vmscan.c 106.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142 143 144

static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
{
145 146 147
	struct mem_cgroup *root = sc->target_mem_cgroup;
	return !mem_cgroup_disabled() &&
		mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE;
148
}
149
#else
150 151 152 153
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
154 155 156 157 158

static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
{
	return false;
}
159 160
#endif

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

180
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
181
{
182
	if (!mem_cgroup_disabled())
183
		return mem_cgroup_get_lru_size(lruvec, lru);
184

185
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
186 187
}

L
Linus Torvalds 已提交
188 189 190
/*
 * Add a shrinker callback to be called from the vm
 */
191
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
192
{
193
	atomic_long_set(&shrinker->nr_in_batch, 0);
194 195 196
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
197
}
198
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
199 200 201 202

/*
 * Remove one
 */
203
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
204 205 206 207 208
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
209
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
210

211 212 213 214 215 216 217 218
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
219 220 221 222 223 224 225 226 227
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
228
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
229 230 231 232 233 234 235
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
236 237
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
238
 */
239
unsigned long shrink_slab(struct shrink_control *shrink,
240
			  unsigned long nr_pages_scanned,
241
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
242 243
{
	struct shrinker *shrinker;
244
	unsigned long ret = 0;
L
Linus Torvalds 已提交
245

246 247
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
248

249 250 251 252 253
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
254 255 256

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
257 258
		long total_scan;
		long max_pass;
259
		int shrink_ret = 0;
260 261
		long nr;
		long new_nr;
262 263
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
264

265 266 267 268
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

269 270 271 272 273
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
274
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
275 276

		total_scan = nr;
277
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
278
		delta *= max_pass;
L
Linus Torvalds 已提交
279
		do_div(delta, lru_pages + 1);
280 281
		total_scan += delta;
		if (total_scan < 0) {
282 283
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
284 285
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
286 287
		}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

303 304 305 306 307
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
308 309
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
310

311
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
312 313 314
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

315
		while (total_scan >= batch_size) {
316
			int nr_before;
L
Linus Torvalds 已提交
317

318 319
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
320
							batch_size);
L
Linus Torvalds 已提交
321 322
			if (shrink_ret == -1)
				break;
323 324
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
325 326
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
327 328 329 330

			cond_resched();
		}

331 332 333 334 335
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
336 337 338 339 340
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
341 342

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
343 344
	}
	up_read(&shrinker_rwsem);
345 346
out:
	cond_resched();
347
	return ret;
L
Linus Torvalds 已提交
348 349 350 351
}

static inline int is_page_cache_freeable(struct page *page)
{
352 353 354 355 356
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
357
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
358 359
}

360 361
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
362
{
363
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
387
	lock_page(page);
388 389
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
390 391 392
	unlock_page(page);
}

393 394 395 396 397 398 399 400 401 402 403 404
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
405
/*
A
Andrew Morton 已提交
406 407
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
408
 */
409
static pageout_t pageout(struct page *page, struct address_space *mapping,
410
			 struct scan_control *sc)
L
Linus Torvalds 已提交
411 412 413 414 415 416 417 418
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
419
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
435
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
436 437
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
438
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
439 440 441 442 443 444 445
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
446
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
447 448 449 450 451 452 453
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
454 455
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
456 457 458 459 460 461 462
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
463
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
464 465 466
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
467

L
Linus Torvalds 已提交
468 469 470 471
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
472
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
473
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
474 475 476 477 478 479
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

480
/*
N
Nick Piggin 已提交
481 482
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
483
 */
N
Nick Piggin 已提交
484
static int __remove_mapping(struct address_space *mapping, struct page *page)
485
{
486 487
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
488

N
Nick Piggin 已提交
489
	spin_lock_irq(&mapping->tree_lock);
490
	/*
N
Nick Piggin 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
514
	 */
N
Nick Piggin 已提交
515
	if (!page_freeze_refs(page, 2))
516
		goto cannot_free;
N
Nick Piggin 已提交
517 518 519
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
520
		goto cannot_free;
N
Nick Piggin 已提交
521
	}
522 523 524 525

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
526
		spin_unlock_irq(&mapping->tree_lock);
527
		swapcache_free(swap, page);
N
Nick Piggin 已提交
528
	} else {
529 530 531 532
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

533
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
534
		spin_unlock_irq(&mapping->tree_lock);
535
		mem_cgroup_uncharge_cache_page(page);
536 537 538

		if (freepage != NULL)
			freepage(page);
539 540 541 542 543
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
544
	spin_unlock_irq(&mapping->tree_lock);
545 546 547
	return 0;
}

N
Nick Piggin 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
568 569 570 571 572 573 574 575 576 577 578
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
579
	bool is_unevictable;
580
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
581 582 583 584 585 586

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

587
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
588 589 590 591 592 593
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
594
		is_unevictable = false;
595
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
596 597 598 599 600
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
601
		is_unevictable = true;
L
Lee Schermerhorn 已提交
602
		add_page_to_unevictable_list(page);
603
		/*
604 605 606
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
607
		 * isolation/check_move_unevictable_pages,
608
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
609 610
		 * the page back to the evictable list.
		 *
611
		 * The other side is TestClearPageMlocked() or shmem_lock().
612 613
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
614 615 616 617 618 619 620
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
621
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
622 623 624 625 626 627 628 629 630 631
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

632
	if (was_unevictable && !is_unevictable)
633
		count_vm_event(UNEVICTABLE_PGRESCUED);
634
	else if (!was_unevictable && is_unevictable)
635 636
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
637 638 639
	put_page(page);		/* drop ref from isolate */
}

640 641 642
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
643
	PAGEREF_KEEP,
644 645 646 647 648 649
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
650
	int referenced_ptes, referenced_page;
651 652
	unsigned long vm_flags;

653 654
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
655
	referenced_page = TestClearPageReferenced(page);
656 657 658 659 660 661 662 663

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

664
	if (referenced_ptes) {
665
		if (PageSwapBacked(page))
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

683
		if (referenced_page || referenced_ptes > 1)
684 685
			return PAGEREF_ACTIVATE;

686 687 688 689 690 691
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

692 693
		return PAGEREF_KEEP;
	}
694 695

	/* Reclaim if clean, defer dirty pages to writeback */
696
	if (referenced_page && !PageSwapBacked(page))
697 698 699
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
700 701
}

702 703 704 705
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
706 707
	struct address_space *mapping;

708 709 710 711 712 713 714 715 716 717 718 719 720
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
721 722 723 724 725 726 727 728

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
729 730
}

L
Linus Torvalds 已提交
731
/*
A
Andrew Morton 已提交
732
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
733
 */
A
Andrew Morton 已提交
734
static unsigned long shrink_page_list(struct list_head *page_list,
735
				      struct zone *zone,
736
				      struct scan_control *sc,
737
				      enum ttu_flags ttu_flags,
738
				      unsigned long *ret_nr_dirty,
739
				      unsigned long *ret_nr_unqueued_dirty,
740
				      unsigned long *ret_nr_congested,
741
				      unsigned long *ret_nr_writeback,
742
				      unsigned long *ret_nr_immediate,
743
				      bool force_reclaim)
L
Linus Torvalds 已提交
744 745
{
	LIST_HEAD(ret_pages);
746
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
747
	int pgactivate = 0;
748
	unsigned long nr_unqueued_dirty = 0;
749 750
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
751
	unsigned long nr_reclaimed = 0;
752
	unsigned long nr_writeback = 0;
753
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
754 755 756

	cond_resched();

757
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
758 759 760 761
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
762
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
763
		bool dirty, writeback;
L
Linus Torvalds 已提交
764 765 766 767 768 769

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
770
		if (!trylock_page(page))
L
Linus Torvalds 已提交
771 772
			goto keep;

N
Nick Piggin 已提交
773
		VM_BUG_ON(PageActive(page));
774
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
775 776

		sc->nr_scanned++;
777

778
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
779
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
780

781
		if (!sc->may_unmap && page_mapped(page))
782 783
			goto keep_locked;

L
Linus Torvalds 已提交
784 785 786 787
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

788 789 790
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

791 792 793 794 795 796 797 798 799 800 801 802 803
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

804 805 806 807 808 809
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
810
		mapping = page_mapping(page);
811 812
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
813 814
			nr_congested++;

815 816 817 818 819 820 821 822 823 824 825
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
826 827
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
852
		if (PageWriteback(page)) {
853 854 855 856
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
857 858
				nr_immediate++;
				goto keep_locked;
859 860 861

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
862 863 864 865 866 867 868 869 870 871 872 873 874
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
875
				nr_writeback++;
876

877
				goto keep_locked;
878 879 880 881

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
882
			}
883
		}
L
Linus Torvalds 已提交
884

885 886 887
		if (!force_reclaim)
			references = page_check_references(page, sc);

888 889
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
890
			goto activate_locked;
891 892
		case PAGEREF_KEEP:
			goto keep_locked;
893 894 895 896
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
897 898 899 900 901

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
902
		if (PageAnon(page) && !PageSwapCache(page)) {
903 904
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
905
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
906
				goto activate_locked;
907
			may_enter_fs = 1;
L
Linus Torvalds 已提交
908

909 910 911
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
912 913 914 915 916 917

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
918
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
919 920 921 922
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
923 924
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
925 926 927 928 929 930
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
931 932
			/*
			 * Only kswapd can writeback filesystem pages to
933 934
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
935
			 */
936
			if (page_is_file_cache(page) &&
937
					(!current_is_kswapd() ||
938
					 !zone_is_reclaim_dirty(zone))) {
939 940 941 942 943 944 945 946 947
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

948 949 950
				goto keep_locked;
			}

951
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
952
				goto keep_locked;
953
			if (!may_enter_fs)
L
Linus Torvalds 已提交
954
				goto keep_locked;
955
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
956 957 958
				goto keep_locked;

			/* Page is dirty, try to write it out here */
959
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
960 961 962 963 964
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
965
				if (PageWriteback(page))
966
					goto keep;
967
				if (PageDirty(page))
L
Linus Torvalds 已提交
968
					goto keep;
969

L
Linus Torvalds 已提交
970 971 972 973
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
974
				if (!trylock_page(page))
L
Linus Torvalds 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
994
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
995 996 997 998 999 1000 1001 1002 1003 1004
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1005
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1006 1007
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1024 1025
		}

N
Nick Piggin 已提交
1026
		if (!mapping || !__remove_mapping(mapping, page))
1027
			goto keep_locked;
L
Linus Torvalds 已提交
1028

N
Nick Piggin 已提交
1029 1030 1031 1032 1033 1034 1035 1036
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1037
free_it:
1038
		nr_reclaimed++;
1039 1040 1041 1042 1043 1044

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1045 1046
		continue;

N
Nick Piggin 已提交
1047
cull_mlocked:
1048 1049
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1050 1051 1052 1053
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1054
activate_locked:
1055 1056
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1057
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1058
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1059 1060 1061 1062 1063 1064
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1065
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1066
	}
1067

1068
	free_hot_cold_page_list(&free_pages, 1);
1069

L
Linus Torvalds 已提交
1070
	list_splice(&ret_pages, page_list);
1071
	count_vm_events(PGACTIVATE, pgactivate);
1072
	mem_cgroup_uncharge_end();
1073 1074
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1075
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1076
	*ret_nr_writeback += nr_writeback;
1077
	*ret_nr_immediate += nr_immediate;
1078
	return nr_reclaimed;
L
Linus Torvalds 已提交
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1089
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1101 1102
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1103 1104 1105 1106 1107
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1118
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1119 1120 1121 1122 1123 1124 1125
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1126 1127
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1128 1129
		return ret;

A
Andy Whitcroft 已提交
1130
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1165

1166 1167 1168
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1193
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1194
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1195
 * @nr_scanned:	The number of pages that were scanned.
1196
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1197
 * @mode:	One of the LRU isolation modes
1198
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1199 1200 1201
 *
 * returns how many pages were moved onto *@dst.
 */
1202
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1203
		struct lruvec *lruvec, struct list_head *dst,
1204
		unsigned long *nr_scanned, struct scan_control *sc,
1205
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1206
{
H
Hugh Dickins 已提交
1207
	struct list_head *src = &lruvec->lists[lru];
1208
	unsigned long nr_taken = 0;
1209
	unsigned long scan;
L
Linus Torvalds 已提交
1210

1211
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1212
		struct page *page;
1213
		int nr_pages;
A
Andy Whitcroft 已提交
1214

L
Linus Torvalds 已提交
1215 1216 1217
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1218
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1219

1220
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1221
		case 0:
1222 1223
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1224
			list_move(&page->lru, dst);
1225
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1226 1227 1228 1229 1230 1231
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1232

A
Andy Whitcroft 已提交
1233 1234 1235
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1236 1237
	}

H
Hugh Dickins 已提交
1238
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1239 1240
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1241 1242 1243
	return nr_taken;
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1255 1256 1257
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1273 1274
	VM_BUG_ON(!page_count(page));

1275 1276
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1277
		struct lruvec *lruvec;
1278 1279

		spin_lock_irq(&zone->lru_lock);
1280
		lruvec = mem_cgroup_page_lruvec(page, zone);
1281
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1282
			int lru = page_lru(page);
1283
			get_page(page);
1284
			ClearPageLRU(page);
1285 1286
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1287 1288 1289 1290 1291 1292
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1293
/*
F
Fengguang Wu 已提交
1294 1295 1296 1297 1298
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1299 1300 1301 1302 1303 1304 1305 1306 1307
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1308
	if (!global_reclaim(sc))
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1327 1328 1329
	return isolated > inactive;
}

1330
static noinline_for_stack void
H
Hugh Dickins 已提交
1331
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1332
{
1333 1334
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1335
	LIST_HEAD(pages_to_free);
1336 1337 1338 1339 1340

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1341
		struct page *page = lru_to_page(page_list);
1342
		int lru;
1343

1344 1345
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1346
		if (unlikely(!page_evictable(page))) {
1347 1348 1349 1350 1351
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1352 1353 1354

		lruvec = mem_cgroup_page_lruvec(page, zone);

1355
		SetPageLRU(page);
1356
		lru = page_lru(page);
1357 1358
		add_page_to_lru_list(page, lruvec, lru);

1359 1360
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1361 1362
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1363
		}
1364 1365 1366
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1367
			del_page_from_lru_list(page, lruvec, lru);
1368 1369 1370 1371 1372 1373 1374

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1375 1376 1377
		}
	}

1378 1379 1380 1381
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1382 1383
}

L
Linus Torvalds 已提交
1384
/*
A
Andrew Morton 已提交
1385 1386
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1387
 */
1388
static noinline_for_stack unsigned long
1389
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1390
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1391 1392
{
	LIST_HEAD(page_list);
1393
	unsigned long nr_scanned;
1394
	unsigned long nr_reclaimed = 0;
1395
	unsigned long nr_taken;
1396 1397
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1398
	unsigned long nr_unqueued_dirty = 0;
1399
	unsigned long nr_writeback = 0;
1400
	unsigned long nr_immediate = 0;
1401
	isolate_mode_t isolate_mode = 0;
1402
	int file = is_file_lru(lru);
1403 1404
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1405

1406
	while (unlikely(too_many_isolated(zone, file, sc))) {
1407
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1408 1409 1410 1411 1412 1413

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1414
	lru_add_drain();
1415 1416

	if (!sc->may_unmap)
1417
		isolate_mode |= ISOLATE_UNMAPPED;
1418
	if (!sc->may_writepage)
1419
		isolate_mode |= ISOLATE_CLEAN;
1420

L
Linus Torvalds 已提交
1421
	spin_lock_irq(&zone->lru_lock);
1422

1423 1424
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1425 1426 1427 1428

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1429
	if (global_reclaim(sc)) {
1430 1431
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1432
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1433
		else
H
Hugh Dickins 已提交
1434
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1435
	}
1436
	spin_unlock_irq(&zone->lru_lock);
1437

1438
	if (nr_taken == 0)
1439
		return 0;
A
Andy Whitcroft 已提交
1440

1441
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1442 1443 1444
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1445

1446 1447
	spin_lock_irq(&zone->lru_lock);

1448
	reclaim_stat->recent_scanned[file] += nr_taken;
1449

Y
Ying Han 已提交
1450 1451 1452 1453 1454 1455 1456 1457
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1458

1459
	putback_inactive_pages(lruvec, &page_list);
1460

1461
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1462 1463 1464 1465

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1477 1478 1479
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1480
	 */
1481
	if (nr_writeback && nr_writeback == nr_taken)
1482
		zone_set_flag(zone, ZONE_WRITEBACK);
1483

1484
	/*
1485 1486
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1487
	 */
1488
	if (global_reclaim(sc)) {
1489 1490 1491 1492 1493 1494 1495
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1514
	}
1515

1516 1517 1518 1519 1520 1521 1522 1523
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1524 1525 1526
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1527
		sc->priority,
M
Mel Gorman 已提交
1528
		trace_shrink_flags(file));
1529
	return nr_reclaimed;
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1549

1550
static void move_active_pages_to_lru(struct lruvec *lruvec,
1551
				     struct list_head *list,
1552
				     struct list_head *pages_to_free,
1553 1554
				     enum lru_list lru)
{
1555
	struct zone *zone = lruvec_zone(lruvec);
1556 1557
	unsigned long pgmoved = 0;
	struct page *page;
1558
	int nr_pages;
1559 1560 1561

	while (!list_empty(list)) {
		page = lru_to_page(list);
1562
		lruvec = mem_cgroup_page_lruvec(page, zone);
1563 1564 1565 1566

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1567 1568
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1569
		list_move(&page->lru, &lruvec->lists[lru]);
1570
		pgmoved += nr_pages;
1571

1572 1573 1574
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1575
			del_page_from_lru_list(page, lruvec, lru);
1576 1577 1578 1579 1580 1581 1582

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1583 1584 1585 1586 1587 1588
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1589

H
Hugh Dickins 已提交
1590
static void shrink_active_list(unsigned long nr_to_scan,
1591
			       struct lruvec *lruvec,
1592
			       struct scan_control *sc,
1593
			       enum lru_list lru)
L
Linus Torvalds 已提交
1594
{
1595
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1596
	unsigned long nr_scanned;
1597
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1598
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1599
	LIST_HEAD(l_active);
1600
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1601
	struct page *page;
1602
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1603
	unsigned long nr_rotated = 0;
1604
	isolate_mode_t isolate_mode = 0;
1605
	int file = is_file_lru(lru);
1606
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1607 1608

	lru_add_drain();
1609 1610

	if (!sc->may_unmap)
1611
		isolate_mode |= ISOLATE_UNMAPPED;
1612
	if (!sc->may_writepage)
1613
		isolate_mode |= ISOLATE_CLEAN;
1614

L
Linus Torvalds 已提交
1615
	spin_lock_irq(&zone->lru_lock);
1616

1617 1618
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1619
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1620
		zone->pages_scanned += nr_scanned;
1621

1622
	reclaim_stat->recent_scanned[file] += nr_taken;
1623

H
Hugh Dickins 已提交
1624
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1625
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1626
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1627 1628 1629 1630 1631 1632
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1633

1634
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1635 1636 1637 1638
			putback_lru_page(page);
			continue;
		}

1639 1640 1641 1642 1643 1644 1645 1646
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1647 1648
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1649
			nr_rotated += hpage_nr_pages(page);
1650 1651 1652 1653 1654 1655 1656 1657 1658
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1659
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1660 1661 1662 1663
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1664

1665
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1666 1667 1668
		list_add(&page->lru, &l_inactive);
	}

1669
	/*
1670
	 * Move pages back to the lru list.
1671
	 */
1672
	spin_lock_irq(&zone->lru_lock);
1673
	/*
1674 1675 1676 1677
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1678
	 */
1679
	reclaim_stat->recent_rotated[file] += nr_rotated;
1680

1681 1682
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1683
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1684
	spin_unlock_irq(&zone->lru_lock);
1685 1686

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1687 1688
}

1689
#ifdef CONFIG_SWAP
1690
static int inactive_anon_is_low_global(struct zone *zone)
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1703 1704
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1705
 * @lruvec: LRU vector to check
1706 1707 1708 1709
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1710
static int inactive_anon_is_low(struct lruvec *lruvec)
1711
{
1712 1713 1714 1715 1716 1717 1718
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1719
	if (!mem_cgroup_disabled())
1720
		return mem_cgroup_inactive_anon_is_low(lruvec);
1721

1722
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1723
}
1724
#else
1725
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1726 1727 1728 1729
{
	return 0;
}
#endif
1730

1731 1732
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1733
 * @lruvec: LRU vector to check
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1745
static int inactive_file_is_low(struct lruvec *lruvec)
1746
{
1747 1748 1749 1750 1751
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1752

1753
	return active > inactive;
1754 1755
}

H
Hugh Dickins 已提交
1756
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1757
{
H
Hugh Dickins 已提交
1758
	if (is_file_lru(lru))
1759
		return inactive_file_is_low(lruvec);
1760
	else
1761
		return inactive_anon_is_low(lruvec);
1762 1763
}

1764
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1765
				 struct lruvec *lruvec, struct scan_control *sc)
1766
{
1767
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1768
		if (inactive_list_is_low(lruvec, lru))
1769
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1770 1771 1772
		return 0;
	}

1773
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1774 1775
}

1776
static int vmscan_swappiness(struct scan_control *sc)
1777
{
1778
	if (global_reclaim(sc))
1779
		return vm_swappiness;
1780
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1781 1782
}

1783 1784 1785 1786 1787 1788 1789
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1790 1791 1792 1793 1794 1795
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1796 1797
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1798
 */
1799
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1800
			   unsigned long *nr)
1801
{
1802 1803 1804 1805
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1806
	unsigned long anon_prio, file_prio;
1807 1808 1809
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1810
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1811
	enum lru_list lru;
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1823
	if (current_is_kswapd() && !zone_reclaimable(zone))
1824
		force_scan = true;
1825
	if (!global_reclaim(sc))
1826
		force_scan = true;
1827 1828

	/* If we have no swap space, do not bother scanning anon pages. */
1829
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1830
		scan_balance = SCAN_FILE;
1831 1832
		goto out;
	}
1833

1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1842
		scan_balance = SCAN_FILE;
1843 1844 1845 1846 1847 1848 1849 1850 1851
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1852
		scan_balance = SCAN_EQUAL;
1853 1854 1855
		goto out;
	}

1856 1857 1858 1859
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1860

1861 1862 1863 1864 1865 1866
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1867
	if (global_reclaim(sc)) {
1868
		free = zone_page_state(zone, NR_FREE_PAGES);
1869
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1870
			scan_balance = SCAN_ANON;
1871
			goto out;
1872
		}
1873 1874
	}

1875 1876 1877 1878 1879
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1880
		scan_balance = SCAN_FILE;
1881 1882 1883
		goto out;
	}

1884 1885
	scan_balance = SCAN_FRACT;

1886 1887 1888 1889
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1890
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1891
	file_prio = 200 - anon_prio;
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1904
	spin_lock_irq(&zone->lru_lock);
1905 1906 1907
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1908 1909
	}

1910 1911 1912
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1913 1914 1915
	}

	/*
1916 1917 1918
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1919
	 */
1920
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1921
	ap /= reclaim_stat->recent_rotated[0] + 1;
1922

1923
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1924
	fp /= reclaim_stat->recent_rotated[1] + 1;
1925
	spin_unlock_irq(&zone->lru_lock);
1926

1927 1928 1929 1930
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1931 1932
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1933
		unsigned long size;
1934
		unsigned long scan;
1935

1936
		size = get_lru_size(lruvec, lru);
1937
		scan = size >> sc->priority;
1938

1939 1940
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1963
		nr[lru] = scan;
1964
	}
1965
}
1966

1967 1968 1969 1970 1971 1972
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1973
	unsigned long targets[NR_LRU_LISTS];
1974 1975 1976 1977 1978
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1979
	bool scan_adjusted = false;
1980 1981 1982

	get_scan_count(lruvec, sc, nr);

1983 1984 1985
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1986 1987 1988
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1989 1990 1991
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1992 1993 1994 1995 1996 1997 1998 1999 2000
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2001 2002 2003 2004

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

2005
		/*
2006 2007 2008 2009
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
2010
		 */
2011
		if (global_reclaim(sc) && !current_is_kswapd())
2012
			break;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2070
/* Use reclaim/compaction for costly allocs or under memory pressure */
2071
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2072
{
2073
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2074
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2075
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2076 2077 2078 2079 2080
		return true;

	return false;
}

2081
/*
M
Mel Gorman 已提交
2082 2083 2084 2085 2086
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2087
 */
2088
static inline bool should_continue_reclaim(struct zone *zone,
2089 2090 2091 2092 2093 2094 2095 2096
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2097
	if (!in_reclaim_compaction(sc))
2098 2099
		return false;

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2122 2123 2124 2125 2126 2127

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2128
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2129
	if (get_nr_swap_pages() > 0)
2130
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2131 2132 2133 2134 2135
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2136
	switch (compaction_suitable(zone, sc->order)) {
2137 2138 2139 2140 2141 2142 2143 2144
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2145
static int
2146
__shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
L
Linus Torvalds 已提交
2147
{
2148
	unsigned long nr_reclaimed, nr_scanned;
2149
	int groups_scanned = 0;
L
Linus Torvalds 已提交
2150

2151 2152 2153 2154 2155 2156
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2157 2158 2159
		struct mem_cgroup *memcg = NULL;
		mem_cgroup_iter_filter filter = (soft_reclaim) ?
			mem_cgroup_soft_reclaim_eligible : NULL;
2160

2161 2162
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2163

2164
		while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
2165
			struct lruvec *lruvec;
2166

2167
			groups_scanned++;
2168
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2169

2170
			shrink_lruvec(lruvec, sc);
2171

2172
			/*
2173 2174
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2175
			 * zone.
2176 2177 2178 2179 2180
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2181
			 */
2182 2183
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2184 2185 2186
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2187
		}
2188 2189 2190 2191 2192

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2193 2194
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2195 2196

	return groups_scanned;
2197 2198
}

2199 2200 2201 2202 2203

static void shrink_zone(struct zone *zone, struct scan_control *sc)
{
	bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
	unsigned long nr_scanned = sc->nr_scanned;
2204
	int scanned_groups;
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim);
	/*
         * memcg iterator might race with other reclaimer or start from
         * a incomplete tree walk so the tree walk in __shrink_zone
         * might have missed groups that are above the soft limit. Try
         * another loop to catch up with others. Do it just once to
         * prevent from reclaim latencies when other reclaimers always
         * preempt this one.
	 */
	if (do_soft_reclaim && !scanned_groups)
		__shrink_zone(zone, sc, do_soft_reclaim);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	/*
	 * No group is over the soft limit or those that are do not have
	 * pages in the zone we are reclaiming so we have to reclaim everybody
	 */
	if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
		__shrink_zone(zone, sc, false);
		return;
	}
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2245
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2246 2247 2248 2249 2250 2251 2252 2253
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2254
	if (compaction_deferred(zone, sc->order))
2255 2256 2257 2258 2259 2260 2261 2262 2263
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2264 2265 2266 2267 2268
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2269 2270
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2271 2272
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2273 2274 2275
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2276 2277 2278
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2279 2280
 *
 * This function returns true if a zone is being reclaimed for a costly
2281
 * high-order allocation and compaction is ready to begin. This indicates to
2282 2283
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2284
 */
2285
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2286
{
2287
	struct zoneref *z;
2288
	struct zone *zone;
2289
	bool aborted_reclaim = false;
2290

2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2299 2300
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2301
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2302
			continue;
2303 2304 2305 2306
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2307
		if (global_reclaim(sc)) {
2308 2309
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2310 2311
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2312
				continue;	/* Let kswapd poll it */
2313
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2314
				/*
2315 2316 2317 2318 2319
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2320 2321
				 * noticeable problem, like transparent huge
				 * page allocations.
2322
				 */
2323
				if (compaction_ready(zone, sc)) {
2324
					aborted_reclaim = true;
2325
					continue;
2326
				}
2327
			}
2328
			/* need some check for avoid more shrink_zone() */
2329
		}
2330

2331
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2332
	}
2333

2334
	return aborted_reclaim;
2335 2336
}

2337
/* All zones in zonelist are unreclaimable? */
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2350
		if (zone_reclaimable(zone))
2351
			return false;
2352 2353
	}

2354
	return true;
L
Linus Torvalds 已提交
2355
}
2356

L
Linus Torvalds 已提交
2357 2358 2359 2360 2361 2362 2363 2364
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2365 2366 2367 2368
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2369 2370 2371
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2372
 */
2373
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2374 2375
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2376
{
2377
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2378
	struct reclaim_state *reclaim_state = current->reclaim_state;
2379
	struct zoneref *z;
2380
	struct zone *zone;
2381
	unsigned long writeback_threshold;
2382
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2383

2384 2385
	delayacct_freepages_start();

2386
	if (global_reclaim(sc))
2387
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2388

2389
	do {
2390 2391
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2392
		sc->nr_scanned = 0;
2393
		aborted_reclaim = shrink_zones(zonelist, sc);
2394

2395
		/*
2396 2397 2398 2399
		 * Don't shrink slabs when reclaiming memory from over limit
		 * cgroups but do shrink slab at least once when aborting
		 * reclaim for compaction to avoid unevenly scanning file/anon
		 * LRU pages over slab pages.
2400
		 */
2401
		if (global_reclaim(sc)) {
2402
			unsigned long lru_pages = 0;
2403 2404
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2405 2406 2407 2408 2409 2410
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2411
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2412
			if (reclaim_state) {
2413
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2414 2415
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2416
		}
2417
		total_scanned += sc->nr_scanned;
2418
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2419 2420
			goto out;

2421 2422 2423 2424 2425 2426 2427
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2428 2429 2430 2431 2432 2433 2434
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2435 2436
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2437 2438
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2439
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2440
		}
2441
	} while (--sc->priority >= 0 && !aborted_reclaim);
2442

L
Linus Torvalds 已提交
2443
out:
2444 2445
	delayacct_freepages_end();

2446 2447 2448
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2449 2450 2451 2452 2453 2454 2455 2456
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2457 2458
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2459 2460
		return 1;

2461
	/* top priority shrink_zones still had more to do? don't OOM, then */
2462
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2463 2464 2465
		return 1;

	return 0;
L
Linus Torvalds 已提交
2466 2467
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2498 2499 2500 2501
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2502
 */
2503
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2518 2519 2520 2521 2522 2523 2524 2525
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2526 2527 2528 2529 2530

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2531
		goto out;
2532

2533 2534 2535
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2547 2548

		goto check_pending;
2549 2550 2551 2552 2553
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2554 2555 2556 2557 2558 2559 2560

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2561 2562
}

2563
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2564
				gfp_t gfp_mask, nodemask_t *nodemask)
2565
{
2566
	unsigned long nr_reclaimed;
2567
	struct scan_control sc = {
2568
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2569
		.may_writepage = !laptop_mode,
2570
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2571
		.may_unmap = 1,
2572
		.may_swap = 1,
2573
		.order = order,
2574
		.priority = DEF_PRIORITY,
2575
		.target_mem_cgroup = NULL,
2576
		.nodemask = nodemask,
2577
	};
2578 2579 2580
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2581

2582
	/*
2583 2584 2585
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2586
	 */
2587
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2588 2589
		return 1;

2590 2591 2592 2593
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2594
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2595 2596 2597 2598

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2599 2600
}

A
Andrew Morton 已提交
2601
#ifdef CONFIG_MEMCG
2602

2603
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2604
						gfp_t gfp_mask, bool noswap,
2605 2606
						struct zone *zone,
						unsigned long *nr_scanned)
2607 2608
{
	struct scan_control sc = {
2609
		.nr_scanned = 0,
2610
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2611 2612 2613 2614
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2615
		.priority = 0,
2616
		.target_mem_cgroup = memcg,
2617
	};
2618
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2619

2620 2621
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2622

2623
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2624 2625 2626
						      sc.may_writepage,
						      sc.gfp_mask);

2627 2628 2629 2630 2631 2632 2633
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2634
	shrink_lruvec(lruvec, &sc);
2635 2636 2637

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2638
	*nr_scanned = sc.nr_scanned;
2639 2640 2641
	return sc.nr_reclaimed;
}

2642
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2643
					   gfp_t gfp_mask,
2644
					   bool noswap)
2645
{
2646
	struct zonelist *zonelist;
2647
	unsigned long nr_reclaimed;
2648
	int nid;
2649 2650
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2651
		.may_unmap = 1,
2652
		.may_swap = !noswap,
2653
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2654
		.order = 0,
2655
		.priority = DEF_PRIORITY,
2656
		.target_mem_cgroup = memcg,
2657
		.nodemask = NULL, /* we don't care the placement */
2658 2659 2660 2661 2662
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2663 2664
	};

2665 2666 2667 2668 2669
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2670
	nid = mem_cgroup_select_victim_node(memcg);
2671 2672

	zonelist = NODE_DATA(nid)->node_zonelists;
2673 2674 2675 2676 2677

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2678
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2679 2680 2681 2682

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2683 2684 2685
}
#endif

2686
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2687
{
2688
	struct mem_cgroup *memcg;
2689

2690 2691 2692 2693 2694
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2695
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2696

2697
		if (inactive_anon_is_low(lruvec))
2698
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2699
					   sc, LRU_ACTIVE_ANON);
2700 2701 2702

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2703 2704
}

2705 2706 2707 2708 2709 2710 2711
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2712 2713
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2714 2715 2716 2717 2718
		return false;

	return true;
}

2719
/*
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2730 2731 2732 2733
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2734
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2735 2736 2737 2738
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2739
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2740
{
2741
	unsigned long managed_pages = 0;
2742
	unsigned long balanced_pages = 0;
2743 2744
	int i;

2745 2746 2747
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2748

2749 2750 2751
		if (!populated_zone(zone))
			continue;

2752
		managed_pages += zone->managed_pages;
2753 2754 2755 2756 2757 2758 2759 2760

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2761
		if (!zone_reclaimable(zone)) {
2762
			balanced_pages += zone->managed_pages;
2763 2764 2765 2766
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2767
			balanced_pages += zone->managed_pages;
2768 2769 2770 2771 2772
		else if (!order)
			return false;
	}

	if (order)
2773
		return balanced_pages >= (managed_pages >> 2);
2774 2775
	else
		return true;
2776 2777
}

2778 2779 2780 2781 2782 2783 2784
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2785
					int classzone_idx)
2786 2787 2788
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2804

2805
	return pgdat_balanced(pgdat, order, classzone_idx);
2806 2807
}

2808 2809 2810
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2811 2812
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2813 2814
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2815
 */
2816
static bool kswapd_shrink_zone(struct zone *zone,
2817
			       int classzone_idx,
2818
			       struct scan_control *sc,
2819 2820
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2821
{
2822 2823
	int testorder = sc->order;
	unsigned long balance_gap;
2824 2825 2826 2827
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2828
	bool lowmem_pressure;
2829 2830 2831

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2863 2864 2865
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
2866
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2867 2868
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2869 2870 2871
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2872 2873
	zone_clear_flag(zone, ZONE_WRITEBACK);

2874 2875 2876 2877 2878 2879
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2880
	if (zone_reclaimable(zone) &&
2881 2882 2883 2884 2885
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2886
	return sc->nr_scanned >= sc->nr_to_reclaim;
2887 2888
}

L
Linus Torvalds 已提交
2889 2890
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2891
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2892
 *
2893
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2904 2905 2906 2907 2908
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2909
 */
2910
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2911
							int *classzone_idx)
L
Linus Torvalds 已提交
2912 2913
{
	int i;
2914
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2915 2916
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2917
		.priority = DEF_PRIORITY,
2918
		.may_unmap = 1,
2919
		.may_swap = 1,
2920
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2921
		.order = order,
2922
		.target_mem_cgroup = NULL,
2923
	};
2924
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2925

2926
	do {
L
Linus Torvalds 已提交
2927
		unsigned long lru_pages = 0;
2928
		unsigned long nr_attempted = 0;
2929
		bool raise_priority = true;
2930
		bool pgdat_needs_compaction = (order > 0);
2931 2932

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2933

2934 2935 2936 2937 2938 2939
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2940

2941 2942
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2943

2944 2945
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2946
				continue;
L
Linus Torvalds 已提交
2947

2948 2949 2950 2951
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2952
			age_active_anon(zone, &sc);
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2965
			if (!zone_balanced(zone, order, 0, 0)) {
2966
				end_zone = i;
A
Andrew Morton 已提交
2967
				break;
2968
			} else {
2969 2970 2971 2972
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2973
				zone_clear_flag(zone, ZONE_CONGESTED);
2974
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2975 2976
			}
		}
2977

2978
		if (i < 0)
A
Andrew Morton 已提交
2979 2980
			goto out;

L
Linus Torvalds 已提交
2981 2982 2983
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2984 2985 2986
			if (!populated_zone(zone))
				continue;

2987
			lru_pages += zone_reclaimable_pages(zone);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2999 3000
		}

3001 3002 3003 3004 3005 3006 3007
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3020
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3021 3022
				continue;

3023 3024
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3025 3026 3027
				continue;

			sc.nr_scanned = 0;
3028

3029
			/*
3030 3031 3032 3033
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3034
			 */
3035 3036 3037
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3038
		}
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3049
		/*
3050 3051 3052 3053 3054 3055
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3056
		 */
3057 3058
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3059

3060 3061 3062
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3063

3064 3065 3066 3067 3068 3069 3070
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3071
		/*
3072 3073
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3074
		 */
3075 3076
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3077
	} while (sc.priority >= 1 &&
3078
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3079

3080
out:
3081
	/*
3082
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3083 3084 3085 3086
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3087
	*classzone_idx = end_zone;
3088
	return order;
L
Linus Torvalds 已提交
3089 3090
}

3091
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3102
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3103 3104 3105 3106 3107 3108 3109 3110 3111
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3112
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3124

3125 3126 3127 3128 3129 3130 3131 3132
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3133 3134 3135
		if (!kthread_should_stop())
			schedule();

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3146 3147
/*
 * The background pageout daemon, started as a kernel thread
3148
 * from the init process.
L
Linus Torvalds 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3161
	unsigned long order, new_order;
3162
	unsigned balanced_order;
3163
	int classzone_idx, new_classzone_idx;
3164
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3165 3166
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3167

L
Linus Torvalds 已提交
3168 3169 3170
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3171
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3172

3173 3174
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3175
	if (!cpumask_empty(cpumask))
3176
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3191
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3192
	set_freezable();
L
Linus Torvalds 已提交
3193

3194
	order = new_order = 0;
3195
	balanced_order = 0;
3196
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3197
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3198
	for ( ; ; ) {
3199
		bool ret;
3200

3201 3202 3203 3204 3205
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3206 3207
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3208 3209 3210 3211 3212 3213
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3214
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3215 3216
			/*
			 * Don't sleep if someone wants a larger 'order'
3217
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3218 3219
			 */
			order = new_order;
3220
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3221
		} else {
3222 3223
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3224
			order = pgdat->kswapd_max_order;
3225
			classzone_idx = pgdat->classzone_idx;
3226 3227
			new_order = order;
			new_classzone_idx = classzone_idx;
3228
			pgdat->kswapd_max_order = 0;
3229
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3230 3231
		}

3232 3233 3234 3235 3236 3237 3238 3239
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3240 3241
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3242 3243 3244
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3245
		}
L
Linus Torvalds 已提交
3246
	}
3247 3248

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3249 3250 3251 3252 3253 3254
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3255
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3256 3257 3258
{
	pg_data_t *pgdat;

3259
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3260 3261
		return;

3262
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3263
		return;
3264
	pgdat = zone->zone_pgdat;
3265
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3266
		pgdat->kswapd_max_order = order;
3267 3268
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3269
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3270
		return;
3271
	if (zone_balanced(zone, order, 0, 0))
3272 3273 3274
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3275
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3276 3277
}

3278 3279 3280 3281 3282 3283 3284 3285
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3286
{
3287 3288 3289 3290 3291
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3292
	if (get_nr_swap_pages() > 0)
3293 3294 3295 3296 3297 3298
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

3299
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3300
/*
3301
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3302 3303 3304 3305 3306
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3307
 */
3308
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3309
{
3310 3311
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3312 3313 3314
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3315
		.may_writepage = 1,
3316 3317 3318
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3319
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3320
	};
3321 3322 3323 3324
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3325 3326
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3327

3328 3329 3330 3331
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3332

3333
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3334

3335 3336 3337
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3338

3339
	return nr_reclaimed;
L
Linus Torvalds 已提交
3340
}
3341
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3342 3343 3344 3345 3346

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3347 3348
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3349
{
3350
	int nid;
L
Linus Torvalds 已提交
3351

3352
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3353
		for_each_node_state(nid, N_MEMORY) {
3354
			pg_data_t *pgdat = NODE_DATA(nid);
3355 3356 3357
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3358

3359
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3360
				/* One of our CPUs online: restore mask */
3361
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3362 3363 3364 3365 3366
		}
	}
	return NOTIFY_OK;
}

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3383 3384
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3385
		pgdat->kswapd = NULL;
3386 3387 3388 3389
	}
	return ret;
}

3390
/*
3391 3392
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3393 3394 3395 3396 3397
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3398
	if (kswapd) {
3399
		kthread_stop(kswapd);
3400 3401
		NODE_DATA(nid)->kswapd = NULL;
	}
3402 3403
}

L
Linus Torvalds 已提交
3404 3405
static int __init kswapd_init(void)
{
3406
	int nid;
3407

L
Linus Torvalds 已提交
3408
	swap_setup();
3409
	for_each_node_state(nid, N_MEMORY)
3410
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3426
#define RECLAIM_OFF 0
3427
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3428 3429 3430
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3431 3432 3433 3434 3435 3436 3437
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3438 3439 3440 3441 3442 3443
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3444 3445 3446 3447 3448 3449
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3492 3493 3494
/*
 * Try to free up some pages from this zone through reclaim.
 */
3495
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3496
{
3497
	/* Minimum pages needed in order to stay on node */
3498
	const unsigned long nr_pages = 1 << order;
3499 3500
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3501 3502
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3503
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3504
		.may_swap = 1,
3505
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3506
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3507
		.order = order,
3508
		.priority = ZONE_RECLAIM_PRIORITY,
3509
	};
3510 3511 3512
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3513
	unsigned long nr_slab_pages0, nr_slab_pages1;
3514 3515

	cond_resched();
3516 3517 3518 3519 3520 3521
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3522
	lockdep_set_current_reclaim_state(gfp_mask);
3523 3524
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3525

3526
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3527 3528 3529 3530 3531
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3532 3533
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3534
	}
3535

3536 3537
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3538
		/*
3539
		 * shrink_slab() does not currently allow us to determine how
3540 3541 3542 3543
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3544
		 *
3545 3546
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3547
		 */
3548 3549 3550 3551
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3552
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3553 3554 3555 3556 3557 3558 3559 3560
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3561 3562 3563 3564 3565

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3566 3567 3568
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3569 3570
	}

3571
	p->reclaim_state = NULL;
3572
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3573
	lockdep_clear_current_reclaim_state();
3574
	return sc.nr_reclaimed >= nr_pages;
3575
}
3576 3577 3578 3579

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3580
	int ret;
3581 3582

	/*
3583 3584
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3585
	 *
3586 3587 3588 3589 3590
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3591
	 */
3592 3593
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3594
		return ZONE_RECLAIM_FULL;
3595

3596
	if (!zone_reclaimable(zone))
3597
		return ZONE_RECLAIM_FULL;
3598

3599
	/*
3600
	 * Do not scan if the allocation should not be delayed.
3601
	 */
3602
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3603
		return ZONE_RECLAIM_NOSCAN;
3604 3605 3606 3607 3608 3609 3610

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3611
	node_id = zone_to_nid(zone);
3612
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3613
		return ZONE_RECLAIM_NOSCAN;
3614 3615

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3616 3617
		return ZONE_RECLAIM_NOSCAN;

3618 3619 3620
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3621 3622 3623
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3624
	return ret;
3625
}
3626
#endif
L
Lee Schermerhorn 已提交
3627 3628 3629 3630 3631 3632

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3633
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3634 3635
 *
 * Reasons page might not be evictable:
3636
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3637
 * (2) page is part of an mlocked VMA
3638
 *
L
Lee Schermerhorn 已提交
3639
 */
3640
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3641
{
3642
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3643
}
3644

3645
#ifdef CONFIG_SHMEM
3646
/**
3647 3648 3649
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3650
 *
3651
 * Checks pages for evictability and moves them to the appropriate lru list.
3652 3653
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3654
 */
3655
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3656
{
3657
	struct lruvec *lruvec;
3658 3659 3660 3661
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3662

3663 3664 3665
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3666

3667 3668 3669 3670 3671 3672 3673 3674
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3675
		lruvec = mem_cgroup_page_lruvec(page, zone);
3676

3677 3678
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3679

3680
		if (page_evictable(page)) {
3681 3682 3683 3684
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3685 3686
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3687
			pgrescued++;
3688
		}
3689
	}
3690

3691 3692 3693 3694
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3695 3696
	}
}
3697
#endif /* CONFIG_SHMEM */
3698

3699
static void warn_scan_unevictable_pages(void)
3700
{
3701
	printk_once(KERN_WARNING
3702
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3703
		    "disabled for lack of a legitimate use case.  If you have "
3704 3705
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3706 3707 3708 3709 3710 3711 3712 3713 3714
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3715
			   void __user *buffer,
3716 3717
			   size_t *length, loff_t *ppos)
{
3718
	warn_scan_unevictable_pages();
3719
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3720 3721 3722 3723
	scan_unevictable_pages = 0;
	return 0;
}

3724
#ifdef CONFIG_NUMA
3725 3726 3727 3728 3729
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3730 3731
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3732 3733
					  char *buf)
{
3734
	warn_scan_unevictable_pages();
3735 3736 3737
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3738 3739
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3740 3741
					const char *buf, size_t count)
{
3742
	warn_scan_unevictable_pages();
3743 3744 3745 3746
	return 1;
}


3747
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3748 3749 3750 3751 3752
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3753
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3754 3755 3756 3757
}

void scan_unevictable_unregister_node(struct node *node)
{
3758
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3759
}
3760
#endif