdev->revision;
	sub_vendor_id = adev->pdev->subsystem_vendor;

	if ((hwmgr->chip_id == 0x6862 ||
		hwmgr->chip_id == 0x6861 ||
		hwmgr->chip_id == 0x6868) &&
		(hw_revision == 0) &&
		(sub_vendor_id != 0x1002))
		data->smu_features[GNLD_PCC_LIMIT].supported = true;
505 506

	/* Get the SN to turn into a Unique ID */
507 508
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
509 510

	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
}

#ifdef PPLIB_VEGA10_EVV_SUPPORT
static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
	phm_ppt_v1_voltage_lookup_table *lookup_table,
	uint16_t virtual_voltage_id, int32_t *socclk)
{
	uint8_t entry_id;
	uint8_t voltage_id;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);

	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
			"Lookup table is empty",
			return -EINVAL);

	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
			break;
	}

	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
			"Can't find requested voltage id in vdd_dep_on_socclk table!",
			return -EINVAL);

	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;

	return 0;
}

#define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
/**
545 546 547 548 549
 * Get Leakage VDDC based on leakage ID.
 *
 * @hwmgr:  the address of the powerplay hardware manager.
 * return:  always 0.
 */
550 551
static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
{
552
	struct vega10_hwmgr *data = hwmgr->backend;
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	uint16_t vv_id;
	uint32_t vddc = 0;
	uint16_t i, j;
	uint32_t sclk = 0;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
			table_info->vdd_dep_on_socclk;
	int result;

	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;

		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
				table_info->vddc_lookup_table, vv_id, &sclk)) {
568
			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
				for (j = 1; j < socclk_table->count; j++) {
					if (socclk_table->entries[j].clk == sclk &&
							socclk_table->entries[j].cks_enable == 0) {
						sclk += 5000;
						break;
					}
				}
			}

			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
					"Error retrieving EVV voltage value!",
					continue);


			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
					"Invalid VDDC value", result = -EINVAL;);

			/* the voltage should not be zero nor equal to leakage ID */
			if (vddc != 0 && vddc != vv_id) {
				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
				data->vddc_leakage.count++;
			}
		}
	}

	return 0;
}

/**
 * Change virtual leakage voltage to actual value.
 *
603 604 605
 * @hwmgr:         the address of the powerplay hardware manager.
 * @voltage:       pointer to changing voltage
 * @leakage_table: pointer to leakage table
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
 */
static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
{
	uint32_t index;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
	for (index = 0; index < leakage_table->count; index++) {
		/* if this voltage matches a leakage voltage ID */
		/* patch with actual leakage voltage */
		if (leakage_table->leakage_id[index] == *voltage) {
			*voltage = leakage_table->actual_voltage[index];
			break;
		}
	}

	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
623
		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
624 625 626
}

/**
627 628 629 630 631 632 633
 * Patch voltage lookup table by EVV leakages.
 *
 * @hwmgr:         the address of the powerplay hardware manager.
 * @lookup_table:  pointer to voltage lookup table
 * @leakage_table: pointer to leakage table
 * return:         always 0
 */
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_voltage_lookup_table *lookup_table,
		struct vega10_leakage_voltage *leakage_table)
{
	uint32_t i;

	for (i = 0; i < lookup_table->count; i++)
		vega10_patch_with_vdd_leakage(hwmgr,
				&lookup_table->entries[i].us_vdd, leakage_table);

	return 0;
}

static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
		uint16_t *vddc)
{
	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);

	return 0;
}
#endif

static int vega10_patch_voltage_dependency_tables_with_lookup_table(
		struct pp_hwmgr *hwmgr)
{
660 661
	uint8_t entry_id, voltage_id;
	unsigned i;
662 663 664 665
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
666 667
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
			table_info->vdd_dep_on_mclk;
668

669 670 671 672 673 674 675 676 677 678
	for (i = 0; i < 6; i++) {
		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
		switch (i) {
			case 0: vdt = table_info->vdd_dep_on_socclk; break;
			case 1: vdt = table_info->vdd_dep_on_sclk; break;
			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
		}
679

680 681 682 683 684
		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
			voltage_id = vdt->entries[entry_id].vddInd;
			vdt->entries[entry_id].vddc =
					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
		}
685 686
	}

687 688 689 690
	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
		voltage_id = mm_table->entries[entry_id].vddcInd;
		mm_table->entries[entry_id].vddc =
			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	}

	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
		voltage_id = mclk_table->entries[entry_id].vddInd;
		mclk_table->entries[entry_id].vddc =
				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
		voltage_id = mclk_table->entries[entry_id].vddciInd;
		mclk_table->entries[entry_id].vddci =
				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
		voltage_id = mclk_table->entries[entry_id].mvddInd;
		mclk_table->entries[entry_id].mvdd =
				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
	}


	return 0;

}

static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
	uint32_t table_size, i, j;

	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
		"Lookup table is empty", return -EINVAL);

	table_size = lookup_table->count;

	/* Sorting voltages */
	for (i = 0; i < table_size - 1; i++) {
		for (j = i + 1; j > 0; j--) {
			if (lookup_table->entries[j].us_vdd <
					lookup_table->entries[j - 1].us_vdd) {
725 726
				swap(lookup_table->entries[j - 1],
				     lookup_table->entries[j]);
727 728 729 730 731 732 733 734 735 736 737 738 739 740
			}
		}
	}

	return 0;
}

static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
{
	int result = 0;
	int tmp_result;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
#ifdef PPLIB_VEGA10_EVV_SUPPORT
741
	struct vega10_hwmgr *data = hwmgr->backend;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
			table_info->vddc_lookup_table, &(data->vddc_leakage));
	if (tmp_result)
		result = tmp_result;

	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
	if (tmp_result)
		result = tmp_result;
#endif

	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
	if (tmp_result)
		result = tmp_result;

	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
	if (tmp_result)
		result = tmp_result;

	return result;
}

static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
			table_info->vdd_dep_on_socclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
			table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
775
		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
776
	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
777
		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
778 779

	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
780
		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
781
	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
782
		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

	table_info->max_clock_voltage_on_ac.sclk =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.mclk =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.vddc =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
	table_info->max_clock_voltage_on_ac.vddci =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;

	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
		table_info->max_clock_voltage_on_ac.sclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
		table_info->max_clock_voltage_on_ac.mclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
		table_info->max_clock_voltage_on_ac.vddc;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
		table_info->max_clock_voltage_on_ac.vddci;

	return 0;
}

static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;

	kfree(hwmgr->backend);
	hwmgr->backend = NULL;

	return 0;
}

static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
	int result = 0;
	struct vega10_hwmgr *data;
	uint32_t config_telemetry = 0;
	struct pp_atomfwctrl_voltage_table vol_table;
822
	struct amdgpu_device *adev = hwmgr->adev;
823 824 825 826 827 828 829

	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;

830 831 832
	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
833

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	vega10_set_default_registry_data(hwmgr);
	data->disable_dpm_mask = 0xff;

	/* need to set voltage control types before EVV patching */
	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;

	/* VDDCR_SOC */
	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
				&vol_table)) {
			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
					(vol_table.telemetry_offset & 0xff);
			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
		}
	} else {
		kfree(hwmgr->backend);
		hwmgr->backend = NULL;
		PP_ASSERT_WITH_CODE(false,
				"VDDCR_SOC is not SVID2!",
				return -1);
	}

	/* MVDDC */
	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
				&vol_table)) {
			config_telemetry |=
					((vol_table.telemetry_slope << 24) & 0xff000000) |
					((vol_table.telemetry_offset << 16) & 0xff0000);
			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
		}
	}

	 /* VDDCI_MEM */
874
	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
	}

	data->config_telemetry = config_telemetry;

	vega10_set_features_platform_caps(hwmgr);

	vega10_init_dpm_defaults(hwmgr);

#ifdef PPLIB_VEGA10_EVV_SUPPORT
	/* Get leakage voltage based on leakage ID. */
	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
			"Get EVV Voltage Failed.  Abort Driver loading!",
			return -1);
#endif

	/* Patch our voltage dependency table with actual leakage voltage
	 * We need to perform leakage translation before it's used by other functions
	 */
	vega10_complete_dependency_tables(hwmgr);

	/* Parse pptable data read from VBIOS */
	vega10_set_private_data_based_on_pptable(hwmgr);

	data->is_tlu_enabled = false;

	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
			VEGA10_MAX_HARDWARE_POWERLEVELS;
	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;

	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
	hwmgr->platform_descriptor.clockStep.engineClock = 500;
	hwmgr->platform_descriptor.clockStep.memoryClock = 500;

913
	data->total_active_cus = adev->gfx.cu_info.number;
914 915 916
	if (!hwmgr->not_vf)
		return result;

917 918 919 920 921 922 923 924 925 926 927 928 929 930
	/* Setup default Overdrive Fan control settings */
	data->odn_fan_table.target_fan_speed =
			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
	data->odn_fan_table.target_temperature =
			hwmgr->thermal_controller.
			advanceFanControlParameters.ucTargetTemperature;
	data->odn_fan_table.min_performance_clock =
			hwmgr->thermal_controller.advanceFanControlParameters.
			ulMinFanSCLKAcousticLimit;
	data->odn_fan_table.min_fan_limit =
			hwmgr->thermal_controller.
			advanceFanControlParameters.usFanPWMMinLimit *
			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;

931
	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
932 933 934 935 936 937
			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
			"Mem Channel Index Exceeded maximum!",
			return -EINVAL);

938 939 940 941 942
	return result;
}

static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
943
	struct vega10_hwmgr *data = hwmgr->backend;
944 945 946 947 948 949 950 951

	data->low_sclk_interrupt_threshold = 0;

	return 0;
}

static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
{
952
	struct vega10_hwmgr *data = hwmgr->backend;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);

	struct pp_atomfwctrl_voltage_table table;
	uint8_t i, j;
	uint32_t mask = 0;
	uint32_t tmp;
	int32_t ret = 0;

	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
						VOLTAGE_OBJ_GPIO_LUT, &table);

	if (!ret) {
		tmp = table.mask_low;
		for (i = 0, j = 0; i < 32; i++) {
			if (tmp & 1) {
				mask |= (uint32_t)(i << (8 * j));
				if (++j >= 3)
					break;
			}
			tmp >>= 1;
		}
	}

	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
	return 0;
}

static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
{
984 985 986
	if (!hwmgr->not_vf)
		return 0;

987 988 989 990 991 992 993 994
	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
			"Failed to init sclk threshold!",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
			"Failed to set up led dpm config!",
			return -EINVAL);

995 996 997 998
	smum_send_msg_to_smc_with_parameter(hwmgr,
				PPSMC_MSG_NumOfDisplays,
				0,
				NULL);
999

1000 1001 1002 1003
	return 0;
}

/**
1004 1005 1006 1007 1008 1009
 * Remove repeated voltage values and create table with unique values.
 *
 * @hwmgr:      the address of the powerplay hardware manager.
 * @vol_table:  the pointer to changing voltage table
 * return:      0 in success
 */
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	uint32_t i, j;
	uint16_t vvalue;
	bool found = false;
	struct pp_atomfwctrl_voltage_table *table;

	PP_ASSERT_WITH_CODE(vol_table,
			"Voltage Table empty.", return -EINVAL);
	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
			GFP_KERNEL);

	if (!table)
		return -ENOMEM;

	table->mask_low = vol_table->mask_low;
	table->phase_delay = vol_table->phase_delay;

	for (i = 0; i < vol_table->count; i++) {
		vvalue = vol_table->entries[i].value;
		found = false;

		for (j = 0; j < table->count; j++) {
			if (vvalue == table->entries[j].value) {
				found = true;
				break;
			}
		}

		if (!found) {
			table->entries[table->count].value = vvalue;
			table->entries[table->count].smio_low =
					vol_table->entries[i].smio_low;
			table->count++;
		}
	}

	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
	kfree(table);

	return 0;
}

static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	int i;

	PP_ASSERT_WITH_CODE(dep_table->count,
			"Voltage Dependency Table empty.",
			return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < vol_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].mvdd;
		vol_table->entries[i].smio_low = 0;
	}

	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
			vol_table),
			"Failed to trim MVDD Table!",
			return -1);

	return 0;
}

static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	uint32_t i;

	PP_ASSERT_WITH_CODE(dep_table->count,
			"Voltage Dependency Table empty.",
			return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < dep_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].vddci;
		vol_table->entries[i].smio_low = 0;
	}

	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
			"Failed to trim VDDCI table.",
			return -1);

	return 0;
}

static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	int i;

	PP_ASSERT_WITH_CODE(dep_table->count,
			"Voltage Dependency Table empty.",
			return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < vol_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].vddc;
		vol_table->entries[i].smio_low = 0;
	}

	return 0;
}

/* ---- Voltage Tables ----
 * If the voltage table would be bigger than
 * what will fit into the state table on
 * the SMC keep only the higher entries.
 */
static void vega10_trim_voltage_table_to_fit_state_table(
		struct pp_hwmgr *hwmgr,
		uint32_t max_vol_steps,
		struct pp_atomfwctrl_voltage_table *vol_table)
{
	unsigned int i, diff;

	if (vol_table->count <= max_vol_steps)
		return;

	diff = vol_table->count - max_vol_steps;

	for (i = 0; i < max_vol_steps; i++)
		vol_table->entries[i] = vol_table->entries[i + diff];

	vol_table->count = max_vol_steps;
}

/**
1153 1154 1155 1156 1157
 * Create Voltage Tables.
 *
 * @hwmgr:  the address of the powerplay hardware manager.
 * return:  always 0
 */
1158 1159
static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
{
1160
	struct vega10_hwmgr *data = hwmgr->backend;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	int result;

	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
		result = vega10_get_mvdd_voltage_table(hwmgr,
				table_info->vdd_dep_on_mclk,
				&(data->mvdd_voltage_table));
		PP_ASSERT_WITH_CODE(!result,
				"Failed to retrieve MVDDC table!",
				return result);
	}

	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
		result = vega10_get_vddci_voltage_table(hwmgr,
				table_info->vdd_dep_on_mclk,
				&(data->vddci_voltage_table));
		PP_ASSERT_WITH_CODE(!result,
				"Failed to retrieve VDDCI_MEM table!",
				return result);
	}

	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
		result = vega10_get_vdd_voltage_table(hwmgr,
				table_info->vdd_dep_on_sclk,
				&(data->vddc_voltage_table));
		PP_ASSERT_WITH_CODE(!result,
				"Failed to retrieve VDDCR_SOC table!",
				return result);
	}

	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
			"Too many voltage values for VDDC. Trimming to fit state table.",
			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
					16, &(data->vddc_voltage_table)));

	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
			"Too many voltage values for VDDCI. Trimming to fit state table.",
			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
					16, &(data->vddci_voltage_table)));

	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
			"Too many voltage values for MVDD. Trimming to fit state table.",
			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
					16, &(data->mvdd_voltage_table)));


	return 0;
}

/*
1214 1215
 * vega10_init_dpm_state
 * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1216
 *
1217 1218
 * @dpm_state: - the address of the DPM Table to initiailize.
 * return:   None.
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
 */
static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
{
	dpm_state->soft_min_level = 0xff;
	dpm_state->soft_max_level = 0xff;
	dpm_state->hard_min_level = 0xff;
	dpm_state->hard_max_level = 0xff;
}

static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
		struct vega10_single_dpm_table *dpm_table,
		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
	int i;

1234 1235
	dpm_table->count = 0;

1236
	for (i = 0; i < dep_table->count; i++) {
1237
		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
				dep_table->entries[i].clk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_table->entries[i].clk;
			dpm_table->dpm_levels[dpm_table->count].enabled = true;
			dpm_table->count++;
		}
	}
}
static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
{
1248
	struct vega10_hwmgr *data = hwmgr->backend;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *bios_pcie_table =
			table_info->pcie_table;
	uint32_t i;

	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
			"Incorrect number of PCIE States from VBIOS!",
			return -1);

1260
	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1261 1262 1263 1264 1265 1266 1267 1268
		if (data->registry_data.pcieSpeedOverride)
			pcie_table->pcie_gen[i] =
					data->registry_data.pcieSpeedOverride;
		else
			pcie_table->pcie_gen[i] =
					bios_pcie_table->entries[i].gen_speed;

		if (data->registry_data.pcieLaneOverride)
1269 1270
			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
					data->registry_data.pcieLaneOverride);
1271
		else
1272 1273
			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
							bios_pcie_table->entries[i].lane_width);
1274 1275 1276 1277 1278 1279 1280 1281
		if (data->registry_data.pcieClockOverride)
			pcie_table->lclk[i] =
					data->registry_data.pcieClockOverride;
		else
			pcie_table->lclk[i] =
					bios_pcie_table->entries[i].pcie_sclk;
	}

1282
	pcie_table->count = NUM_LINK_LEVELS;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	return 0;
}

/*
 * This function is to initialize all DPM state tables
 * for SMU based on the dependency table.
 * Dynamic state patching function will then trim these
 * state tables to the allowed range based
 * on the power policy or external client requests,
 * such as UVD request, etc.
 */
static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
1297
	struct vega10_hwmgr *data = hwmgr->backend;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct vega10_single_dpm_table *dpm_table;
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
			table_info->vdd_dep_on_socclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
			table_info->mm_dep_table;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
			table_info->vdd_dep_on_dcefclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
			table_info->vdd_dep_on_pixclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
			table_info->vdd_dep_on_dispclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
			table_info->vdd_dep_on_phyclk;

	PP_ASSERT_WITH_CODE(dep_soc_table,
			"SOCCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
			"SOCCLK dependency table is empty. This table is mandatory",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_gfx_table,
			"GFXCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
			"GFXCLK dependency table is empty. This table is mandatory",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_mclk_table,
			"MCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
			"MCLK dependency table has to have is missing. This table is mandatory",
			return -EINVAL);

	/* Initialize Sclk DPM table based on allow Sclk values */
	dpm_table = &(data->dpm_table.soc_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_soc_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.gfx_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_gfx_table);
1353 1354 1355
	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
		hwmgr->platform_descriptor.overdriveLimit.engineClock =
					dpm_table->dpm_levels[dpm_table->count-1].value;
1356 1357 1358 1359 1360 1361 1362 1363
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	/* Initialize Mclk DPM table based on allow Mclk values */
	data->dpm_table.mem_table.count = 0;
	dpm_table = &(data->dpm_table.mem_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_mclk_table);
1364 1365 1366
	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
					dpm_table->dpm_levels[dpm_table->count-1].value;
1367 1368 1369 1370 1371 1372
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	data->dpm_table.eclk_table.count = 0;
	dpm_table = &(data->dpm_table.eclk_table);
	for (i = 0; i < dep_mm_table->count; i++) {
		if (i == 0 || dpm_table->dpm_levels
1373
				[dpm_table->count - 1].value <=
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
						dep_mm_table->entries[i].eclk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_mm_table->entries[i].eclk;
			dpm_table->dpm_levels[dpm_table->count].enabled =
					(i == 0) ? true : false;
			dpm_table->count++;
		}
	}
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	data->dpm_table.vclk_table.count = 0;
	data->dpm_table.dclk_table.count = 0;
	dpm_table = &(data->dpm_table.vclk_table);
	for (i = 0; i < dep_mm_table->count; i++) {
		if (i == 0 || dpm_table->dpm_levels
1389
				[dpm_table->count - 1].value <=
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
						dep_mm_table->entries[i].vclk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_mm_table->entries[i].vclk;
			dpm_table->dpm_levels[dpm_table->count].enabled =
					(i == 0) ? true : false;
			dpm_table->count++;
		}
	}
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.dclk_table);
	for (i = 0; i < dep_mm_table->count; i++) {
		if (i == 0 || dpm_table->dpm_levels
1403
				[dpm_table->count - 1].value <=
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
						dep_mm_table->entries[i].dclk) {
			dpm_table->dpm_levels[dpm_table->count].value =
					dep_mm_table->entries[i].dclk;
			dpm_table->dpm_levels[dpm_table->count].enabled =
					(i == 0) ? true : false;
			dpm_table->count++;
		}
	}
	vega10_init_dpm_state(&(dpm_table->dpm_state));

	/* Assume there is no headless Vega10 for now */
	dpm_table = &(data->dpm_table.dcef_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_dcef_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.pixel_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_pix_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.display_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_disp_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	dpm_table = &(data->dpm_table.phy_table);
	vega10_setup_default_single_dpm_table(hwmgr,
			dpm_table,
			dep_phy_table);

	vega10_init_dpm_state(&(dpm_table->dpm_state));

	vega10_setup_default_pcie_table(hwmgr);

1445 1446 1447 1448 1449 1450 1451 1452 1453
	/* Zero out the saved copy of the CUSTOM profile
	 * This will be checked when trying to set the profile
	 * and will require that new values be passed in
	 */
	data->custom_profile_mode[0] = 0;
	data->custom_profile_mode[1] = 0;
	data->custom_profile_mode[2] = 0;
	data->custom_profile_mode[3] = 0;

1454 1455 1456 1457 1458 1459 1460 1461
	/* save a copy of the default DPM table */
	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
			sizeof(struct vega10_dpm_table));

	return 0;
}

/*
1462 1463
 * vega10_populate_ulv_state
 * Function to provide parameters for Utral Low Voltage state to SMC.
1464
 *
1465 1466
 * @hwmgr: - the address of the hardware manager.
 * return:   Always 0.
1467 1468 1469
 */
static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
{
1470
	struct vega10_hwmgr *data = hwmgr->backend;
1471 1472 1473 1474
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);

	data->smc_state_table.pp_table.UlvOffsetVid =
1475
			(uint8_t)table_info->us_ulv_voltage_offset;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	data->smc_state_table.pp_table.UlvSmnclkDid =
			(uint8_t)(table_info->us_ulv_smnclk_did);
	data->smc_state_table.pp_table.UlvMp1clkDid =
			(uint8_t)(table_info->us_ulv_mp1clk_did);
	data->smc_state_table.pp_table.UlvGfxclkBypass =
			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
			(uint8_t)(data->vddc_voltage_table.psi0_enable);
	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
			(uint8_t)(data->vddc_voltage_table.psi1_enable);

	return 0;
}

static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
		uint32_t lclock, uint8_t *curr_lclk_did)
{
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
			hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			lclock, &dividers),
			"Failed to get LCLK clock settings from VBIOS!",
			return -1);

	*curr_lclk_did = dividers.ulDid;

	return 0;
}

static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
{
	int result = -1;
1511
	struct vega10_hwmgr *data = hwmgr->backend;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_pcie_table *pcie_table =
			&(data->dpm_table.pcie_table);
	uint32_t i, j;

	for (i = 0; i < pcie_table->count; i++) {
		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];

		result = vega10_populate_single_lclk_level(hwmgr,
				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
		if (result) {
			pr_info("Populate LClock Level %d Failed!\n", i);
			return result;
		}
	}

	j = i - 1;
	while (i < NUM_LINK_LEVELS) {
		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];

		result = vega10_populate_single_lclk_level(hwmgr,
				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
		if (result) {
			pr_info("Populate LClock Level %d Failed!\n", i);
			return result;
		}
		i++;
	}

	return result;
}

/**
1547 1548 1549 1550 1551
 * Populates single SMC GFXSCLK structure using the provided engine clock
 *
 * @hwmgr:      the address of the hardware manager
 * @gfx_clock:  the GFX clock to use to populate the structure.
 * @current_gfxclk_level:  location in PPTable for the SMC GFXCLK structure.
1552
 * @acg_freq:   ACG frequenty to return (MHz)
1553
 */
1554
static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1555 1556
		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
		uint32_t *acg_freq)
1557 1558 1559
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1560
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1561
	struct vega10_hwmgr *data = hwmgr->backend;
1562
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1563 1564 1565
	uint32_t gfx_max_clock =
			hwmgr->platform_descriptor.overdriveLimit.engineClock;
	uint32_t i = 0;
1566

1567
	if (hwmgr->od_enabled)
1568
		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1569 1570 1571
						&(data->odn_dpm_table.vdd_dep_on_sclk);
	else
		dep_on_sclk = table_info->vdd_dep_on_sclk;
1572 1573 1574 1575 1576

	PP_ASSERT_WITH_CODE(dep_on_sclk,
			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
			return -EINVAL);

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
	else {
		for (i = 0; i < dep_on_sclk->count; i++) {
			if (dep_on_sclk->entries[i].clk == gfx_clock)
				break;
		}
		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
				return -EINVAL);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	}

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
			gfx_clock, &dividers),
			"Failed to get GFX Clock settings from VBIOS!",
			return -EINVAL);

	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
	current_gfxclk_level->FbMult =
			cpu_to_le32(dividers.ulPll_fb_mult);
	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1599
	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1600 1601 1602 1603 1604 1605
	current_gfxclk_level->SsFbMult =
			cpu_to_le32(dividers.ulPll_ss_fbsmult);
	current_gfxclk_level->SsSlewFrac =
			cpu_to_le16(dividers.usPll_ss_slew_frac);
	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);

1606 1607
	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */

1608 1609 1610 1611
	return 0;
}

/**
1612
 * Populates single SMC SOCCLK structure using the provided clock.
1613
 *
1614 1615
 * @hwmgr:     the address of the hardware manager.
 * @soc_clock: the SOC clock to use to populate the structure.
1616 1617
 * @current_soc_did:   DFS divider to pass back to caller
 * @current_vol_index: index of current VDD to pass back to caller
1618
 * return:      0 on success
1619 1620 1621 1622 1623
 */
static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
		uint32_t soc_clock, uint8_t *current_soc_did,
		uint8_t *current_vol_index)
{
1624
	struct vega10_hwmgr *data = hwmgr->backend;
1625 1626
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1627
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1628 1629 1630
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
	uint32_t i;

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (hwmgr->od_enabled) {
		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
						&data->odn_dpm_table.vdd_dep_on_socclk;
		for (i = 0; i < dep_on_soc->count; i++) {
			if (dep_on_soc->entries[i].clk >= soc_clock)
				break;
		}
	} else {
		dep_on_soc = table_info->vdd_dep_on_socclk;
		for (i = 0; i < dep_on_soc->count; i++) {
			if (dep_on_soc->entries[i].clk == soc_clock)
				break;
		}
1644
	}
1645

1646 1647 1648
	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
			return -EINVAL);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			soc_clock, &dividers),
			"Failed to get SOC Clock settings from VBIOS!",
			return -EINVAL);

	*current_soc_did = (uint8_t)dividers.ulDid;
	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
	return 0;
}

/**
1662 1663 1664 1665
 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
 *
 * @hwmgr:      the address of the hardware manager
 */
1666 1667
static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
1668
	struct vega10_hwmgr *data = hwmgr->backend;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
	int result = 0;
	uint32_t i, j;

	for (i = 0; i < dpm_table->count; i++) {
		result = vega10_populate_single_gfx_level(hwmgr,
				dpm_table->dpm_levels[i].value,
1679 1680
				&(pp_table->GfxclkLevel[i]),
				&(pp_table->AcgFreqTable[i]));
1681 1682 1683 1684 1685 1686 1687 1688
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_GFXCLK_DPM_LEVELS) {
		result = vega10_populate_single_gfx_level(hwmgr,
				dpm_table->dpm_levels[j].value,
1689 1690
				&(pp_table->GfxclkLevel[i]),
				&(pp_table->AcgFreqTable[i]));
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		if (result)
			return result;
		i++;
	}

	pp_table->GfxclkSlewRate =
			cpu_to_le16(table_info->us_gfxclk_slew_rate);

	dpm_table = &(data->dpm_table.soc_table);
	for (i = 0; i < dpm_table->count; i++) {
		result = vega10_populate_single_soc_level(hwmgr,
				dpm_table->dpm_levels[i].value,
				&(pp_table->SocclkDid[i]),
				&(pp_table->SocDpmVoltageIndex[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_SOCCLK_DPM_LEVELS) {
		result = vega10_populate_single_soc_level(hwmgr,
				dpm_table->dpm_levels[j].value,
				&(pp_table->SocclkDid[i]),
				&(pp_table->SocDpmVoltageIndex[i]));
		if (result)
			return result;
		i++;
	}

	return result;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;

	uint8_t soc_vid = 0;
	uint32_t i, max_vddc_level;

	if (hwmgr->od_enabled)
		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
	else
		vddc_lookup_table = table_info->vddc_lookup_table;

	max_vddc_level = vddc_lookup_table->count;
	for (i = 0; i < max_vddc_level; i++) {
		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
		pp_table->SocVid[i] = soc_vid;
	}
	while (i < MAX_REGULAR_DPM_NUMBER) {
		pp_table->SocVid[i] = soc_vid;
		i++;
	}
}

1749
/*
1750
 * Populates single SMC GFXCLK structure using the provided clock.
1751
 *
1752 1753 1754
 * @hwmgr:     the address of the hardware manager.
 * @mem_clock: the memory clock to use to populate the structure.
 * return:     0 on success..
1755 1756 1757 1758 1759
 */
static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
		uint32_t mem_clock, uint8_t *current_mem_vid,
		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
{
1760
	struct vega10_hwmgr *data = hwmgr->backend;
1761 1762
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1763
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1764
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1765 1766 1767
	uint32_t mem_max_clock =
			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
	uint32_t i = 0;
1768

1769
	if (hwmgr->od_enabled)
1770
		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1771 1772 1773
					&data->odn_dpm_table.vdd_dep_on_mclk;
	else
		dep_on_mclk = table_info->vdd_dep_on_mclk;
1774 1775 1776 1777 1778

	PP_ASSERT_WITH_CODE(dep_on_mclk,
			"Invalid SOC_VDD-UCLK Dependency Table!",
			return -EINVAL);

1779
	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1780
		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1781
	} else {
1782 1783 1784 1785 1786 1787 1788
		for (i = 0; i < dep_on_mclk->count; i++) {
			if (dep_on_mclk->entries[i].clk == mem_clock)
				break;
		}
		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
				return -EINVAL);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	}

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
			"Failed to get UCLK settings from VBIOS!",
			return -1);

	*current_mem_vid =
			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
	*current_mem_soc_vind =
			(uint8_t)(dep_on_mclk->entries[i].vddInd);
	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
	current_memclk_level->Did = (uint8_t)(dividers.ulDid);

	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
			"Invalid Divider ID!",
			return -EINVAL);

	return 0;
}

/**
1811
 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1812
 *
1813 1814
 * @hwmgr:  the address of the hardware manager.
 * return:   PP_Result_OK on success.
1815 1816 1817
 */
static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
1818
	struct vega10_hwmgr *data = hwmgr->backend;
1819 1820 1821 1822
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *dpm_table =
			&(data->dpm_table.mem_table);
	int result = 0;
1823
	uint32_t i, j;
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

	for (i = 0; i < dpm_table->count; i++) {
		result = vega10_populate_single_memory_level(hwmgr,
				dpm_table->dpm_levels[i].value,
				&(pp_table->MemVid[i]),
				&(pp_table->UclkLevel[i]),
				&(pp_table->MemSocVoltageIndex[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_UCLK_DPM_LEVELS) {
		result = vega10_populate_single_memory_level(hwmgr,
				dpm_table->dpm_levels[j].value,
				&(pp_table->MemVid[i]),
				&(pp_table->UclkLevel[i]),
				&(pp_table->MemSocVoltageIndex[i]));
		if (result)
			return result;
		i++;
	}

1847
	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1848
	pp_table->MemoryChannelWidth =
1849 1850
			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
					channel_number[data->mem_channels]);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	pp_table->LowestUclkReservedForUlv =
			(uint8_t)(data->lowest_uclk_reserved_for_ulv);

	return result;
}

static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
		DSPCLK_e disp_clock)
{
1861
	struct vega10_hwmgr *data = hwmgr->backend;
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)
			(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
	uint32_t i;
	uint16_t clk = 0, vddc = 0;
	uint8_t vid = 0;

	switch (disp_clock) {
	case DSPCLK_DCEFCLK:
		dep_table = table_info->vdd_dep_on_dcefclk;
		break;
	case DSPCLK_DISPCLK:
		dep_table = table_info->vdd_dep_on_dispclk;
		break;
	case DSPCLK_PIXCLK:
		dep_table = table_info->vdd_dep_on_pixclk;
		break;
	case DSPCLK_PHYCLK:
		dep_table = table_info->vdd_dep_on_phyclk;
		break;
	default:
		return -1;
	}

	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
			"Number Of Entries Exceeded maximum!",
			return -1);

	for (i = 0; i < dep_table->count; i++) {
		clk = (uint16_t)(dep_table->entries[i].clk / 100);
		vddc = table_info->vddc_lookup_table->
				entries[dep_table->entries[i].vddInd].us_vdd;
		vid = (uint8_t)convert_to_vid(vddc);
		pp_table->DisplayClockTable[disp_clock][i].Freq =
				cpu_to_le16(clk);
		pp_table->DisplayClockTable[disp_clock][i].Vid =
				cpu_to_le16(vid);
	}

	while (i < NUM_DSPCLK_LEVELS) {
		pp_table->DisplayClockTable[disp_clock][i].Freq =
				cpu_to_le16(clk);
		pp_table->DisplayClockTable[disp_clock][i].Vid =
				cpu_to_le16(vid);
		i++;
	}

	return 0;
}

static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
{
	uint32_t i;

	for (i = 0; i < DSPCLK_COUNT; i++) {
		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
				"Failed to populate Clock in DisplayClockTable!",
				return -1);
	}

	return 0;
}

static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
		uint32_t eclock, uint8_t *current_eclk_did,
		uint8_t *current_soc_vol)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
			table_info->mm_dep_table;
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
	uint32_t i;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			eclock, &dividers),
			"Failed to get ECLK clock settings from VBIOS!",
			return -1);

	*current_eclk_did = (uint8_t)dividers.ulDid;

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].eclk == eclock)
			*current_soc_vol = dep_table->entries[i].vddcInd;
	}

	return 0;
}

static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
{
1956
	struct vega10_hwmgr *data = hwmgr->backend;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
	int result = -EINVAL;
	uint32_t i, j;

	for (i = 0; i < dpm_table->count; i++) {
		result = vega10_populate_single_eclock_level(hwmgr,
				dpm_table->dpm_levels[i].value,
				&(pp_table->EclkDid[i]),
				&(pp_table->VceDpmVoltageIndex[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_VCE_DPM_LEVELS) {
		result = vega10_populate_single_eclock_level(hwmgr,
				dpm_table->dpm_levels[j].value,
				&(pp_table->EclkDid[i]),
				&(pp_table->VceDpmVoltageIndex[i]));
		if (result)
			return result;
		i++;
	}

	return result;
}

static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
		uint32_t vclock, uint8_t *current_vclk_did)
{
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			vclock, &dividers),
			"Failed to get VCLK clock settings from VBIOS!",
			return -EINVAL);

	*current_vclk_did = (uint8_t)dividers.ulDid;

	return 0;
}

static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
		uint32_t dclock, uint8_t *current_dclk_did)
{
	struct pp_atomfwctrl_clock_dividers_soc15 dividers;

	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
			dclock, &dividers),
			"Failed to get DCLK clock settings from VBIOS!",
			return -EINVAL);

	*current_dclk_did = (uint8_t)dividers.ulDid;

	return 0;
}

static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
{
2019
	struct vega10_hwmgr *data = hwmgr->backend;
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct vega10_single_dpm_table *vclk_dpm_table =
			&(data->dpm_table.vclk_table);
	struct vega10_single_dpm_table *dclk_dpm_table =
			&(data->dpm_table.dclk_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
			table_info->mm_dep_table;
	int result = -EINVAL;
	uint32_t i, j;

	for (i = 0; i < vclk_dpm_table->count; i++) {
		result = vega10_populate_single_vclock_level(hwmgr,
				vclk_dpm_table->dpm_levels[i].value,
				&(pp_table->VclkDid[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_UVD_DPM_LEVELS) {
		result = vega10_populate_single_vclock_level(hwmgr,
				vclk_dpm_table->dpm_levels[j].value,
				&(pp_table->VclkDid[i]));
		if (result)
			return result;
		i++;
	}

	for (i = 0; i < dclk_dpm_table->count; i++) {
		result = vega10_populate_single_dclock_level(hwmgr,
				dclk_dpm_table->dpm_levels[i].value,
				&(pp_table->DclkDid[i]));
		if (result)
			return result;
	}

	j = i - 1;
	while (i < NUM_UVD_DPM_LEVELS) {
		result = vega10_populate_single_dclock_level(hwmgr,
				dclk_dpm_table->dpm_levels[j].value,
				&(pp_table->DclkDid[i]));
		if (result)
			return result;
		i++;
	}

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].vclk ==
				vclk_dpm_table->dpm_levels[i].value &&
			dep_table->entries[i].dclk ==
				dclk_dpm_table->dpm_levels[i].value)
			pp_table->UvdDpmVoltageIndex[i] =
					dep_table->entries[i].vddcInd;
		else
			return -1;
	}

	j = i - 1;
	while (i < NUM_UVD_DPM_LEVELS) {
		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
		i++;
	}

	return 0;
}

static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
{
2090
	struct vega10_hwmgr *data = hwmgr->backend;
2091 2092 2093 2094 2095 2096 2097
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_sclk;
	uint32_t i;

2098
	for (i = 0; i < dep_table->count; i++) {
2099
		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2100 2101
		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2102 2103 2104 2105 2106 2107 2108
	}

	return 0;
}

static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
{
2109
	struct vega10_hwmgr *data = hwmgr->backend;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_sclk;
	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
	int result = 0;
	uint32_t i;

	pp_table->MinVoltageVid = (uint8_t)0xff;
	pp_table->MaxVoltageVid = (uint8_t)0;

	if (data->smu_features[GNLD_AVFS].supported) {
		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
		if (!result) {
			pp_table->MinVoltageVid = (uint8_t)
					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
			pp_table->MaxVoltageVid = (uint8_t)
					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));

			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2137 2138 2139

			pp_table->BtcGbVdroopTableCksOff.a0 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2140
			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2141 2142
			pp_table->BtcGbVdroopTableCksOff.a1 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2143
			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2144 2145
			pp_table->BtcGbVdroopTableCksOff.a2 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;

			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
			pp_table->BtcGbVdroopTableCksOn.a0 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
			pp_table->BtcGbVdroopTableCksOn.a1 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
			pp_table->BtcGbVdroopTableCksOn.a2 =
					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2158 2159 2160 2161

			pp_table->AvfsGbCksOn.m1 =
					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
			pp_table->AvfsGbCksOn.m2 =
2162
					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2163 2164 2165 2166
			pp_table->AvfsGbCksOn.b =
					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
			pp_table->AvfsGbCksOn.m1_shift = 24;
			pp_table->AvfsGbCksOn.m2_shift = 12;
2167
			pp_table->AvfsGbCksOn.b_shift = 0;
2168

2169 2170
			pp_table->OverrideAvfsGbCksOn =
					avfs_params.ucEnableGbFuseTableCkson;
2171 2172 2173
			pp_table->AvfsGbCksOff.m1 =
					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
			pp_table->AvfsGbCksOff.m2 =
2174
					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2175 2176 2177 2178
			pp_table->AvfsGbCksOff.b =
					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
			pp_table->AvfsGbCksOff.m1_shift = 24;
			pp_table->AvfsGbCksOff.m2_shift = 12;
2179 2180
			pp_table->AvfsGbCksOff.b_shift = 0;

2181 2182 2183
			for (i = 0; i < dep_table->count; i++)
				pp_table->StaticVoltageOffsetVid[i] =
						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2184 2185 2186 2187 2188 2189 2190 2191

			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->disp_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->disp_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
						(int32_t)data->disp_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2192
						(int32_t)data->disp_clk_quad_eqn_b;
2193 2194 2195 2196 2197 2198
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
						(int32_t)data->disp_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
						(int32_t)avfs_params.ulDispclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2199
						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2200 2201 2202 2203 2204 2205
				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
						(int32_t)avfs_params.ulDispclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
R
Rex Zhu 已提交
2206
			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2207 2208 2209 2210 2211 2212 2213 2214

			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->dcef_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->dcef_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
						(int32_t)data->dcef_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2215
						(int32_t)data->dcef_clk_quad_eqn_b;
2216 2217 2218 2219 2220 2221
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
						(int32_t)data->dcef_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2222
						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2223 2224 2225 2226 2227 2228
				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
						(int32_t)avfs_params.ulDcefclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
R
Rex Zhu 已提交
2229
			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2230 2231 2232 2233 2234 2235 2236 2237

			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->pixel_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->pixel_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
						(int32_t)data->pixel_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2238
						(int32_t)data->pixel_clk_quad_eqn_b;
2239 2240 2241 2242 2243 2244
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
						(int32_t)data->pixel_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2245
						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2246 2247 2248 2249 2250 2251
				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
						(int32_t)avfs_params.ulPixelclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
R
Rex Zhu 已提交
2252
			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2253 2254 2255 2256 2257 2258 2259
			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->phy_clk_quad_eqn_a) &&
				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
					data->phy_clk_quad_eqn_b)) {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
						(int32_t)data->phy_clk_quad_eqn_a;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2260
						(int32_t)data->phy_clk_quad_eqn_b;
2261 2262 2263 2264 2265 2266
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
						(int32_t)data->phy_clk_quad_eqn_c;
			} else {
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2267
						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2268 2269 2270 2271 2272 2273
				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
						(int32_t)avfs_params.ulPhyclk2GfxclkB;
			}

			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
R
Rex Zhu 已提交
2274
			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;

			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2286 2287
			pp_table->AcgAvfsGb.m1_shift             = 24;
			pp_table->AcgAvfsGb.m2_shift             = 12;
2288 2289
			pp_table->AcgAvfsGb.b_shift              = 0;

2290 2291 2292 2293 2294 2295 2296 2297
		} else {
			data->smu_features[GNLD_AVFS].supported = false;
		}
	}

	return 0;
}

2298 2299
static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
{
2300
	struct vega10_hwmgr *data = hwmgr->backend;
2301 2302 2303
	uint32_t agc_btc_response;

	if (data->smu_features[GNLD_ACG].supported) {
2304
		if (0 == vega10_enable_smc_features(hwmgr, true,
2305 2306 2307
					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;

2308
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2309

2310
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2311 2312 2313

		if (1 == agc_btc_response) {
			if (1 == data->acg_loop_state)
2314
				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2315
			else if (2 == data->acg_loop_state)
2316
				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2317
			if (0 == vega10_enable_smc_features(hwmgr, true,
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
				data->smu_features[GNLD_ACG].smu_feature_bitmap))
					data->smu_features[GNLD_ACG].enabled = true;
		} else {
			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
			data->smu_features[GNLD_ACG].enabled = false;
		}
	}

	return 0;
}

static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
{
2331
	struct vega10_hwmgr *data = hwmgr->backend;
2332

2333
	if (data->smu_features[GNLD_ACG].supported &&
2334
	    data->smu_features[GNLD_ACG].enabled)
2335
		if (!vega10_enable_smc_features(hwmgr, false,
2336
			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2337 2338 2339 2340 2341
			data->smu_features[GNLD_ACG].enabled = false;

	return 0;
}

2342 2343
static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
{
2344
	struct vega10_hwmgr *data = hwmgr->backend;
2345 2346 2347 2348 2349 2350
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
	int result;

	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
	if (!result) {
2351 2352
		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
		    data->registry_data.regulator_hot_gpio_support) {
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
		} else {
			pp_table->VR0HotGpio = 0;
			pp_table->VR0HotPolarity = 0;
			pp_table->VR1HotGpio = 0;
			pp_table->VR1HotPolarity = 0;
		}

2364 2365
		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
		    data->registry_data.ac_dc_switch_gpio_support) {
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
		} else {
			pp_table->AcDcGpio = 0;
			pp_table->AcDcPolarity = 0;
		}
	}

	return result;
}

static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
{
2379
	struct vega10_hwmgr *data = hwmgr->backend;
2380 2381

	if (data->smu_features[GNLD_AVFS].supported) {
2382 2383 2384 2385
		/* Already enabled or disabled */
		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
			return 0;

2386
		if (enable) {
2387
			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2388 2389 2390 2391 2392 2393
					true,
					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
					"[avfs_control] Attempt to Enable AVFS feature Failed!",
					return -1);
			data->smu_features[GNLD_AVFS].enabled = true;
		} else {
2394
			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2395
					false,
2396
					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2397 2398 2399 2400 2401 2402 2403 2404 2405
					"[avfs_control] Attempt to Disable AVFS feature Failed!",
					return -1);
			data->smu_features[GNLD_AVFS].enabled = false;
		}
	}

	return 0;
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = hwmgr->backend;

	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
		vega10_avfs_enable(hwmgr, false);
	} else if (data->need_update_dpm_table) {
		vega10_avfs_enable(hwmgr, false);
		vega10_avfs_enable(hwmgr, true);
	} else {
		vega10_avfs_enable(hwmgr, true);
	}

	return 0;
}

2422 2423 2424 2425 2426 2427 2428 2429
static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
{
	int result = 0;

	uint64_t serial_number = 0;
	uint32_t top32, bottom32;
	struct phm_fuses_default fuse;

2430
	struct vega10_hwmgr *data = hwmgr->backend;
2431 2432
	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);

2433
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2434

2435
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2436 2437 2438

	serial_number = ((uint64_t)bottom32 << 32) | top32;

2439
	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2440 2441 2442 2443 2444 2445 2446 2447 2448
		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2449 2450
		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
						AVFSFUSETABLE, false);
2451 2452 2453 2454 2455 2456 2457 2458
		PP_ASSERT_WITH_CODE(!result,
			"Failed to upload FuseOVerride!",
			);
	}

	return result;
}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
	uint32_t i;

	dep_table = table_info->vdd_dep_on_mclk;
	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
			return;
		}
	}

	dep_table = table_info->vdd_dep_on_sclk;
	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
			return;
		}
	}
}

2488
/**
2489 2490 2491 2492 2493
 * Initializes the SMC table and uploads it
 *
 * @hwmgr:  the address of the powerplay hardware manager.
 * return:  always 0
 */
2494 2495 2496
static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
{
	int result;
2497
	struct vega10_hwmgr *data = hwmgr->backend;
2498 2499 2500 2501
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct pp_atomfwctrl_voltage_table voltage_table;
2502
	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2503
	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2504 2505 2506 2507 2508 2509

	result = vega10_setup_default_dpm_tables(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to setup default DPM tables!",
			return result);

2510 2511 2512
	if (!hwmgr->not_vf)
		return 0;

2513
	/* initialize ODN table */
2514 2515 2516 2517 2518 2519 2520 2521
	if (hwmgr->od_enabled) {
		if (odn_table->max_vddc) {
			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
			vega10_check_dpm_table_updated(hwmgr);
		} else {
			vega10_odn_initial_default_setting(hwmgr);
		}
	}
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
			VOLTAGE_OBJ_SVID2,  &voltage_table);
	pp_table->MaxVidStep = voltage_table.max_vid_step;

	pp_table->GfxDpmVoltageMode =
			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
	pp_table->SocDpmVoltageMode =
			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
	pp_table->UclkDpmVoltageMode =
			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
	pp_table->UvdDpmVoltageMode =
			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
	pp_table->VceDpmVoltageMode =
			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
	pp_table->Mp0DpmVoltageMode =
			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2539

2540 2541 2542
	pp_table->DisplayDpmVoltageMode =
			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);

2543 2544 2545
	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	if (data->registry_data.ulv_support &&
			table_info->us_ulv_voltage_offset) {
		result = vega10_populate_ulv_state(hwmgr);
		PP_ASSERT_WITH_CODE(!result,
				"Failed to initialize ULV state!",
				return result);
	}

	result = vega10_populate_smc_link_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Link Level!",
			return result);

	result = vega10_populate_all_graphic_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Graphics Level!",
			return result);

	result = vega10_populate_all_memory_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Memory Level!",
			return result);

2569 2570
	vega10_populate_vddc_soc_levels(hwmgr);

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	result = vega10_populate_all_display_clock_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize Display Level!",
			return result);

	result = vega10_populate_smc_vce_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize VCE Level!",
			return result);

	result = vega10_populate_smc_uvd_levels(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize UVD Level!",
			return result);

2586
	if (data->registry_data.clock_stretcher_support) {
2587 2588 2589 2590 2591 2592
		result = vega10_populate_clock_stretcher_table(hwmgr);
		PP_ASSERT_WITH_CODE(!result,
				"Failed to populate Clock Stretcher Table!",
				return result);
	}

2593 2594 2595 2596 2597 2598 2599
	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
	if (!result) {
		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2600
		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2601
				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2602 2603

		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2604
				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2605

2606
		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2607
		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2608
		if (0 != boot_up_values.usVddc) {
2609
			smum_send_msg_to_smc_with_parameter(hwmgr,
2610
						PPSMC_MSG_SetFloorSocVoltage,
2611 2612
						(boot_up_values.usVddc * 4),
						NULL);
2613 2614 2615 2616
			data->vbios_boot_state.bsoc_vddc_lock = true;
		} else {
			data->vbios_boot_state.bsoc_vddc_lock = false;
		}
2617
		smum_send_msg_to_smc_with_parameter(hwmgr,
2618
				PPSMC_MSG_SetMinDeepSleepDcefclk,
2619 2620
			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
				NULL);
2621 2622
	}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	result = vega10_populate_avfs_parameters(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize AVFS Parameters!",
			return result);

	result = vega10_populate_gpio_parameters(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"Failed to initialize GPIO Parameters!",
			return result);

	pp_table->GfxclkAverageAlpha = (uint8_t)
			(data->gfxclk_average_alpha);
	pp_table->SocclkAverageAlpha = (uint8_t)
			(data->socclk_average_alpha);
	pp_table->UclkAverageAlpha = (uint8_t)
			(data->uclk_average_alpha);
	pp_table->GfxActivityAverageAlpha = (uint8_t)
			(data->gfx_activity_average_alpha);

2642 2643
	vega10_populate_and_upload_avfs_fuse_override(hwmgr);

2644 2645
	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);

2646 2647 2648
	PP_ASSERT_WITH_CODE(!result,
			"Failed to upload PPtable!", return result);

2649 2650
	result = vega10_avfs_enable(hwmgr, true);
	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2651
					return result);
2652
	vega10_acg_enable(hwmgr);
2653

2654 2655 2656 2657 2658
	return 0;
}

static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
{
2659
	struct vega10_hwmgr *data = hwmgr->backend;
2660 2661 2662 2663 2664 2665

	if (data->smu_features[GNLD_THERMAL].supported) {
		if (data->smu_features[GNLD_THERMAL].enabled)
			pr_info("THERMAL Feature Already enabled!");

		PP_ASSERT_WITH_CODE(
2666
				!vega10_enable_smc_features(hwmgr,
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
				true,
				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
				"Enable THERMAL Feature Failed!",
				return -1);
		data->smu_features[GNLD_THERMAL].enabled = true;
	}

	return 0;
}

2677 2678
static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
{
2679
	struct vega10_hwmgr *data = hwmgr->backend;
2680 2681 2682 2683 2684 2685

	if (data->smu_features[GNLD_THERMAL].supported) {
		if (!data->smu_features[GNLD_THERMAL].enabled)
			pr_info("THERMAL Feature Already disabled!");

		PP_ASSERT_WITH_CODE(
2686
				!vega10_enable_smc_features(hwmgr,
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
				false,
				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
				"disable THERMAL Feature Failed!",
				return -1);
		data->smu_features[GNLD_THERMAL].enabled = false;
	}

	return 0;
}

2697 2698
static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
{
2699
	struct vega10_hwmgr *data = hwmgr->backend;
2700

2701
	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2702 2703
		if (data->smu_features[GNLD_VR0HOT].supported) {
			PP_ASSERT_WITH_CODE(
2704
					!vega10_enable_smc_features(hwmgr,
2705 2706 2707 2708 2709 2710 2711 2712
					true,
					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
					"Attempt to Enable VR0 Hot feature Failed!",
					return -1);
			data->smu_features[GNLD_VR0HOT].enabled = true;
		} else {
			if (data->smu_features[GNLD_VR1HOT].supported) {
				PP_ASSERT_WITH_CODE(
2713
						!vega10_enable_smc_features(hwmgr,
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
						true,
						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
						"Attempt to Enable VR0 Hot feature Failed!",
						return -1);
				data->smu_features[GNLD_VR1HOT].enabled = true;
			}
		}
	}
	return 0;
}

static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
{
2727
	struct vega10_hwmgr *data = hwmgr->backend;
2728 2729

	if (data->registry_data.ulv_support) {
2730
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2731 2732 2733 2734 2735 2736 2737 2738 2739
				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
				"Enable ULV Feature Failed!",
				return -1);
		data->smu_features[GNLD_ULV].enabled = true;
	}

	return 0;
}

2740 2741
static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
{
2742
	struct vega10_hwmgr *data = hwmgr->backend;
2743 2744

	if (data->registry_data.ulv_support) {
2745
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2746 2747 2748 2749 2750 2751 2752 2753 2754
				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
				"disable ULV Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_ULV].enabled = false;
	}

	return 0;
}

2755 2756
static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
2757
	struct vega10_hwmgr *data = hwmgr->backend;
2758 2759

	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2760
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2761 2762
				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
				"Attempt to Enable DS_GFXCLK Feature Failed!",
2763
				return -EINVAL);
2764 2765 2766 2767
		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
	}

	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2768
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2769
				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2770 2771
				"Attempt to Enable DS_SOCCLK Feature Failed!",
				return -EINVAL);
2772 2773 2774 2775
		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
	}

	if (data->smu_features[GNLD_DS_LCLK].supported) {
2776
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2777
				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2778 2779
				"Attempt to Enable DS_LCLK Feature Failed!",
				return -EINVAL);
2780 2781 2782
		data->smu_features[GNLD_DS_LCLK].enabled = true;
	}

2783
	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2784
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
				"Attempt to Enable DS_DCEFCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
	}

	return 0;
}

static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
2796
	struct vega10_hwmgr *data = hwmgr->backend;
2797 2798

	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2799
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2800 2801 2802 2803 2804 2805 2806
				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
				"Attempt to disable DS_GFXCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
	}

	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2807
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2808 2809 2810 2811 2812 2813 2814
				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
				"Attempt to disable DS_ Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
	}

	if (data->smu_features[GNLD_DS_LCLK].supported) {
2815
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2816 2817 2818 2819 2820 2821 2822
				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
				"Attempt to disable DS_LCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_LCLK].enabled = false;
	}

	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2823
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2824 2825 2826 2827 2828 2829
				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
				"Attempt to disable DS_DCEFCLK Feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
	}

2830 2831 2832
	return 0;
}

2833 2834
static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
{
2835
	struct vega10_hwmgr *data = hwmgr->backend;
2836 2837
	uint32_t i, feature_mask = 0;

2838 2839
	if (!hwmgr->not_vf)
		return 0;
2840 2841

	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2842
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2843 2844 2845
				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
		"Attempt to disable LED DPM feature failed!", return -EINVAL);
		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	}

	for (i = 0; i < GNLD_DPM_MAX; i++) {
		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
			if (data->smu_features[i].supported) {
				if (data->smu_features[i].enabled) {
					feature_mask |= data->smu_features[i].
							smu_feature_bitmap;
					data->smu_features[i].enabled = false;
				}
			}
		}
	}

2860
	vega10_enable_smc_features(hwmgr, false, feature_mask);
2861 2862 2863 2864

	return 0;
}

2865
/**
2866
 * Tell SMC to enabled the supported DPMs.
2867
 *
2868 2869
 * @hwmgr:   the address of the powerplay hardware manager.
 * @bitmap:  bitmap for the features to enabled.
2870
 * return:  0 on at least one DPM is successfully enabled.
2871 2872 2873
 */
static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
{
2874
	struct vega10_hwmgr *data = hwmgr->backend;
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	uint32_t i, feature_mask = 0;

	for (i = 0; i < GNLD_DPM_MAX; i++) {
		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
			if (data->smu_features[i].supported) {
				if (!data->smu_features[i].enabled) {
					feature_mask |= data->smu_features[i].
							smu_feature_bitmap;
					data->smu_features[i].enabled = true;
				}
			}
		}
	}

2889
	if (vega10_enable_smc_features(hwmgr,
2890 2891 2892 2893 2894 2895 2896 2897 2898
			true, feature_mask)) {
		for (i = 0; i < GNLD_DPM_MAX; i++) {
			if (data->smu_features[i].smu_feature_bitmap &
					feature_mask)
				data->smu_features[i].enabled = false;
		}
	}

	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2899
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2900 2901 2902 2903 2904
				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
	}

2905
	if (data->vbios_boot_state.bsoc_vddc_lock) {
2906
		smum_send_msg_to_smc_with_parameter(hwmgr,
2907 2908
						PPSMC_MSG_SetFloorSocVoltage, 0,
						NULL);
2909 2910 2911
		data->vbios_boot_state.bsoc_vddc_lock = false;
	}

2912
	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2913
		if (data->smu_features[GNLD_ACDC].supported) {
2914
			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
					"Attempt to Enable DS_GFXCLK Feature Failed!",
					return -1);
			data->smu_features[GNLD_ACDC].enabled = true;
		}
	}

	return 0;
}

2925 2926
static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
{
2927
	struct vega10_hwmgr *data = hwmgr->backend;
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
				"Attempt to Enable PCC Limit feature Failed!",
				return -EINVAL);
		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
	}

	return 0;
}

2942 2943
static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
2944
	struct vega10_hwmgr *data = hwmgr->backend;
2945 2946
	int tmp_result, result = 0;

2947 2948
	if (hwmgr->not_vf) {
		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
2949

2950
		smum_send_msg_to_smc_with_parameter(hwmgr,
2951 2952
			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
			NULL);
2953

2954 2955 2956 2957 2958
		tmp_result = vega10_construct_voltage_tables(hwmgr);
		PP_ASSERT_WITH_CODE(!tmp_result,
				    "Failed to construct voltage tables!",
				    result = tmp_result);
	}
2959

2960 2961
	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
		tmp_result = vega10_init_smc_table(hwmgr);
2962
		PP_ASSERT_WITH_CODE(!tmp_result,
2963 2964
				    "Failed to initialize SMC table!",
				    result = tmp_result);
2965 2966
	}

2967 2968 2969 2970 2971 2972 2973
	if (hwmgr->not_vf) {
		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
			tmp_result = vega10_enable_thermal_protection(hwmgr);
			PP_ASSERT_WITH_CODE(!tmp_result,
					    "Failed to enable thermal protection!",
					    result = tmp_result);
		}
2974

2975 2976 2977 2978
		tmp_result = vega10_enable_vrhot_feature(hwmgr);
		PP_ASSERT_WITH_CODE(!tmp_result,
				    "Failed to enable VR hot feature!",
				    result = tmp_result);
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
		PP_ASSERT_WITH_CODE(!tmp_result,
				    "Failed to enable deep sleep master switch!",
				    result = tmp_result);
	}

	if (hwmgr->not_vf) {
		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
		PP_ASSERT_WITH_CODE(!tmp_result,
				    "Failed to start DPM!", result = tmp_result);
	}
2991

2992 2993 2994 2995 2996 2997
	if (hwmgr->not_vf) {
		/* enable didt, do not abort if failed didt */
		tmp_result = vega10_enable_didt_config(hwmgr);
		PP_ASSERT(!tmp_result,
			  "Failed to enable didt config!");
	}
2998

2999 3000
	tmp_result = vega10_enable_power_containment(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
3001 3002
			    "Failed to enable power containment!",
			    result = tmp_result);
3003

3004 3005 3006 3007 3008
	if (hwmgr->not_vf) {
		tmp_result = vega10_power_control_set_level(hwmgr);
		PP_ASSERT_WITH_CODE(!tmp_result,
				    "Failed to power control set level!",
				    result = tmp_result);
3009

3010 3011 3012 3013 3014
		tmp_result = vega10_enable_ulv(hwmgr);
		PP_ASSERT_WITH_CODE(!tmp_result,
				    "Failed to enable ULV!",
				    result = tmp_result);
	}
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	return result;
}

static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
{
	return sizeof(struct vega10_power_state);
}

static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
		void *state, struct pp_power_state *power_state,
		void *pp_table, uint32_t classification_flag)
{
3028
	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	struct vega10_power_state *vega10_power_state =
			cast_phw_vega10_power_state(&(power_state->hardware));
	struct vega10_performance_level *performance_level;
	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
			(ATOM_Vega10_SOCCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
			(ATOM_Vega10_GFXCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
			(ATOM_Vega10_MCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));


	/* The following fields are not initialized here:
	 * id orderedList allStatesList
	 */
	power_state->classification.ui_label =
			(le16_to_cpu(state_entry->usClassification) &
			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
	power_state->classification.flags = classification_flag;
	/* NOTE: There is a classification2 flag in BIOS
	 * that is not being used right now
	 */
	power_state->classification.temporary_state = false;
	power_state->classification.to_be_deleted = false;

	power_state->validation.disallowOnDC =
			((le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Vega10_DISALLOW_ON_DC) != 0);

	power_state->display.disableFrameModulation = false;
	power_state->display.limitRefreshrate = false;
	power_state->display.enableVariBright =
			((le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);

	power_state->validation.supportedPowerLevels = 0;
	power_state->uvd_clocks.VCLK = 0;
	power_state->uvd_clocks.DCLK = 0;
	power_state->temperatures.min = 0;
	power_state->temperatures.max = 0;

	performance_level = &(vega10_power_state->performance_levels
			[vega10_power_state->performance_level_count++]);

	PP_ASSERT_WITH_CODE(
			(vega10_power_state->performance_level_count <
					NUM_GFXCLK_DPM_LEVELS),
			"Performance levels exceeds SMC limit!",
			return -1);

	PP_ASSERT_WITH_CODE(
			(vega10_power_state->performance_level_count <=
					hwmgr->platform_descriptor.
					hardwareActivityPerformanceLevels),
			"Performance levels exceeds Driver limit!",
			return -1);

	/* Performance levels are arranged from low to high. */
	performance_level->soc_clock = socclk_dep_table->entries
			[state_entry->ucSocClockIndexLow].ulClk;
	performance_level->gfx_clock = gfxclk_dep_table->entries
			[state_entry->ucGfxClockIndexLow].ulClk;
	performance_level->mem_clock = mclk_dep_table->entries
			[state_entry->ucMemClockIndexLow].ulMemClk;

	performance_level = &(vega10_power_state->performance_levels
				[vega10_power_state->performance_level_count++]);
	performance_level->soc_clock = socclk_dep_table->entries
3106 3107
				[state_entry->ucSocClockIndexHigh].ulClk;
	if (gfxclk_dep_table->ucRevId == 0) {
3108 3109 3110 3111 3112 3113 3114 3115 3116
		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
		 * to level-4 due to the limited 110w-power
		 */
		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
			performance_level->gfx_clock =
				gfxclk_dep_table->entries[4].ulClk;
		else
			performance_level->gfx_clock = gfxclk_dep_table->entries
				[state_entry->ucGfxClockIndexHigh].ulClk;
3117 3118
	} else if (gfxclk_dep_table->ucRevId == 1) {
		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3119 3120 3121 3122 3123
		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
			performance_level->gfx_clock = patom_record_V2[4].ulClk;
		else
			performance_level->gfx_clock =
				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3124 3125
	}

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	performance_level->mem_clock = mclk_dep_table->entries
			[state_entry->ucMemClockIndexHigh].ulMemClk;
	return 0;
}

static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
		unsigned long entry_index, struct pp_power_state *state)
{
	int result;
	struct vega10_power_state *ps;

	state->hardware.magic = PhwVega10_Magic;

	ps = cast_phw_vega10_power_state(&state->hardware);

	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
			vega10_get_pp_table_entry_callback_func);
3143 3144
	if (result)
		return result;
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169

	/*
	 * This is the earliest time we have all the dependency table
	 * and the VBIOS boot state
	 */
	/* set DC compatible flag if this state supports DC */
	if (!state->validation.disallowOnDC)
		ps->dc_compatible = true;

	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;

	return 0;
}

static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
	     struct pp_hw_power_state *hw_ps)
{
	return 0;
}

static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
				struct pp_power_state  *request_ps,
			const struct pp_power_state *current_ps)
{
3170
	struct amdgpu_device *adev = hwmgr->adev;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	struct vega10_power_state *vega10_ps =
				cast_phw_vega10_power_state(&request_ps->hardware);
	uint32_t sclk;
	uint32_t mclk;
	struct PP_Clocks minimum_clocks = {0};
	bool disable_mclk_switching;
	bool disable_mclk_switching_for_frame_lock;
	bool disable_mclk_switching_for_vr;
	bool force_mclk_high;
	const struct phm_clock_and_voltage_limits *max_limits;
	uint32_t i;
3182
	struct vega10_hwmgr *data = hwmgr->backend;
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
	int32_t count;
	uint32_t stable_pstate_sclk_dpm_percentage;
	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
	uint32_t latency;

	data->battery_state = (PP_StateUILabel_Battery ==
			request_ps->classification.ui_label);

	if (vega10_ps->performance_level_count != 2)
		pr_info("VI should always have 2 performance levels");

3196
	max_limits = adev->pm.ac_power ?
3197 3198 3199 3200
			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
			&(hwmgr->dyn_state.max_clock_voltage_on_dc);

	/* Cap clock DPM tables at DC MAX if it is in DC. */
3201
	if (!adev->pm.ac_power) {
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		for (i = 0; i < vega10_ps->performance_level_count; i++) {
			if (vega10_ps->performance_levels[i].mem_clock >
				max_limits->mclk)
				vega10_ps->performance_levels[i].mem_clock =
						max_limits->mclk;
			if (vega10_ps->performance_levels[i].gfx_clock >
				max_limits->sclk)
				vega10_ps->performance_levels[i].gfx_clock =
						max_limits->sclk;
		}
	}

	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3215 3216
	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3217

3218
	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3219 3220
		stable_pstate_sclk_dpm_percentage =
			data->registry_data.stable_pstate_sclk_dpm_percentage;
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		PP_ASSERT_WITH_CODE(
			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
			"percent sclk value must range from 1% to 100%, setting default value",
			stable_pstate_sclk_dpm_percentage = 75);

		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
		stable_pstate_sclk = (max_limits->sclk *
				stable_pstate_sclk_dpm_percentage) / 100;

		for (count = table_info->vdd_dep_on_sclk->count - 1;
				count >= 0; count--) {
			if (stable_pstate_sclk >=
					table_info->vdd_dep_on_sclk->entries[count].clk) {
				stable_pstate_sclk =
						table_info->vdd_dep_on_sclk->entries[count].clk;
				break;
			}
		}

		if (count < 0)
			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;

		stable_pstate_mclk = max_limits->mclk;

		minimum_clocks.engineClock = stable_pstate_sclk;
		minimum_clocks.memoryClock = stable_pstate_mclk;
	}

3250 3251 3252 3253
	disable_mclk_switching_for_frame_lock =
		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
	disable_mclk_switching_for_vr =
		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3254
	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3255

3256
	if (hwmgr->display_config->num_display == 0)
3257 3258
		disable_mclk_switching = false;
	else
3259 3260
		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
					  !hwmgr->display_config->multi_monitor_in_sync) ||
3261 3262 3263
			disable_mclk_switching_for_frame_lock ||
			disable_mclk_switching_for_vr ||
			force_mclk_high;
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	sclk = vega10_ps->performance_levels[0].gfx_clock;
	mclk = vega10_ps->performance_levels[0].mem_clock;

	if (sclk < minimum_clocks.engineClock)
		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
				max_limits->sclk : minimum_clocks.engineClock;

	if (mclk < minimum_clocks.memoryClock)
		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
				max_limits->mclk : minimum_clocks.memoryClock;

	vega10_ps->performance_levels[0].gfx_clock = sclk;
	vega10_ps->performance_levels[0].mem_clock = mclk;

3279 3280 3281 3282
	if (vega10_ps->performance_levels[1].gfx_clock <
			vega10_ps->performance_levels[0].gfx_clock)
		vega10_ps->performance_levels[0].gfx_clock =
				vega10_ps->performance_levels[1].gfx_clock;
3283 3284 3285 3286 3287 3288 3289 3290 3291

	if (disable_mclk_switching) {
		/* Set Mclk the max of level 0 and level 1 */
		if (mclk < vega10_ps->performance_levels[1].mem_clock)
			mclk = vega10_ps->performance_levels[1].mem_clock;

		/* Find the lowest MCLK frequency that is within
		 * the tolerable latency defined in DAL
		 */
3292
		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
		for (i = 0; i < data->mclk_latency_table.count; i++) {
			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
				(data->mclk_latency_table.entries[i].frequency >=
						vega10_ps->performance_levels[0].mem_clock) &&
				(data->mclk_latency_table.entries[i].frequency <=
						vega10_ps->performance_levels[1].mem_clock))
				mclk = data->mclk_latency_table.entries[i].frequency;
		}
		vega10_ps->performance_levels[0].mem_clock = mclk;
	} else {
		if (vega10_ps->performance_levels[1].mem_clock <
				vega10_ps->performance_levels[0].mem_clock)
3305 3306
			vega10_ps->performance_levels[0].mem_clock =
					vega10_ps->performance_levels[1].mem_clock;
3307 3308
	}

3309
	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		for (i = 0; i < vega10_ps->performance_level_count; i++) {
			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
		}
	}

	return 0;
}

static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
{
3321
	struct vega10_hwmgr *data = hwmgr->backend;
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	const struct vega10_power_state *vega10_ps =
			cast_const_phw_vega10_power_state(states->pnew_state);
	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
	uint32_t sclk = vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].gfx_clock;
	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
	uint32_t mclk = vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].mem_clock;
	uint32_t i;

	for (i = 0; i < sclk_table->count; i++) {
		if (sclk == sclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= sclk_table->count) {
3340 3341 3342 3343
		if (sclk > sclk_table->dpm_levels[i-1].value) {
			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
			sclk_table->dpm_levels[i-1].value = sclk;
		}
3344 3345 3346 3347 3348 3349 3350 3351
	}

	for (i = 0; i < mclk_table->count; i++) {
		if (mclk == mclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= mclk_table->count) {
3352 3353 3354 3355
		if (mclk > mclk_table->dpm_levels[i-1].value) {
			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
			mclk_table->dpm_levels[i-1].value = mclk;
		}
3356
	}
3357

3358 3359
	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3360 3361 3362 3363 3364 3365 3366 3367

	return 0;
}

static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result = 0;
3368
	struct vega10_hwmgr *data = hwmgr->backend;
3369 3370 3371 3372
	struct vega10_dpm_table *dpm_table = &data->dpm_table;
	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
	int count;
3373

3374 3375
	if (!data->need_update_dpm_table)
		return 0;
3376

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
		for (count = 0; count < dpm_table->gfx_table.count; count++)
			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
	}

	odn_clk_table = &odn_table->vdd_dep_on_mclk;
	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
		for (count = 0; count < dpm_table->mem_table.count; count++)
			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
	}

3388
	if (data->need_update_dpm_table &
3389
			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3390 3391 3392 3393 3394
		result = vega10_populate_all_graphic_levels(hwmgr);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}
3395

3396
	if (data->need_update_dpm_table &
3397
			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3398 3399 3400 3401 3402
		result = vega10_populate_all_memory_levels(hwmgr);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}
3403

3404
	vega10_populate_vddc_soc_levels(hwmgr);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446

	return result;
}

static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
		struct vega10_single_dpm_table *dpm_table,
		uint32_t low_limit, uint32_t high_limit)
{
	uint32_t i;

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit) ||
		    (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}
	return 0;
}

static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
		struct vega10_single_dpm_table *dpm_table,
		uint32_t low_limit, uint32_t high_limit,
		uint32_t disable_dpm_mask)
{
	uint32_t i;

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit) ||
		    (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else if (!((1 << i) & disable_dpm_mask))
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}
	return 0;
}

static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
		const struct vega10_power_state *vega10_ps)
{
3447
	struct vega10_hwmgr *data = hwmgr->backend;
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	uint32_t high_limit_count;

	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
			"power state did not have any performance level",
			return -1);

	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;

	vega10_trim_single_dpm_states(hwmgr,
			&(data->dpm_table.soc_table),
			vega10_ps->performance_levels[0].soc_clock,
			vega10_ps->performance_levels[high_limit_count].soc_clock);

	vega10_trim_single_dpm_states_with_mask(hwmgr,
			&(data->dpm_table.gfx_table),
			vega10_ps->performance_levels[0].gfx_clock,
			vega10_ps->performance_levels[high_limit_count].gfx_clock,
			data->disable_dpm_mask);

	vega10_trim_single_dpm_states(hwmgr,
			&(data->dpm_table.mem_table),
			vega10_ps->performance_levels[0].mem_clock,
			vega10_ps->performance_levels[high_limit_count].mem_clock);

	return 0;
}

static uint32_t vega10_find_lowest_dpm_level(
		struct vega10_single_dpm_table *table)
{
	uint32_t i;

	for (i = 0; i < table->count; i++) {
		if (table->dpm_levels[i].enabled)
			break;
	}

	return i;
}

static uint32_t vega10_find_highest_dpm_level(
		struct vega10_single_dpm_table *table)
{
	uint32_t i = 0;

	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
		for (i = table->count; i > 0; i--) {
			if (table->dpm_levels[i - 1].enabled)
				return i - 1;
		}
	} else {
		pr_info("DPM Table Has Too Many Entries!");
		return MAX_REGULAR_DPM_NUMBER - 1;
	}

	return i;
}

static void vega10_apply_dal_minimum_voltage_request(
		struct pp_hwmgr *hwmgr)
{
	return;
}

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);

	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;

	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
}

3523 3524
static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
{
3525
	struct vega10_hwmgr *data = hwmgr->backend;
3526
	uint32_t socclk_idx;
3527 3528 3529 3530 3531 3532

	vega10_apply_dal_minimum_voltage_request(hwmgr);

	if (!data->registry_data.sclk_dpm_key_disabled) {
		if (data->smc_state_table.gfx_boot_level !=
				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3533
			smum_send_msg_to_smc_with_parameter(hwmgr,
3534
				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3535 3536
				data->smc_state_table.gfx_boot_level,
				NULL);
3537

3538 3539 3540 3541 3542 3543 3544 3545
			data->dpm_table.gfx_table.dpm_state.soft_min_level =
					data->smc_state_table.gfx_boot_level;
		}
	}

	if (!data->registry_data.mclk_dpm_key_disabled) {
		if (data->smc_state_table.mem_boot_level !=
				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3546 3547
			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
			    && hwmgr->not_vf) {
3548
				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3549
				smum_send_msg_to_smc_with_parameter(hwmgr,
3550
						PPSMC_MSG_SetSoftMinSocclkByIndex,
3551 3552
						socclk_idx,
						NULL);
3553
			} else {
3554
				smum_send_msg_to_smc_with_parameter(hwmgr,
3555
						PPSMC_MSG_SetSoftMinUclkByIndex,
3556 3557
						data->smc_state_table.mem_boot_level,
						NULL);
3558
			}
3559 3560 3561 3562 3563
			data->dpm_table.mem_table.dpm_state.soft_min_level =
					data->smc_state_table.mem_boot_level;
		}
	}

3564 3565 3566
	if (!hwmgr->not_vf)
		return 0;

3567 3568 3569 3570 3571
	if (!data->registry_data.socclk_dpm_key_disabled) {
		if (data->smc_state_table.soc_boot_level !=
				data->dpm_table.soc_table.dpm_state.soft_min_level) {
			smum_send_msg_to_smc_with_parameter(hwmgr,
				PPSMC_MSG_SetSoftMinSocclkByIndex,
3572 3573
				data->smc_state_table.soc_boot_level,
				NULL);
3574 3575 3576 3577 3578
			data->dpm_table.soc_table.dpm_state.soft_min_level =
					data->smc_state_table.soc_boot_level;
		}
	}

3579 3580 3581 3582 3583
	return 0;
}

static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
{
3584
	struct vega10_hwmgr *data = hwmgr->backend;
3585 3586 3587 3588 3589

	vega10_apply_dal_minimum_voltage_request(hwmgr);

	if (!data->registry_data.sclk_dpm_key_disabled) {
		if (data->smc_state_table.gfx_max_level !=
3590 3591
			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
			smum_send_msg_to_smc_with_parameter(hwmgr,
3592
				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3593 3594
				data->smc_state_table.gfx_max_level,
				NULL);
3595 3596 3597 3598 3599 3600 3601
			data->dpm_table.gfx_table.dpm_state.soft_max_level =
					data->smc_state_table.gfx_max_level;
		}
	}

	if (!data->registry_data.mclk_dpm_key_disabled) {
		if (data->smc_state_table.mem_max_level !=
3602 3603 3604
			data->dpm_table.mem_table.dpm_state.soft_max_level) {
			smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetSoftMaxUclkByIndex,
3605 3606
					data->smc_state_table.mem_max_level,
					NULL);
3607 3608 3609 3610 3611
			data->dpm_table.mem_table.dpm_state.soft_max_level =
					data->smc_state_table.mem_max_level;
		}
	}

3612 3613 3614
	if (!hwmgr->not_vf)
		return 0;

3615 3616 3617 3618 3619
	if (!data->registry_data.socclk_dpm_key_disabled) {
		if (data->smc_state_table.soc_max_level !=
			data->dpm_table.soc_table.dpm_state.soft_max_level) {
			smum_send_msg_to_smc_with_parameter(hwmgr,
				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3620 3621
				data->smc_state_table.soc_max_level,
				NULL);
3622 3623 3624 3625 3626
			data->dpm_table.soc_table.dpm_state.soft_max_level =
					data->smc_state_table.soc_max_level;
		}
	}

3627 3628 3629 3630 3631 3632
	return 0;
}

static int vega10_generate_dpm_level_enable_mask(
		struct pp_hwmgr *hwmgr, const void *input)
{
3633
	struct vega10_hwmgr *data = hwmgr->backend;
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	const struct vega10_power_state *vega10_ps =
			cast_const_phw_vega10_power_state(states->pnew_state);
	int i;

	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
			"Attempt to Trim DPM States Failed!",
			return -1);

	data->smc_state_table.gfx_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.gfx_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
	data->smc_state_table.mem_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3652 3653 3654 3655
	data->smc_state_table.soc_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
	data->smc_state_table.soc_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Attempt to upload DPM Bootup Levels Failed!",
			return -1);
	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Attempt to upload DPM Max Levels Failed!",
			return -1);
	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;


	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
		data->dpm_table.mem_table.dpm_levels[i].enabled = true;

3670 3671 3672
	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
		data->dpm_table.soc_table.dpm_levels[i].enabled = true;

3673 3674 3675 3676 3677
	return 0;
}

int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
3678
	struct vega10_hwmgr *data = hwmgr->backend;
3679 3680

	if (data->smu_features[GNLD_DPM_VCE].supported) {
3681
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
				enable,
				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
				"Attempt to Enable/Disable DPM VCE Failed!",
				return -1);
		data->smu_features[GNLD_DPM_VCE].enabled = enable;
	}

	return 0;
}

static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
3694
	struct vega10_hwmgr *data = hwmgr->backend;
3695 3696
	uint32_t low_sclk_interrupt_threshold = 0;

3697
	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3698
		(data->low_sclk_interrupt_threshold != 0)) {
3699 3700 3701 3702 3703 3704 3705
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
				cpu_to_le32(low_sclk_interrupt_threshold);

		/* This message will also enable SmcToHost Interrupt */
3706
		smum_send_msg_to_smc_with_parameter(hwmgr,
3707
				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3708 3709
				(uint32_t)low_sclk_interrupt_threshold,
				NULL);
3710 3711
	}

3712
	return 0;
3713 3714 3715 3716 3717 3718
}

static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
		const void *input)
{
	int tmp_result, result = 0;
3719
	struct vega10_hwmgr *data = hwmgr->backend;
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);

	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to find DPM states clocks in DPM table!",
			result = tmp_result);

	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to populate and upload SCLK MCLK DPM levels!",
			result = tmp_result);

	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to generate DPM level enabled mask!",
			result = tmp_result);

	tmp_result = vega10_update_sclk_threshold(hwmgr);
	PP_ASSERT_WITH_CODE(!tmp_result,
			"Failed to update SCLK threshold!",
			result = tmp_result);

3742
	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3743 3744 3745
	PP_ASSERT_WITH_CODE(!result,
			"Failed to upload PPtable!", return result);

3746 3747 3748 3749 3750 3751 3752
	/*
	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
	 * That effectively disables AVFS feature.
	 */
	if(hwmgr->hardcode_pp_table != NULL)
		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;

3753 3754
	vega10_update_avfs(hwmgr);

3755 3756 3757 3758
	/*
	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
	 * That will help to keep AVFS disabled.
	 */
3759
	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3760 3761 3762 3763

	return 0;
}

3764
static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
{
	struct pp_power_state *ps;
	struct vega10_power_state *vega10_ps;

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	if (low)
		return vega10_ps->performance_levels[0].gfx_clock;
	else
		return vega10_ps->performance_levels
				[vega10_ps->performance_level_count - 1].gfx_clock;
}

3786
static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
{
	struct pp_power_state *ps;
	struct vega10_power_state *vega10_ps;

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	if (low)
		return vega10_ps->performance_levels[0].mem_clock;
	else
		return vega10_ps->performance_levels
				[vega10_ps->performance_level_count-1].mem_clock;
}

3808
static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
R
Rex Zhu 已提交
3809
		uint32_t *query)
3810
{
3811 3812
	uint32_t value;

R
Rex Zhu 已提交
3813 3814 3815
	if (!query)
		return -EINVAL;

3816
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3817

R
Rex Zhu 已提交
3818 3819
	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
	*query = value << 8;
3820 3821

	return 0;
3822 3823
}

3824 3825 3826
static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
			      void *value, int *size)
{
3827
	struct amdgpu_device *adev = hwmgr->adev;
3828
	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3829
	struct vega10_hwmgr *data = hwmgr->backend;
3830 3831
	struct vega10_dpm_table *dpm_table = &data->dpm_table;
	int ret = 0;
3832
	uint32_t val_vid;
3833 3834 3835

	switch (idx) {
	case AMDGPU_PP_SENSOR_GFX_SCLK:
3836
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3837
		*((uint32_t *)value) = sclk_mhz * 100;
3838 3839
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
3840
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3841
		if (mclk_idx < dpm_table->mem_table.count) {
3842 3843
			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
			*size = 4;
3844 3845
		} else {
			ret = -EINVAL;
3846 3847 3848
		}
		break;
	case AMDGPU_PP_SENSOR_GPU_LOAD:
3849 3850
		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
						&activity_percent);
3851 3852
		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
		*size = 4;
3853 3854 3855 3856 3857
		break;
	case AMDGPU_PP_SENSOR_GPU_TEMP:
		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
		*size = 4;
		break;
3858
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3859 3860
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
		*((uint32_t *)value) = *((uint32_t *)value) *
3861 3862 3863 3864
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_MEM_TEMP:
3865 3866
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
		*((uint32_t *)value) = *((uint32_t *)value) *
3867 3868 3869
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		*size = 4;
		break;
3870 3871 3872 3873 3874 3875 3876 3877
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
		*size = 4;
		break;
3878
	case AMDGPU_PP_SENSOR_GPU_POWER:
R
Rex Zhu 已提交
3879
		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3880
		break;
3881
	case AMDGPU_PP_SENSOR_VDDGFX:
3882
		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3883 3884 3885 3886
			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
		return 0;
3887 3888 3889 3890 3891
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
		if (!ret)
			*size = 8;
		break;
3892 3893 3894 3895
	default:
		ret = -EINVAL;
		break;
	}
3896

3897 3898 3899
	return ret;
}

3900
static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3901 3902
		bool has_disp)
{
3903
	smum_send_msg_to_smc_with_parameter(hwmgr,
3904
			PPSMC_MSG_SetUclkFastSwitch,
3905 3906
			has_disp ? 1 : 0,
			NULL);
3907 3908
}

3909
static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3910 3911 3912 3913
		struct pp_display_clock_request *clock_req)
{
	int result = 0;
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
3914
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	DSPCLK_e clk_select = 0;
	uint32_t clk_request = 0;

	switch (clk_type) {
	case amd_pp_dcef_clock:
		clk_select = DSPCLK_DCEFCLK;
		break;
	case amd_pp_disp_clock:
		clk_select = DSPCLK_DISPCLK;
		break;
	case amd_pp_pixel_clock:
		clk_select = DSPCLK_PIXCLK;
		break;
	case amd_pp_phy_clock:
		clk_select = DSPCLK_PHYCLK;
		break;
	default:
		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
		result = -1;
		break;
	}

	if (!result) {
		clk_request = (clk_freq << 16) | clk_select;
3939
		smum_send_msg_to_smc_with_parameter(hwmgr,
3940
				PPSMC_MSG_RequestDisplayClockByFreq,
3941 3942
				clk_request,
				NULL);
3943 3944 3945 3946 3947
	}

	return result;
}

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
						uint32_t frequency)
{
	uint8_t count;
	uint8_t i;

	if (mclk_table == NULL || mclk_table->count == 0)
		return 0;

	count = (uint8_t)(mclk_table->count);

	for(i = 0; i < count; i++) {
		if(mclk_table->entries[i].clk >= frequency)
			return i;
	}

	return i-1;
}

3968 3969 3970
static int vega10_notify_smc_display_config_after_ps_adjustment(
		struct pp_hwmgr *hwmgr)
{
3971
	struct vega10_hwmgr *data = hwmgr->backend;
3972 3973
	struct vega10_single_dpm_table *dpm_table =
			&data->dpm_table.dcef_table;
3974 3975 3976 3977
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
	uint32_t idx;
3978 3979 3980 3981
	struct PP_Clocks min_clocks = {0};
	uint32_t i;
	struct pp_display_clock_request clock_req;

3982
	if ((hwmgr->display_config->num_display > 1) &&
3983 3984
	     !hwmgr->display_config->multi_monitor_in_sync &&
	     !hwmgr->display_config->nb_pstate_switch_disable)
3985 3986 3987 3988
		vega10_notify_smc_display_change(hwmgr, false);
	else
		vega10_notify_smc_display_change(hwmgr, true);

3989 3990 3991
	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3992 3993 3994 3995 3996 3997 3998 3999

	for (i = 0; i < dpm_table->count; i++) {
		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
			break;
	}

	if (i < dpm_table->count) {
		clock_req.clock_type = amd_pp_dcef_clock;
4000
		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4001
		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4002
			smum_send_msg_to_smc_with_parameter(
4003
					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4004 4005
					min_clocks.dcefClockInSR / 100,
					NULL);
4006
		} else {
4007
			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4008 4009
		}
	} else {
4010
		pr_debug("Cannot find requested DCEFCLK!");
4011 4012 4013 4014
	}

	if (min_clocks.memoryClock != 0) {
		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4015 4016
		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
						NULL);
4017 4018
		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
	}
4019 4020 4021 4022 4023 4024

	return 0;
}

static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
4025
	struct vega10_hwmgr *data = hwmgr->backend;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

	data->smc_state_table.gfx_boot_level =
	data->smc_state_table.gfx_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
	data->smc_state_table.mem_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to highest!",
			return -1);

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -1);

	return 0;
}

static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
4047
	struct vega10_hwmgr *data = hwmgr->backend;
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

	data->smc_state_table.gfx_boot_level =
	data->smc_state_table.gfx_max_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
	data->smc_state_table.mem_max_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to highest!",
			return -1);

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -1);

	return 0;

}

static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
4070
	struct vega10_hwmgr *data = hwmgr->backend;
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

	data->smc_state_table.gfx_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.gfx_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
	data->smc_state_table.mem_boot_level =
			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
	data->smc_state_table.mem_max_level =
			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload DPM Bootup Levels!",
			return -1);

	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload DPM Max Levels!",
			return -1);
	return 0;
}

4091 4092
static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4093
{
4094 4095
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4096

4097 4098 4099 4100 4101 4102
	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
R
Rex Zhu 已提交
4103 4104
		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
4105 4106
	}

4107 4108 4109 4110 4111
	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
		*sclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
		*mclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4112 4113 4114 4115 4116 4117 4118
		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
		 * to level-4 due to the limited power
		 */
		if (hwmgr->pp_one_vf)
			*sclk_mask = 4;
		else
			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4119 4120 4121
		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
	}
4122

4123
	return 0;
4124 4125
}

4126
static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4127
{
4128 4129 4130
	if (!hwmgr->not_vf)
		return;

4131 4132
	switch (mode) {
	case AMD_FAN_CTRL_NONE:
4133
		vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4134 4135
		break;
	case AMD_FAN_CTRL_MANUAL:
4136
		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4137
			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4138 4139
		break;
	case AMD_FAN_CTRL_AUTO:
4140
		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4141
			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4142 4143 4144 4145
		break;
	default:
		break;
	}
4146 4147
}

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask)
{
	struct vega10_hwmgr *data = hwmgr->backend;

	switch (type) {
	case PP_SCLK:
		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to lowest!",
			return -EINVAL);

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -EINVAL);
		break;

	case PP_MCLK:
		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to lowest!",
			return -EINVAL);

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -EINVAL);

		break;

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	case PP_SOCCLK:
		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
			"Failed to upload boot level to lowest!",
			return -EINVAL);

		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
			"Failed to upload dpm max level to highest!",
			return -EINVAL);

		break;

	case PP_DCEFCLK:
		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
		break;

4199 4200 4201 4202 4203 4204 4205 4206
	case PP_PCIE:
	default:
		break;
	}

	return 0;
}

4207 4208 4209 4210 4211 4212 4213 4214
static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
				enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask = 0;
	uint32_t mclk_mask = 0;
	uint32_t soc_mask = 0;

R
Rex Zhu 已提交
4215 4216 4217
	if (hwmgr->pstate_sclk == 0)
		vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = vega10_force_dpm_highest(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = vega10_force_dpm_lowest(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
		ret = vega10_unforce_dpm_levels(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
		if (ret)
			return ret;
		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}

4244 4245 4246
	if (!hwmgr->not_vf)
		return ret;

4247 4248 4249 4250 4251 4252
	if (!ret) {
		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
	}
4253

4254
	return ret;
4255 4256
}

4257
static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4258
{
4259
	struct vega10_hwmgr *data = hwmgr->backend;
4260

4261 4262 4263 4264
	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
}

static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
		struct amd_pp_simple_clock_info *info)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_clock_and_voltage_limits *max_limits =
			&table_info->max_clock_voltage_on_ac;

	info->engine_max_clock = max_limits->sclk;
	info->memory_max_clock = max_limits->mclk;

	return 0;
}

static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_sclk;
	uint32_t i;

4290
	clocks->num_levels = 0;
4291 4292 4293
	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].clk) {
			clocks->data[clocks->num_levels].clocks_in_khz =
4294
					dep_table->entries[i].clk * 10;
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
			clocks->num_levels++;
		}
	}

}

static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_mclk;
4308
	struct vega10_hwmgr *data = hwmgr->backend;
4309
	uint32_t j = 0;
4310 4311 4312 4313
	uint32_t i;

	for (i = 0; i < dep_table->count; i++) {
		if (dep_table->entries[i].clk) {
4314

4315 4316 4317 4318 4319
			clocks->data[j].clocks_in_khz =
						dep_table->entries[i].clk * 10;
			data->mclk_latency_table.entries[j].frequency =
							dep_table->entries[i].clk;
			clocks->data[j].latency_in_us =
4320
				data->mclk_latency_table.entries[j].latency = 25;
4321
			j++;
4322 4323
		}
	}
4324
	clocks->num_levels = data->mclk_latency_table.count = j;
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
}

static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_dcefclk;
	uint32_t i;

	for (i = 0; i < dep_table->count; i++) {
4337
		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
		clocks->data[i].latency_in_us = 0;
		clocks->num_levels++;
	}
}

static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
			table_info->vdd_dep_on_socclk;
	uint32_t i;

	for (i = 0; i < dep_table->count; i++) {
4353
		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
		clocks->data[i].latency_in_us = 0;
		clocks->num_levels++;
	}
}

static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_latency *clocks)
{
	switch (type) {
	case amd_pp_sys_clock:
		vega10_get_sclks(hwmgr, clocks);
		break;
	case amd_pp_mem_clock:
		vega10_get_memclocks(hwmgr, clocks);
		break;
	case amd_pp_dcef_clock:
		vega10_get_dcefclocks(hwmgr, clocks);
		break;
	case amd_pp_soc_clock:
		vega10_get_socclocks(hwmgr, clocks);
		break;
	default:
		return -1;
	}

	return 0;
}

static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_voltage *clocks)
{
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
	uint32_t i;

	switch (type) {
	case amd_pp_mem_clock:
		dep_table = table_info->vdd_dep_on_mclk;
		break;
	case amd_pp_dcef_clock:
		dep_table = table_info->vdd_dep_on_dcefclk;
		break;
	case amd_pp_disp_clock:
		dep_table = table_info->vdd_dep_on_dispclk;
		break;
	case amd_pp_pixel_clock:
		dep_table = table_info->vdd_dep_on_pixclk;
		break;
	case amd_pp_phy_clock:
		dep_table = table_info->vdd_dep_on_phyclk;
		break;
	default:
		return -1;
	}

	for (i = 0; i < dep_table->count; i++) {
4413
		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
				entries[dep_table->entries[i].vddInd].us_vdd);
		clocks->num_levels++;
	}

	if (i < dep_table->count)
		return -1;

	return 0;
}

static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4426
							void *clock_range)
4427
{
4428
	struct vega10_hwmgr *data = hwmgr->backend;
4429
	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4430 4431 4432
	Watermarks_t *table = &(data->smc_state_table.water_marks_table);

	if (!data->registry_data.disable_water_mark) {
4433
		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4434 4435 4436
		data->water_marks_bitmap = WaterMarksExist;
	}

4437
	return 0;
4438 4439
}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
{
	static const char *ppfeature_name[] = {
				"DPM_PREFETCHER",
				"GFXCLK_DPM",
				"UCLK_DPM",
				"SOCCLK_DPM",
				"UVD_DPM",
				"VCE_DPM",
				"ULV",
				"MP0CLK_DPM",
				"LINK_DPM",
				"DCEFCLK_DPM",
				"AVFS",
				"GFXCLK_DS",
				"SOCCLK_DS",
				"LCLK_DS",
				"PPT",
				"TDC",
				"THERMAL",
				"GFX_PER_CU_CG",
				"RM",
				"DCEFCLK_DS",
				"ACDC",
				"VR0HOT",
				"VR1HOT",
				"FW_CTF",
				"LED_DISPLAY",
				"FAN_CONTROL",
				"FAST_PPT",
				"DIDT",
				"ACG",
				"PCC_LIMIT"};
	static const char *output_title[] = {
				"FEATURES",
				"BITMASK",
				"ENABLEMENT"};
	uint64_t features_enabled;
	int i;
	int ret = 0;
	int size = 0;

	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
	PP_ASSERT_WITH_CODE(!ret,
			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
			return ret);

	size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
	size += sprintf(buf + size, "%-19s %-22s %s\n",
				output_title[0],
				output_title[1],
				output_title[2]);
	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
		size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
					ppfeature_name[i],
					1ULL << i,
					(features_enabled & (1ULL << i)) ? "Y" : "N");
	}

	return size;
}

static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
{
	uint64_t features_enabled;
	uint64_t features_to_enable;
	uint64_t features_to_disable;
	int ret = 0;

	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
		return -EINVAL;

	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
	if (ret)
		return ret;

	features_to_disable =
4517
		features_enabled & ~new_ppfeature_masks;
4518
	features_to_enable =
4519
		~features_enabled & new_ppfeature_masks;
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538

	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
	pr_debug("features_to_enable 0x%llx\n", features_to_enable);

	if (features_to_disable) {
		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
		if (ret)
			return ret;
	}

	if (features_to_enable) {
		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
		if (ret)
			return ret;
	}

	return 0;
}

4539 4540 4541
static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
4542
	struct vega10_hwmgr *data = hwmgr->backend;
4543 4544
	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4545 4546
	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4547
	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
4548 4549
	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;

4550
	int i, now, size = 0, count = 0;
4551 4552 4553 4554 4555 4556

	switch (type) {
	case PP_SCLK:
		if (data->registry_data.sclk_dpm_key_disabled)
			break;

4557
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4558

4559 4560 4561 4562 4563 4564
		if (hwmgr->pp_one_vf &&
		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
			count = 5;
		else
			count = sclk_table->count;
		for (i = 0; i < count; i++)
4565 4566 4567 4568 4569 4570 4571 4572
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, sclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_MCLK:
		if (data->registry_data.mclk_dpm_key_disabled)
			break;

4573
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4574 4575 4576 4577 4578 4579

		for (i = 0; i < mclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, mclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
4580 4581 4582 4583
	case PP_SOCCLK:
		if (data->registry_data.socclk_dpm_key_disabled)
			break;

4584
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

		for (i = 0; i < soc_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, soc_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_DCEFCLK:
		if (data->registry_data.dcefclk_dpm_key_disabled)
			break;

		smum_send_msg_to_smc_with_parameter(hwmgr,
4596
				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4597 4598 4599 4600 4601 4602 4603

		for (i = 0; i < dcef_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, dcef_table->dpm_levels[i].value / 100,
					(dcef_table->dpm_levels[i].value / 100 == now) ?
					"*" : "");
		break;
4604
	case PP_PCIE:
4605
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex, &now);
4606 4607 4608

		for (i = 0; i < pcie_table->count; i++)
			size += sprintf(buf + size, "%d: %s %s\n", i,
4609 4610 4611
					(pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
					(pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
					(pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
4612 4613
					(i == now) ? "*" : "");
		break;
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
	case OD_SCLK:
		if (hwmgr->od_enabled) {
			size = sprintf(buf, "%s:\n", "OD_SCLK");
			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
			for (i = 0; i < podn_vdd_dep->count; i++)
				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
					i, podn_vdd_dep->entries[i].clk / 100,
						podn_vdd_dep->entries[i].vddc);
		}
		break;
	case OD_MCLK:
		if (hwmgr->od_enabled) {
			size = sprintf(buf, "%s:\n", "OD_MCLK");
			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
			for (i = 0; i < podn_vdd_dep->count; i++)
				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
					i, podn_vdd_dep->entries[i].clk/100,
						podn_vdd_dep->entries[i].vddc);
		}
		break;
	case OD_RANGE:
		if (hwmgr->od_enabled) {
			size = sprintf(buf, "%s:\n", "OD_RANGE");
			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
				data->odn_dpm_table.min_vddc,
				data->odn_dpm_table.max_vddc);
		}
		break;
4648 4649 4650 4651 4652 4653 4654 4655
	default:
		break;
	}
	return size;
}

static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
4656
	struct vega10_hwmgr *data = hwmgr->backend;
4657
	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4658
	int result = 0;
4659 4660 4661

	if ((data->water_marks_bitmap & WaterMarksExist) &&
			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4662
		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4663
		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4664 4665 4666 4667
		data->water_marks_bitmap |= WaterMarksLoaded;
	}

	if (data->water_marks_bitmap & WaterMarksLoaded) {
4668
		smum_send_msg_to_smc_with_parameter(hwmgr,
4669 4670
			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
			NULL);
4671 4672 4673 4674 4675
	}

	return result;
}

4676
static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4677
{
4678
	struct vega10_hwmgr *data = hwmgr->backend;
4679 4680

	if (data->smu_features[GNLD_DPM_UVD].supported) {
4681
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4682 4683 4684 4685 4686 4687 4688 4689 4690
				enable,
				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
				"Attempt to Enable/Disable DPM UVD Failed!",
				return -1);
		data->smu_features[GNLD_DPM_UVD].enabled = enable;
	}
	return 0;
}

4691
static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4692
{
4693
	struct vega10_hwmgr *data = hwmgr->backend;
4694 4695

	data->vce_power_gated = bgate;
4696
	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4697 4698
}

4699
static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4700
{
4701
	struct vega10_hwmgr *data = hwmgr->backend;
4702 4703

	data->uvd_power_gated = bgate;
4704
	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
}

static inline bool vega10_are_power_levels_equal(
				const struct vega10_performance_level *pl1,
				const struct vega10_performance_level *pl2)
{
	return ((pl1->soc_clock == pl2->soc_clock) &&
			(pl1->gfx_clock == pl2->gfx_clock) &&
			(pl1->mem_clock == pl2->mem_clock));
}

static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
				const struct pp_hw_power_state *pstate1,
			const struct pp_hw_power_state *pstate2, bool *equal)
{
	const struct vega10_power_state *psa;
	const struct vega10_power_state *psb;
	int i;

	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
		return -EINVAL;

	psa = cast_const_phw_vega10_power_state(pstate1);
	psb = cast_const_phw_vega10_power_state(pstate2);
	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
	if (psa->performance_level_count != psb->performance_level_count) {
		*equal = false;
		return 0;
	}

	for (i = 0; i < psa->performance_level_count; i++) {
		if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
			/* If we have found even one performance level pair that is different the states are different. */
			*equal = false;
			return 0;
		}
	}

	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
	*equal &= (psa->sclk_threshold == psb->sclk_threshold);

	return 0;
}

static bool
vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
4754
	struct vega10_hwmgr *data = hwmgr->backend;
4755 4756
	bool is_update_required = false;

4757
	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4758 4759
		is_update_required = true;

4760
	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4761
		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
4762 4763 4764 4765 4766 4767
			is_update_required = true;
	}

	return is_update_required;
}

4768 4769 4770 4771
static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	int tmp_result, result = 0;

4772 4773 4774
	if (!hwmgr->not_vf)
		return 0;

4775
	if (PP_CAP(PHM_PlatformCaps_ThermalController))
4776 4777 4778 4779 4780 4781
		vega10_disable_thermal_protection(hwmgr);

	tmp_result = vega10_disable_power_containment(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable power containment!", result = tmp_result);

4782 4783 4784 4785
	tmp_result = vega10_disable_didt_config(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable didt config!", result = tmp_result);

4786 4787 4788 4789 4790 4791 4792 4793
	tmp_result = vega10_avfs_enable(hwmgr, false);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable AVFS!", result = tmp_result);

	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to stop DPM!", result = tmp_result);

4794 4795 4796 4797
	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable deep sleep!", result = tmp_result);

4798 4799 4800 4801
	tmp_result = vega10_disable_ulv(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable ulv!", result = tmp_result);

4802 4803 4804
	tmp_result =  vega10_acg_disable(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable acg!", result = tmp_result);
4805 4806

	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
4807 4808 4809 4810 4811
	return result;
}

static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
{
4812
	struct vega10_hwmgr *data = hwmgr->backend;
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	int result;

	result = vega10_disable_dpm_tasks(hwmgr);
	PP_ASSERT_WITH_CODE((0 == result),
			"[disable_dpm_tasks] Failed to disable DPM!",
			);
	data->water_marks_bitmap &= ~(WaterMarksLoaded);

	return result;
}

4824 4825
static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
{
4826
	struct vega10_hwmgr *data = hwmgr->backend;
4827 4828 4829
	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
	struct vega10_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.gfx_table);
4830 4831
	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
	int golden_value = golden_sclk_table->dpm_levels
4832 4833
			[golden_sclk_table->count - 1].value;

4834 4835 4836
	value -= golden_value;
	value = DIV_ROUND_UP(value * 100, golden_value);

4837 4838 4839 4840 4841
	return value;
}

static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
4842
	struct vega10_hwmgr *data = hwmgr->backend;
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
	struct vega10_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.gfx_table);
	struct pp_power_state *ps;
	struct vega10_power_state *vega10_ps;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	vega10_ps->performance_levels
	[vega10_ps->performance_level_count - 1].gfx_clock =
			golden_sclk_table->dpm_levels
			[golden_sclk_table->count - 1].value *
			value / 100 +
			golden_sclk_table->dpm_levels
			[golden_sclk_table->count - 1].value;

	if (vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].gfx_clock >
4865
			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
4866 4867 4868
		vega10_ps->performance_levels
		[vega10_ps->performance_level_count - 1].gfx_clock =
				hwmgr->platform_descriptor.overdriveLimit.engineClock;
4869 4870 4871
		pr_warn("max sclk supported by vbios is %d\n",
				hwmgr->platform_descriptor.overdriveLimit.engineClock);
	}
4872 4873 4874 4875 4876
	return 0;
}

static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
{
4877
	struct vega10_hwmgr *data = hwmgr->backend;
4878 4879 4880
	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
	struct vega10_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mem_table);
4881 4882
	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
	int golden_value = golden_mclk_table->dpm_levels
4883 4884
			[golden_mclk_table->count - 1].value;

4885 4886 4887
	value -= golden_value;
	value = DIV_ROUND_UP(value * 100, golden_value);

4888 4889 4890 4891 4892
	return value;
}

static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
4893
	struct vega10_hwmgr *data = hwmgr->backend;
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
	struct vega10_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mem_table);
	struct pp_power_state  *ps;
	struct vega10_power_state  *vega10_ps;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);

	vega10_ps->performance_levels
	[vega10_ps->performance_level_count - 1].mem_clock =
			golden_mclk_table->dpm_levels
			[golden_mclk_table->count - 1].value *
			value / 100 +
			golden_mclk_table->dpm_levels
			[golden_mclk_table->count - 1].value;

	if (vega10_ps->performance_levels
			[vega10_ps->performance_level_count - 1].mem_clock >
4916
			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
4917 4918 4919
		vega10_ps->performance_levels
		[vega10_ps->performance_level_count - 1].mem_clock =
				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
4920 4921 4922
		pr_warn("max mclk supported by vbios is %d\n",
				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
	}
4923 4924 4925

	return 0;
}
4926

4927 4928 4929 4930 4931 4932 4933 4934 4935
static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
					uint32_t virtual_addr_low,
					uint32_t virtual_addr_hi,
					uint32_t mc_addr_low,
					uint32_t mc_addr_hi,
					uint32_t size)
{
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
4936 4937
					virtual_addr_hi,
					NULL);
4938 4939
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetSystemVirtualDramAddrLow,
4940 4941
					virtual_addr_low,
					NULL);
4942 4943
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramAddrHigh,
4944 4945
					mc_addr_hi,
					NULL);
4946 4947 4948

	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramAddrLow,
4949 4950
					mc_addr_low,
					NULL);
4951 4952 4953

	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramSize,
4954 4955
					size,
					NULL);
4956 4957 4958
	return 0;
}

4959 4960 4961
static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
		struct PP_TemperatureRange *thermal_data)
{
4962 4963
	struct vega10_hwmgr *data = hwmgr->backend;
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
4964 4965 4966

	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));

4967 4968
	thermal_data->max = pp_table->TedgeLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4969 4970
	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4971 4972
	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4973 4974
	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4975
	thermal_data->mem_crit_max = pp_table->ThbmLimit *
4976
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4977 4978
	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4979 4980 4981 4982

	return 0;
}

4983 4984
static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
{
4985
	struct vega10_hwmgr *data = hwmgr->backend;
4986
	uint32_t i, size = 0;
4987 4988
	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
						{70, 60, 1, 3,},
4989 4990 4991 4992 4993
						{90, 60, 0, 0,},
						{70, 60, 0, 0,},
						{70, 90, 0, 0,},
						{30, 60, 0, 6,},
						};
4994 4995
	static const char *profile_name[7] = {"BOOTUP_DEFAULT",
					"3D_FULL_SCREEN",
4996 4997 4998
					"POWER_SAVING",
					"VIDEO",
					"VR",
4999
					"COMPUTE",
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
					"CUSTOM"};
	static const char *title[6] = {"NUM",
			"MODE_NAME",
			"BUSY_SET_POINT",
			"FPS",
			"USE_RLC_BUSY",
			"MIN_ACTIVE_LEVEL"};

	if (!buf)
		return -EINVAL;

	size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
			title[1], title[2], title[3], title[4], title[5]);

	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
		size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
			i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
			profile_mode_setting[i][0], profile_mode_setting[i][1],
			profile_mode_setting[i][2], profile_mode_setting[i][3]);
	size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
			profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
			data->custom_profile_mode[0], data->custom_profile_mode[1],
			data->custom_profile_mode[2], data->custom_profile_mode[3]);
	return size;
}

static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
{
5028
	struct vega10_hwmgr *data = hwmgr->backend;
5029 5030 5031 5032
	uint8_t busy_set_point;
	uint8_t FPS;
	uint8_t use_rlc_busy;
	uint8_t min_active_level;
5033
	uint32_t power_profile_mode = input[size];
5034

5035
	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5036
		if (size != 0 && size != 4)
5037 5038
			return -EINVAL;

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
		/* If size = 0 and the CUSTOM profile has been set already
		 * then just apply the profile. The copy stored in the hwmgr
		 * is zeroed out on init
		 */
		if (size == 0) {
			if (data->custom_profile_mode[0] != 0)
				goto out;
			else
				return -EINVAL;
		}

5050 5051 5052 5053 5054 5055 5056
		data->custom_profile_mode[0] = busy_set_point = input[0];
		data->custom_profile_mode[1] = FPS = input[1];
		data->custom_profile_mode[2] = use_rlc_busy = input[2];
		data->custom_profile_mode[3] = min_active_level = input[3];
		smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetCustomGfxDpmParameters,
					busy_set_point | FPS<<8 |
5057 5058
					use_rlc_busy << 16 | min_active_level<<24,
					NULL);
5059 5060
	}

5061
out:
5062
	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5063 5064
						1 << power_profile_mode,
						NULL);
5065 5066
	hwmgr->power_profile_mode = power_profile_mode;

5067 5068 5069
	return 0;
}

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109

static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
					enum PP_OD_DPM_TABLE_COMMAND type,
					uint32_t clk,
					uint32_t voltage)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
	struct vega10_single_dpm_table *golden_table;

	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
		return false;
	}

	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
		golden_table = &(data->golden_dpm_table.gfx_table);
		if (golden_table->dpm_levels[0].value > clk ||
			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
				golden_table->dpm_levels[0].value/100,
				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
			return false;
		}
	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
		golden_table = &(data->golden_dpm_table.mem_table);
		if (golden_table->dpm_levels[0].value > clk ||
			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
				golden_table->dpm_levels[0].value/100,
				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
			return false;
		}
	} else {
		return false;
	}

	return true;
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	struct pp_power_state *ps = hwmgr->request_ps;
	struct vega10_power_state *vega10_ps;
	struct vega10_single_dpm_table *gfx_dpm_table =
		&data->dpm_table.gfx_table;
	struct vega10_single_dpm_table *soc_dpm_table =
		&data->dpm_table.soc_table;
	struct vega10_single_dpm_table *mem_dpm_table =
		&data->dpm_table.mem_table;
	int max_level;

	if (!ps)
		return;

	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
	max_level = vega10_ps->performance_level_count - 1;

	if (vega10_ps->performance_levels[max_level].gfx_clock !=
	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
		vega10_ps->performance_levels[max_level].gfx_clock =
			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;

	if (vega10_ps->performance_levels[max_level].soc_clock !=
	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
		vega10_ps->performance_levels[max_level].soc_clock =
			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;

	if (vega10_ps->performance_levels[max_level].mem_clock !=
	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
		vega10_ps->performance_levels[max_level].mem_clock =
			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;

	if (!hwmgr->ps)
		return;

	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
	max_level = vega10_ps->performance_level_count - 1;

	if (vega10_ps->performance_levels[max_level].gfx_clock !=
	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
		vega10_ps->performance_levels[max_level].gfx_clock =
			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;

	if (vega10_ps->performance_levels[max_level].soc_clock !=
	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
		vega10_ps->performance_levels[max_level].soc_clock =
			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;

	if (vega10_ps->performance_levels[max_level].mem_clock !=
	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
		vega10_ps->performance_levels[max_level].mem_clock =
			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
}

5167 5168 5169 5170 5171 5172
static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
						enum PP_OD_DPM_TABLE_COMMAND type)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5173
	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183

	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
							&data->odn_dpm_table.vdd_dep_on_socclk;
	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;

	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
	uint8_t i, j;

	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5184
		for (i = 0; i < podn_vdd_dep->count; i++)
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
		for (i = 0; i < dpm_table->count; i++) {
			for (j = 0; j < od_vddc_lookup_table->count; j++) {
				if (od_vddc_lookup_table->entries[j].us_vdd >
					podn_vdd_dep->entries[i].vddc)
					break;
			}
			if (j == od_vddc_lookup_table->count) {
5195 5196
				j = od_vddc_lookup_table->count - 1;
				od_vddc_lookup_table->entries[j].us_vdd =
5197 5198 5199 5200 5201 5202 5203
					podn_vdd_dep->entries[i].vddc;
				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
			}
			podn_vdd_dep->entries[i].vddInd = j;
		}
		dpm_table = &data->dpm_table.soc_table;
		for (i = 0; i < dep_table->count; i++) {
5204 5205
			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5206
				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
				for (; (i < dep_table->count) &&
				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
				}
				break;
			} else {
				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5218 5219 5220
			}
		}
		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5221
					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5222
			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5223 5224 5225 5226
			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5227 5228
		}
		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5229
					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5230
			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5231 5232
			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5233 5234
		}
	}
5235
	vega10_odn_update_power_state(hwmgr);
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
}

static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
					enum PP_OD_DPM_TABLE_COMMAND type,
					long *input, uint32_t size)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
	struct vega10_single_dpm_table *dpm_table;

	uint32_t input_clk;
	uint32_t input_vol;
	uint32_t input_level;
	uint32_t i;

	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
				return -EINVAL);

	if (!hwmgr->od_enabled) {
		pr_info("OverDrive feature not enabled\n");
		return -EINVAL;
	}

	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
		dpm_table = &data->dpm_table.gfx_table;
		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
		dpm_table = &data->dpm_table.mem_table;
		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
		vega10_odn_initial_default_setting(hwmgr);
5270
		vega10_odn_update_power_state(hwmgr);
5271 5272 5273 5274
		/* force to update all clock tables */
		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
					      DPMTABLE_UPDATE_MCLK |
					      DPMTABLE_UPDATE_SOCCLK;
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
		return 0;
	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
		vega10_check_dpm_table_updated(hwmgr);
		return 0;
	} else {
		return -EINVAL;
	}

	for (i = 0; i < size; i += 3) {
		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
			pr_info("invalid clock voltage input\n");
			return 0;
		}
		input_level = input[i];
		input_clk = input[i+1] * 100;
		input_vol = input[i+2];

		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
			dpm_table->dpm_levels[input_level].value = input_clk;
			podn_vdd_dep_table->entries[input_level].clk = input_clk;
			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
		} else {
			return -EINVAL;
		}
	}
	vega10_odn_update_soc_table(hwmgr, type);
	return 0;
}

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
				enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	switch (mp1_state) {
	case PP_MP1_STATE_UNLOAD:
		msg = PPSMC_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_SHUTDOWN:
	case PP_MP1_STATE_RESET:
	case PP_MP1_STATE_NONE:
	default:
		return 0;
	}

5321
	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5322 5323 5324 5325 5326 5327
			    "[PrepareMp1] Failed!",
			    return ret);

	return 0;
}

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
				PHM_PerformanceLevelDesignation designation, uint32_t index,
				PHM_PerformanceLevel *level)
{
	const struct vega10_power_state *ps;
	uint32_t i;

	if (level == NULL || hwmgr == NULL || state == NULL)
		return -EINVAL;

	ps = cast_const_phw_vega10_power_state(state);

	i = index > ps->performance_level_count - 1 ?
			ps->performance_level_count - 1 : index;

	level->coreClock = ps->performance_levels[i].gfx_clock;
	level->memory_clock = ps->performance_levels[i].mem_clock;

	return 0;
}

5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
{
	struct vega10_hwmgr *data = hwmgr->backend;
	uint32_t feature_mask = 0;

	if (disable) {
		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
	} else {
		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
	}

	if (feature_mask)
		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
				!disable, feature_mask),
				"enable/disable power features for compute performance Failed!",
				return -EINVAL);

	if (disable) {
		data->smu_features[GNLD_ULV].enabled = false;
		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
		data->smu_features[GNLD_DS_LCLK].enabled = false;
		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
	} else {
		data->smu_features[GNLD_ULV].enabled = true;
		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
		data->smu_features[GNLD_DS_LCLK].enabled = true;
		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
	}

	return 0;

}

5402 5403 5404 5405 5406
static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
	.backend_init = vega10_hwmgr_backend_init,
	.backend_fini = vega10_hwmgr_backend_fini,
	.asic_setup = vega10_setup_asic_task,
	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5407
	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	.get_num_of_pp_table_entries =
			vega10_get_number_of_powerplay_table_entries,
	.get_power_state_size = vega10_get_power_state_size,
	.get_pp_table_entry = vega10_get_pp_table_entry,
	.patch_boot_state = vega10_patch_boot_state,
	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
	.power_state_set = vega10_set_power_state_tasks,
	.get_sclk = vega10_dpm_get_sclk,
	.get_mclk = vega10_dpm_get_mclk,
	.notify_smc_display_config_after_ps_adjustment =
			vega10_notify_smc_display_config_after_ps_adjustment,
	.force_dpm_level = vega10_dpm_force_dpm_level,
	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
	.get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
	.set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
	.reset_fan_speed_to_default =
			vega10_fan_ctrl_reset_fan_speed_to_default,
	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
	.uninitialize_thermal_controller =
			vega10_thermal_ctrl_uninitialize_thermal_controller,
	.set_fan_control_mode = vega10_set_fan_control_mode,
	.get_fan_control_mode = vega10_get_fan_control_mode,
	.read_sensor = vega10_read_sensor,
	.get_dal_power_level = vega10_get_dal_power_level,
	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
	.display_clock_voltage_request = vega10_display_clock_voltage_request,
	.force_clock_level = vega10_force_clock_level,
	.print_clock_levels = vega10_print_clock_levels,
	.display_config_changed = vega10_display_configuration_changed_task,
	.powergate_uvd = vega10_power_gate_uvd,
	.powergate_vce = vega10_power_gate_vce,
	.check_states_equal = vega10_check_states_equal,
	.check_smc_update_required_for_display_configuration =
			vega10_check_smc_update_required_for_display_configuration,
5446 5447
	.power_off_asic = vega10_power_off_asic,
	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5448 5449 5450 5451
	.get_sclk_od = vega10_get_sclk_od,
	.set_sclk_od = vega10_set_sclk_od,
	.get_mclk_od = vega10_get_mclk_od,
	.set_mclk_od = vega10_set_mclk_od,
5452
	.avfs_control = vega10_avfs_enable,
5453
	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5454
	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5455
	.register_irq_handlers = smu9_register_irq_handlers,
5456
	.start_thermal_controller = vega10_start_thermal_controller,
5457 5458
	.get_power_profile_mode = vega10_get_power_profile_mode,
	.set_power_profile_mode = vega10_set_power_profile_mode,
5459
	.set_power_limit = vega10_set_power_limit,
5460
	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5461
	.get_performance_level = vega10_get_performance_level,
5462 5463
	.get_asic_baco_capability = smu9_baco_get_capability,
	.get_asic_baco_state = smu9_baco_get_state,
5464
	.set_asic_baco_state = vega10_baco_set_state,
5465
	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5466 5467
	.get_ppfeature_status = vega10_get_ppfeature_status,
	.set_ppfeature_status = vega10_set_ppfeature_status,
5468
	.set_mp1_state = vega10_set_mp1_state,
5469 5470
	.disable_power_features_for_compute_performance =
			vega10_disable_power_features_for_compute_performance,
5471 5472 5473 5474
};

int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
{
5475 5476
	struct amdgpu_device *adev = hwmgr->adev;

5477 5478
	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
	hwmgr->pptable_func = &vega10_pptable_funcs;
5479 5480
	if (amdgpu_passthrough(adev))
		return vega10_baco_set_cap(hwmgr);
5481

5482 5483
	return 0;
}