smu7_hwmgr.c 164.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
23
#include "pp_debug.h"
24 25
#include <linux/delay.h>
#include <linux/fb.h>
26 27 28
#include <linux/module.h>
#include <linux/slab.h>
#include <asm/div64.h>
29
#include <drm/amdgpu_drm.h>
30 31 32 33 34 35 36 37 38 39 40 41 42
#include "ppatomctrl.h"
#include "atombios.h"
#include "pptable_v1_0.h"
#include "pppcielanes.h"
#include "amd_pcie_helpers.h"
#include "hardwaremanager.h"
#include "process_pptables_v1_0.h"
#include "cgs_common.h"

#include "smu7_common.h"

#include "hwmgr.h"
#include "smu7_hwmgr.h"
43
#include "smu_ucode_xfer_vi.h"
44 45 46 47 48
#include "smu7_powertune.h"
#include "smu7_dyn_defaults.h"
#include "smu7_thermal.h"
#include "smu7_clockpowergating.h"
#include "processpptables.h"
49
#include "pp_thermal.h"
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

#define MC_CG_ARB_FREQ_F0           0x0a
#define MC_CG_ARB_FREQ_F1           0x0b
#define MC_CG_ARB_FREQ_F2           0x0c
#define MC_CG_ARB_FREQ_F3           0x0d

#define MC_CG_SEQ_DRAMCONF_S0       0x05
#define MC_CG_SEQ_DRAMCONF_S1       0x06
#define MC_CG_SEQ_YCLK_SUSPEND      0x04
#define MC_CG_SEQ_YCLK_RESUME       0x0a

#define SMC_CG_IND_START            0xc0030000
#define SMC_CG_IND_END              0xc0040000

#define VOLTAGE_SCALE               4
#define VOLTAGE_VID_OFFSET_SCALE1   625
#define VOLTAGE_VID_OFFSET_SCALE2   100

#define MEM_FREQ_LOW_LATENCY        25000
#define MEM_FREQ_HIGH_LATENCY       80000

#define MEM_LATENCY_HIGH            45
#define MEM_LATENCY_LOW             35
#define MEM_LATENCY_ERR             0xFFFF

#define MC_SEQ_MISC0_GDDR5_SHIFT 28
#define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
#define MC_SEQ_MISC0_GDDR5_VALUE 5

#define PCIE_BUS_CLK                10000
#define TCLK                        (PCIE_BUS_CLK / 10)

82 83 84 85 86 87 88
static const struct profile_mode_setting smu7_profiling[5] =
					{{1, 0, 100, 30, 1, 0, 100, 10},
					 {1, 10, 0, 30, 0, 0, 0, 0},
					 {0, 0, 0, 0, 1, 10, 16, 31},
					 {1, 0, 11, 50, 1, 0, 100, 10},
					 {1, 0, 5, 30, 0, 0, 0, 0},
					};
89 90 91 92 93 94 95 96 97 98 99

/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
enum DPM_EVENT_SRC {
	DPM_EVENT_SRC_ANALOG = 0,
	DPM_EVENT_SRC_EXTERNAL = 1,
	DPM_EVENT_SRC_DIGITAL = 2,
	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
};

static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
R
Rex Zhu 已提交
100 101
static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask);
102

103
static struct smu7_power_state *cast_phw_smu7_power_state(
104 105 106 107 108 109 110 111 112
				  struct pp_hw_power_state *hw_ps)
{
	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
				"Invalid Powerstate Type!",
				 return NULL);

	return (struct smu7_power_state *)hw_ps;
}

113
static const struct smu7_power_state *cast_const_phw_smu7_power_state(
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
				 const struct pp_hw_power_state *hw_ps)
{
	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
				"Invalid Powerstate Type!",
				 return NULL);

	return (const struct smu7_power_state *)hw_ps;
}

/**
 * Find the MC microcode version and store it in the HwMgr struct
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
129
static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
130 131 132 133 134 135 136 137
{
	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);

	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);

	return 0;
}

138
static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
139 140 141 142 143 144 145 146 147 148
{
	uint32_t speedCntl = 0;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
			ixPCIE_LC_SPEED_CNTL);
	return((uint16_t)PHM_GET_FIELD(speedCntl,
			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}

149
static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	uint32_t link_width;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);

	PP_ASSERT_WITH_CODE((7 >= link_width),
			"Invalid PCIe lane width!", return 0);

	return decode_pcie_lane_width(link_width);
}

/**
* Enable voltage control
*
* @param    pHwMgr  the address of the powerplay hardware manager.
* @return   always PP_Result_OK
*/
169
static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
170 171
{
	if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
172
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

	return 0;
}

/**
* Checks if we want to support voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
*/
static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
{
	const struct smu7_hwmgr *data =
			(const struct smu7_hwmgr *)(hwmgr->backend);

	return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
}

/**
* Enable voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
{
	/* enable voltage control */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);

	return 0;
}

static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
		struct phm_clock_voltage_dependency_table *voltage_dependency_table
		)
{
	uint32_t i;

	PP_ASSERT_WITH_CODE((NULL != voltage_table),
			"Voltage Dependency Table empty.", return -EINVAL;);

	voltage_table->mask_low = 0;
	voltage_table->phase_delay = 0;
	voltage_table->count = voltage_dependency_table->count;

	for (i = 0; i < voltage_dependency_table->count; i++) {
		voltage_table->entries[i].value =
			voltage_dependency_table->entries[i].v;
		voltage_table->entries[i].smio_low = 0;
	}

	return 0;
}


/**
* Create Voltage Tables.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	int result = 0;
	uint32_t tmp;

	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
				&(data->mvdd_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve MVDD table.",
				return result);
	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
		if (hwmgr->pp_table_version == PP_TABLE_V1)
			result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
					table_info->vdd_dep_on_mclk);
		else if (hwmgr->pp_table_version == PP_TABLE_V0)
			result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
					hwmgr->dyn_state.mvdd_dependency_on_mclk);

		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 MVDD table from dependancy table.",
				return result;);
	}

	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
				&(data->vddci_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve VDDCI table.",
				return result);
	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
		if (hwmgr->pp_table_version == PP_TABLE_V1)
			result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
					table_info->vdd_dep_on_mclk);
		else if (hwmgr->pp_table_version == PP_TABLE_V0)
			result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
					hwmgr->dyn_state.vddci_dependency_on_mclk);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 VDDCI table from dependancy table.",
				return result);
	}

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
		/* VDDGFX has only SVI2 voltage control */
		result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
					table_info->vddgfx_lookup_table);
		PP_ASSERT_WITH_CODE((0 == result),
			"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
	}


	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
		result = atomctrl_get_voltage_table_v3(hwmgr,
					VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
					&data->vddc_voltage_table);
		PP_ASSERT_WITH_CODE((0 == result),
			"Failed to retrieve VDDC table.", return result;);
	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {

		if (hwmgr->pp_table_version == PP_TABLE_V0)
			result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
					hwmgr->dyn_state.vddc_dependency_on_mclk);
		else if (hwmgr->pp_table_version == PP_TABLE_V1)
			result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
				table_info->vddc_lookup_table);

		PP_ASSERT_WITH_CODE((0 == result),
			"Failed to retrieve SVI2 VDDC table from dependancy table.", return result;);
	}

309
	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
310 311 312 313 314 315
	PP_ASSERT_WITH_CODE(
			(data->vddc_voltage_table.count <= tmp),
		"Too many voltage values for VDDC. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(tmp,
						&(data->vddc_voltage_table)));

316
	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
317 318 319 320 321 322
	PP_ASSERT_WITH_CODE(
			(data->vddgfx_voltage_table.count <= tmp),
		"Too many voltage values for VDDC. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(tmp,
						&(data->vddgfx_voltage_table)));

323
	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
324 325 326 327 328 329
	PP_ASSERT_WITH_CODE(
			(data->vddci_voltage_table.count <= tmp),
		"Too many voltage values for VDDCI. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(tmp,
					&(data->vddci_voltage_table)));

330
	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	PP_ASSERT_WITH_CODE(
			(data->mvdd_voltage_table.count <= tmp),
		"Too many voltage values for MVDD. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(tmp,
						&(data->mvdd_voltage_table)));

	return 0;
}

/**
* Programs static screed detection parameters
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
static int smu7_program_static_screen_threshold_parameters(
							struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	/* Set static screen threshold unit */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
			data->static_screen_threshold_unit);
	/* Set static screen threshold */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
			data->static_screen_threshold);

	return 0;
}

/**
* Setup display gap for glitch free memory clock switching.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
{
	uint32_t display_gap =
			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					ixCG_DISPLAY_GAP_CNTL);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP, DISPLAY_GAP_IGNORE);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_DISPLAY_GAP_CNTL, display_gap);

	return 0;
}

/**
* Programs activity state transition voting clients
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
396
	int i;
397 398 399 400 401 402 403

	/* Clear reset for voting clients before enabling DPM */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);

404 405 406 407
	for (i = 0; i < 8; i++)
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					ixCG_FREQ_TRAN_VOTING_0 + i * 4,
					data->voting_rights_clients[i]);
408 409 410 411 412
	return 0;
}

static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
{
413 414
	int i;

415 416 417 418 419 420
	/* Reset voting clients before disabling DPM */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);

421 422 423
	for (i = 0; i < 8; i++)
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
				ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	return 0;
}

/* Copy one arb setting to another and then switch the active set.
 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
 */
static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
		uint32_t arb_src, uint32_t arb_dest)
{
	uint32_t mc_arb_dram_timing;
	uint32_t mc_arb_dram_timing2;
	uint32_t burst_time;
	uint32_t mc_cg_config;

	switch (arb_src) {
	case MC_CG_ARB_FREQ_F0:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
		break;
	case MC_CG_ARB_FREQ_F1:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
		break;
	default:
		return -EINVAL;
	}

	switch (arb_dest) {
	case MC_CG_ARB_FREQ_F0:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
		break;
	case MC_CG_ARB_FREQ_F1:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
		break;
	default:
		return -EINVAL;
	}

	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
	mc_cg_config |= 0x0000000F;
	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);

	return 0;
}

static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
{
479
	return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
}

/**
* Initial switch from ARB F0->F1
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
* This function is to be called from the SetPowerState table.
*/
static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
{
	return smu7_copy_and_switch_arb_sets(hwmgr,
			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}

static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
{
	uint32_t tmp;

	tmp = (cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
			0x0000ff00) >> 8;

	if (tmp == MC_CG_ARB_FREQ_F0)
		return 0;

	return smu7_copy_and_switch_arb_sets(hwmgr,
			tmp, MC_CG_ARB_FREQ_F0);
}

static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *pcie_table = NULL;

	uint32_t i, max_entry;
	uint32_t tmp;

	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
			data->use_pcie_power_saving_levels), "No pcie performance levels!",
			return -EINVAL);

	if (table_info != NULL)
		pcie_table = table_info->pcie_table;

	if (data->use_pcie_performance_levels &&
			!data->use_pcie_power_saving_levels) {
		data->pcie_gen_power_saving = data->pcie_gen_performance;
		data->pcie_lane_power_saving = data->pcie_lane_performance;
	} else if (!data->use_pcie_performance_levels &&
			data->use_pcie_power_saving_levels) {
		data->pcie_gen_performance = data->pcie_gen_power_saving;
		data->pcie_lane_performance = data->pcie_lane_power_saving;
	}
537
	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
					tmp,
					MAX_REGULAR_DPM_NUMBER);

	if (pcie_table != NULL) {
		/* max_entry is used to make sure we reserve one PCIE level
		 * for boot level (fix for A+A PSPP issue).
		 * If PCIE table from PPTable have ULV entry + 8 entries,
		 * then ignore the last entry.*/
		max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
		for (i = 1; i < max_entry; i++) {
			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
					get_pcie_gen_support(data->pcie_gen_cap,
							pcie_table->entries[i].gen_speed),
					get_pcie_lane_support(data->pcie_lane_cap,
							pcie_table->entries[i].lane_width));
		}
		data->dpm_table.pcie_speed_table.count = max_entry - 1;
		smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
	} else {
		/* Hardcode Pcie Table */
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));

		data->dpm_table.pcie_speed_table.count = 6;
	}
	/* Populate last level for boot PCIE level, but do not increment count. */
593 594 595 596 597 598 599 600
	if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
		for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				data->vbios_boot_state.pcie_lane_bootup_value);
	} else {
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
601 602 603 604 605
			data->dpm_table.pcie_speed_table.count,
			get_pcie_gen_support(data->pcie_gen_cap,
					PP_Min_PCIEGen),
			get_pcie_lane_support(data->pcie_lane_cap,
					PP_Max_PCIELane));
606
	}
607 608 609 610 611 612 613 614 615 616 617
	return 0;
}

static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));

	phm_reset_single_dpm_table(
			&data->dpm_table.sclk_table,
618
				smum_get_mac_definition(hwmgr,
619 620 621 622
					SMU_MAX_LEVELS_GRAPHICS),
					MAX_REGULAR_DPM_NUMBER);
	phm_reset_single_dpm_table(
			&data->dpm_table.mclk_table,
623
			smum_get_mac_definition(hwmgr,
624 625 626 627
				SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);

	phm_reset_single_dpm_table(
			&data->dpm_table.vddc_table,
628
				smum_get_mac_definition(hwmgr,
629 630 631 632
					SMU_MAX_LEVELS_VDDC),
					MAX_REGULAR_DPM_NUMBER);
	phm_reset_single_dpm_table(
			&data->dpm_table.vddci_table,
633
			smum_get_mac_definition(hwmgr,
634 635 636 637
				SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);

	phm_reset_single_dpm_table(
			&data->dpm_table.mvdd_table,
638
				smum_get_mac_definition(hwmgr,
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
					SMU_MAX_LEVELS_MVDD),
					MAX_REGULAR_DPM_NUMBER);
	return 0;
}
/*
 * This function is to initialize all DPM state tables
 * for SMU7 based on the dependency table.
 * Dynamic state patching function will then trim these
 * state tables to the allowed range based
 * on the power policy or external client requests,
 * such as UVD request, etc.
 */

static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
		hwmgr->dyn_state.vddc_dependency_on_sclk;
	struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
		hwmgr->dyn_state.vddc_dependency_on_mclk;
	struct phm_cac_leakage_table *std_voltage_table =
		hwmgr->dyn_state.cac_leakage_table;
	uint32_t i;

	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
		"SCLK dependency table is missing. This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
		"SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);

	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
		"VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);


	/* Initialize Sclk DPM table based on allow Sclk values*/
	data->dpm_table.sclk_table.count = 0;

	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
				allowed_vdd_sclk_table->entries[i].clk) {
			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
				allowed_vdd_sclk_table->entries[i].clk;
682
			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
683 684 685 686 687 688 689 690 691 692 693 694 695
			data->dpm_table.sclk_table.count++;
		}
	}

	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
	/* Initialize Mclk DPM table based on allow Mclk values */
	data->dpm_table.mclk_table.count = 0;
	for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
		if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
			allowed_vdd_mclk_table->entries[i].clk) {
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
				allowed_vdd_mclk_table->entries[i].clk;
696
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
			data->dpm_table.mclk_table.count++;
		}
	}

	/* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
		data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
		data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
		/* param1 is for corresponding std voltage */
		data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
	}

	data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
	allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;

	if (NULL != allowed_vdd_mclk_table) {
		/* Initialize Vddci DPM table based on allow Mclk values */
		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
			data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
			data->dpm_table.vddci_table.dpm_levels[i].enabled = 1;
		}
		data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
	}

	allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;

	if (NULL != allowed_vdd_mclk_table) {
		/*
		 * Initialize MVDD DPM table based on allow Mclk
		 * values
		 */
		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
			data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
			data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
		}
		data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
	}

	return 0;
}

static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;

	if (table_info == NULL)
		return -EINVAL;

	dep_sclk_table = table_info->vdd_dep_on_sclk;
	dep_mclk_table = table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
			"SCLK dependency table is missing.",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
			"SCLK dependency table count is 0.",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
			"MCLK dependency table is missing.",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
			"MCLK dependency table count is 0",
			return -EINVAL);

	/* Initialize Sclk DPM table based on allow Sclk values */
	data->dpm_table.sclk_table.count = 0;
	for (i = 0; i < dep_sclk_table->count; i++) {
		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
						dep_sclk_table->entries[i].clk) {

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
					dep_sclk_table->entries[i].clk;

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
					(i == 0) ? true : false;
			data->dpm_table.sclk_table.count++;
		}
	}

	/* Initialize Mclk DPM table based on allow Mclk values */
	data->dpm_table.mclk_table.count = 0;
	for (i = 0; i < dep_mclk_table->count; i++) {
		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
				[data->dpm_table.mclk_table.count - 1].value !=
						dep_mclk_table->entries[i].clk) {
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
							dep_mclk_table->entries[i].clk;
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
							(i == 0) ? true : false;
			data->dpm_table.mclk_table.count++;
		}
	}

	return 0;
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static int smu7_get_voltage_dependency_table(
			const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
			struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
	uint8_t i = 0;
	PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
				"Voltage Lookup Table empty",
				return -EINVAL);

	dep_table->count = allowed_dep_table->count;
	for (i=0; i<dep_table->count; i++) {
		dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
		dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
		dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
		dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
		dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
		dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
		dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
		dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
		dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
		dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
	}

	return 0;
}

static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
836
	struct phm_odn_performance_level *entries;
837 838 839 840 841 842 843 844 845

	if (table_info == NULL)
		return -EINVAL;

	dep_sclk_table = table_info->vdd_dep_on_sclk;
	dep_mclk_table = table_info->vdd_dep_on_mclk;

	odn_table->odn_core_clock_dpm_levels.num_of_pl =
						data->golden_dpm_table.sclk_table.count;
846
	entries = odn_table->odn_core_clock_dpm_levels.entries;
847
	for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) {
848 849 850
		entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
		entries[i].enabled = true;
		entries[i].vddc = dep_sclk_table->entries[i].vddc;
851 852 853 854 855 856 857
	}

	smu7_get_voltage_dependency_table(dep_sclk_table,
		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));

	odn_table->odn_memory_clock_dpm_levels.num_of_pl =
						data->golden_dpm_table.mclk_table.count;
858 859 860 861 862
	entries = odn_table->odn_memory_clock_dpm_levels.entries;
	for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) {
		entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
		entries[i].enabled = true;
		entries[i].vddc = dep_mclk_table->entries[i].vddc;
863 864 865 866 867 868 869 870
	}

	smu7_get_voltage_dependency_table(dep_mclk_table,
		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));

	return 0;
}

871
static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	smu7_reset_dpm_tables(hwmgr);

	if (hwmgr->pp_table_version == PP_TABLE_V1)
		smu7_setup_dpm_tables_v1(hwmgr);
	else if (hwmgr->pp_table_version == PP_TABLE_V0)
		smu7_setup_dpm_tables_v0(hwmgr);

	smu7_setup_default_pcie_table(hwmgr);

	/* save a copy of the default DPM table */
	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
			sizeof(struct smu7_dpm_table));
887 888 889 890 891

	/* initialize ODN table */
	if (hwmgr->od_enabled)
		smu7_odn_initial_default_setting(hwmgr);

892 893 894 895 896 897 898 899
	return 0;
}

static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
{

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot))
900
		return smum_send_msg_to_smc(hwmgr,
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
				PPSMC_MSG_EnableVRHotGPIOInterrupt);

	return 0;
}

static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			SCLK_PWRMGT_OFF, 0);
	return 0;
}

static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (data->ulv_supported)
918
		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV);
919 920 921 922 923 924 925 926 927

	return 0;
}

static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (data->ulv_supported)
928
		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV);
929 930 931 932 933 934 935 936

	return 0;
}

static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep)) {
937
		if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON))
938 939 940 941
			PP_ASSERT_WITH_CODE(false,
					"Attempt to enable Master Deep Sleep switch failed!",
					return -EINVAL);
	} else {
942
		if (smum_send_msg_to_smc(hwmgr,
943 944 945 946 947 948 949 950 951 952 953 954 955 956
				PPSMC_MSG_MASTER_DeepSleep_OFF)) {
			PP_ASSERT_WITH_CODE(false,
					"Attempt to disable Master Deep Sleep switch failed!",
					return -EINVAL);
		}
	}

	return 0;
}

static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep)) {
957
		if (smum_send_msg_to_smc(hwmgr,
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
				PPSMC_MSG_MASTER_DeepSleep_OFF)) {
			PP_ASSERT_WITH_CODE(false,
					"Attempt to disable Master Deep Sleep switch failed!",
					return -EINVAL);
		}
	}

	return 0;
}

static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t soft_register_value = 0;
	uint32_t handshake_disables_offset = data->soft_regs_start
973
				+ smum_get_offsetof(hwmgr,
974 975 976 977
					SMU_SoftRegisters, HandshakeDisables);

	soft_register_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, handshake_disables_offset);
978
	soft_register_value |= smum_get_mac_definition(hwmgr,
979 980 981 982 983 984 985 986 987 988 989 990 991
					SMU_UVD_MCLK_HANDSHAKE_DISABLE);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			handshake_disables_offset, soft_register_value);
	return 0;
}

static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	/* enable SCLK dpm */
	if (!data->sclk_dpm_key_disabled)
		PP_ASSERT_WITH_CODE(
992
		(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable)),
993 994 995 996 997 998 999 1000
		"Failed to enable SCLK DPM during DPM Start Function!",
		return -EINVAL);

	/* enable MCLK dpm */
	if (0 == data->mclk_dpm_key_disabled) {
		if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
			smu7_disable_handshake_uvd(hwmgr);
		PP_ASSERT_WITH_CODE(
1001
				(0 == smum_send_msg_to_smc(hwmgr,
1002 1003 1004 1005 1006 1007
						PPSMC_MSG_MCLKDPM_Enable)),
				"Failed to enable MCLK DPM during DPM Start Function!",
				return -EINVAL);

		PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

		if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
			udelay(10);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
		} else {
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
			udelay(10);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
		}
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	}

	return 0;
}

static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	/*enable general power management */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
			GLOBAL_PWRMGT_EN, 1);

	/* enable sclk deep sleep */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			DYNAMIC_PM_EN, 1);

	/* prepare for PCIE DPM */

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			data->soft_regs_start +
1049
			smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1050 1051 1052 1053
						VoltageChangeTimeout), 0x1000);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			SWRST_COMMAND_1, RESETLC, 0x0);

1054 1055 1056 1057
	if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
		cgs_write_register(hwmgr->device, 0x1488,
			(cgs_read_register(hwmgr->device, 0x1488) & ~0x1));

1058
	if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1059
		pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1060 1061 1062 1063 1064 1065
		return -EINVAL;
	}

	/* enable PCIE dpm */
	if (0 == data->pcie_dpm_key_disabled) {
		PP_ASSERT_WITH_CODE(
1066
				(0 == smum_send_msg_to_smc(hwmgr,
1067 1068 1069 1070 1071 1072 1073
						PPSMC_MSG_PCIeDPM_Enable)),
				"Failed to enable pcie DPM during DPM Start Function!",
				return -EINVAL);
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_Falcon_QuickTransition)) {
1074
		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
				PPSMC_MSG_EnableACDCGPIOInterrupt)),
				"Failed to enable AC DC GPIO Interrupt!",
				);
	}

	return 0;
}

static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	/* disable SCLK dpm */
1088 1089 1090 1091
	if (!data->sclk_dpm_key_disabled) {
		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
				"Trying to disable SCLK DPM when DPM is disabled",
				return 0);
1092
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable);
1093
	}
1094 1095 1096

	/* disable MCLK dpm */
	if (!data->mclk_dpm_key_disabled) {
1097 1098 1099
		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
				"Trying to disable MCLK DPM when DPM is disabled",
				return 0);
1100
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	}

	return 0;
}

static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	/* disable general power management */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
			GLOBAL_PWRMGT_EN, 0);
	/* disable sclk deep sleep */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			DYNAMIC_PM_EN, 0);

	/* disable PCIE dpm */
	if (!data->pcie_dpm_key_disabled) {
		PP_ASSERT_WITH_CODE(
1120
				(smum_send_msg_to_smc(hwmgr,
1121 1122 1123 1124 1125
						PPSMC_MSG_PCIeDPM_Disable) == 0),
				"Failed to disable pcie DPM during DPM Stop Function!",
				return -EINVAL);
	}

1126 1127 1128 1129 1130 1131
	smu7_disable_sclk_mclk_dpm(hwmgr);

	PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
			"Trying to disable voltage DPM when DPM is disabled",
			return 0);

1132
	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

	return 0;
}

static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
{
	bool protection;
	enum DPM_EVENT_SRC src;

	switch (sources) {
	default:
1144
		pr_err("Unknown throttling event sources.");
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		/* fall through */
	case 0:
		protection = false;
		/* src is unused */
		break;
	case (1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL;
		break;
	case (1 << PHM_AutoThrottleSource_External):
		protection = true;
		src = DPM_EVENT_SRC_EXTERNAL;
		break;
	case (1 << PHM_AutoThrottleSource_External) |
			(1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
		break;
	}
	/* Order matters - don't enable thermal protection for the wrong source. */
	if (protection) {
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
				DPM_EVENT_SRC, src);
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS,
				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_ThermalController));
	} else
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS, 1);
}

static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
		PHM_AutoThrottleSource source)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (!(data->active_auto_throttle_sources & (1 << source))) {
		data->active_auto_throttle_sources |= 1 << source;
		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
	}
	return 0;
}

static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
{
	return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
}

static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
		PHM_AutoThrottleSource source)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (data->active_auto_throttle_sources & (1 << source)) {
		data->active_auto_throttle_sources &= ~(1 << source);
		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
	}
	return 0;
}

static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
{
	return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
}

1211
static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1212 1213 1214 1215 1216 1217 1218
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	data->pcie_performance_request = true;

	return 0;
}

1219
static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
{
	int tmp_result = 0;
	int result = 0;

	if (smu7_voltage_control(hwmgr)) {
		tmp_result = smu7_enable_voltage_control(hwmgr);
		PP_ASSERT_WITH_CODE(tmp_result == 0,
				"Failed to enable voltage control!",
				result = tmp_result);

		tmp_result = smu7_construct_voltage_tables(hwmgr);
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to contruct voltage tables!",
				result = tmp_result);
	}
	smum_initialize_mc_reg_table(hwmgr);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalController))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);

	tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program static screen threshold parameters!",
			result = tmp_result);

	tmp_result = smu7_enable_display_gap(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable display gap!", result = tmp_result);

	tmp_result = smu7_program_voting_clients(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program voting clients!", result = tmp_result);

	tmp_result = smum_process_firmware_header(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to process firmware header!", result = tmp_result);

	tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize switch from ArbF0 to F1!",
			result = tmp_result);

	result = smu7_setup_default_dpm_tables(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to setup default DPM tables!", return result);

	tmp_result = smum_init_smc_table(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize SMC table!", result = tmp_result);

	tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);

1281
	smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	tmp_result = smu7_enable_sclk_control(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SCLK control!", result = tmp_result);

	tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable voltage control!", result = tmp_result);

	tmp_result = smu7_enable_ulv(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ULV!", result = tmp_result);

	tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable deep sleep master switch!", result = tmp_result);

	tmp_result = smu7_enable_didt_config(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to enable deep sleep master switch!", result = tmp_result);

	tmp_result = smu7_start_dpm(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to start DPM!", result = tmp_result);

	tmp_result = smu7_enable_smc_cac(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SMC CAC!", result = tmp_result);

	tmp_result = smu7_enable_power_containment(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable power containment!", result = tmp_result);

	tmp_result = smu7_power_control_set_level(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to power control set level!", result = tmp_result);

	tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable thermal auto throttle!", result = tmp_result);

	tmp_result = smu7_pcie_performance_request(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"pcie performance request failed!", result = tmp_result);

	return 0;
}

1330 1331
static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
{
1332
	if (!hwmgr->avfs_supported)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		return 0;

	if (enable) {
		if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
				CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
			PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
					hwmgr, PPSMC_MSG_EnableAvfs),
					"Failed to enable AVFS!",
					return -EINVAL);
		}
	} else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
			CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
				hwmgr, PPSMC_MSG_DisableAvfs),
				"Failed to disable AVFS!",
				return -EINVAL);
	}

	return 0;
}

static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

1358
	if (!hwmgr->avfs_supported)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		return 0;

	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
		smu7_avfs_control(hwmgr, false);
	} else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
		smu7_avfs_control(hwmgr, false);
		smu7_avfs_control(hwmgr, true);
	} else {
		smu7_avfs_control(hwmgr, true);
	}

	return 0;
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	int tmp_result, result = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalController))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);

	tmp_result = smu7_disable_power_containment(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable power containment!", result = tmp_result);

	tmp_result = smu7_disable_smc_cac(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable SMC CAC!", result = tmp_result);

1390 1391 1392 1393
	tmp_result = smu7_disable_didt_config(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable DIDT!", result = tmp_result);

1394 1395 1396 1397 1398 1399 1400 1401 1402
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);

	tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable thermal auto throttle!", result = tmp_result);

1403 1404 1405
	tmp_result = smu7_avfs_control(hwmgr, false);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable AVFS!", result = tmp_result);
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	tmp_result = smu7_stop_dpm(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to stop DPM!", result = tmp_result);

	tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable deep sleep master switch!", result = tmp_result);

	tmp_result = smu7_disable_ulv(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to disable ULV!", result = tmp_result);

	tmp_result = smu7_clear_voting_clients(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to clear voting clients!", result = tmp_result);

	tmp_result = smu7_reset_to_default(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to reset to default!", result = tmp_result);

	tmp_result = smu7_force_switch_to_arbf0(hwmgr);
	PP_ASSERT_WITH_CODE((tmp_result == 0),
			"Failed to force to switch arbf0!", result = tmp_result);

	return result;
}

int smu7_reset_asic_tasks(struct pp_hwmgr *hwmgr)
{

	return 0;
}

static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1445
	struct amdgpu_device *adev = hwmgr->adev;
1446 1447 1448 1449 1450 1451

	data->dll_default_on = false;
	data->mclk_dpm0_activity_target = 0xa;
	data->vddc_vddgfx_delta = 300;
	data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
	data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1452 1453 1454 1455 1456 1457 1458 1459
	data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
	data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
	data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
	data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
	data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
	data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
	data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
	data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
	data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
	data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
	/* need to set voltage control types before EVV patching */
	data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
	data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
	data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
	data->enable_tdc_limit_feature = true;
	data->enable_pkg_pwr_tracking_feature = true;
	data->force_pcie_gen = PP_PCIEGenInvalid;
	data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1472 1473 1474 1475 1476 1477 1478 1479
	data->current_profile_setting.bupdate_sclk = 1;
	data->current_profile_setting.sclk_up_hyst = 0;
	data->current_profile_setting.sclk_down_hyst = 100;
	data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
	data->current_profile_setting.bupdate_sclk = 1;
	data->current_profile_setting.mclk_up_hyst = 0;
	data->current_profile_setting.mclk_down_hyst = 100;
	data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1480 1481 1482
	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1483

1484
	if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->is_kicker) {
1485 1486 1487 1488 1489 1490
		uint8_t tmp1, tmp2;
		uint16_t tmp3 = 0;
		atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
						&tmp3);
		tmp3 = (tmp3 >> 5) & 0x3;
		data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	} else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
		data->vddc_phase_shed_control = 1;
	} else {
		data->vddc_phase_shed_control = 0;
	}

	if (hwmgr->chip_id  == CHIP_HAWAII) {
		data->thermal_temp_setting.temperature_low = 94500;
		data->thermal_temp_setting.temperature_high = 95000;
		data->thermal_temp_setting.temperature_shutdown = 104000;
	} else {
		data->thermal_temp_setting.temperature_low = 99500;
		data->thermal_temp_setting.temperature_high = 100000;
		data->thermal_temp_setting.temperature_shutdown = 104000;
1505 1506
	}

1507
	data->fast_watermark_threshold = 100;
1508
	if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1509 1510
			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1511 1512 1513
	else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1514 1515 1516

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ControlVDDGFX)) {
1517
		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1518 1519 1520 1521 1522 1523 1524
			VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
			data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
		}
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableMVDDControl)) {
1525
		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1526 1527
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1528
		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1529 1530 1531 1532
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
	}

1533
	if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1534 1535 1536 1537 1538
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ControlVDDGFX);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ControlVDDCI)) {
1539
		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1540 1541
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1542
		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
	}

	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_EnableMVDDControl);

	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ControlVDDCI);

1555
	if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		&& (table_info->cac_dtp_table->usClockStretchAmount != 0))
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_ClockStretcher);

	data->pcie_gen_performance.max = PP_PCIEGen1;
	data->pcie_gen_performance.min = PP_PCIEGen3;
	data->pcie_gen_power_saving.max = PP_PCIEGen1;
	data->pcie_gen_power_saving.min = PP_PCIEGen3;
	data->pcie_lane_performance.max = 0;
	data->pcie_lane_performance.min = 16;
	data->pcie_lane_power_saving.max = 0;
	data->pcie_lane_power_saving.min = 16;
1568

1569 1570 1571 1572 1573 1574 1575

	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			      PHM_PlatformCaps_UVDPowerGating);
	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			      PHM_PlatformCaps_VCEPowerGating);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
}

/**
* Get Leakage VDDC based on leakage ID.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint16_t vv_id;
	uint16_t vddc = 0;
	uint16_t vddgfx = 0;
	uint16_t i, j;
	uint32_t sclk = 0;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;


	for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;

		if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1601 1602
			if ((hwmgr->pp_table_version == PP_TABLE_V1)
			    && !phm_get_sclk_for_voltage_evv(hwmgr,
1603 1604 1605
						table_info->vddgfx_lookup_table, vv_id, &sclk)) {
				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
							PHM_PlatformCaps_ClockStretcher)) {
1606 1607
					sclk_table = table_info->vdd_dep_on_sclk;

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
					for (j = 1; j < sclk_table->count; j++) {
						if (sclk_table->entries[j].clk == sclk &&
								sclk_table->entries[j].cks_enable == 0) {
							sclk += 5000;
							break;
						}
					}
				}
				if (0 == atomctrl_get_voltage_evv_on_sclk
				    (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
				     vv_id, &vddgfx)) {
					/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
					PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);

					/* the voltage should not be zero nor equal to leakage ID */
					if (vddgfx != 0 && vddgfx != vv_id) {
						data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
						data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
						data->vddcgfx_leakage.count++;
					}
				} else {
1629
					pr_info("Error retrieving EVV voltage value!\n");
1630 1631 1632 1633 1634 1635 1636 1637
				}
			}
		} else {
			if ((hwmgr->pp_table_version == PP_TABLE_V0)
				|| !phm_get_sclk_for_voltage_evv(hwmgr,
					table_info->vddc_lookup_table, vv_id, &sclk)) {
				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_ClockStretcher)) {
1638 1639 1640 1641
					if (table_info == NULL)
						return -EINVAL;
					sclk_table = table_info->vdd_dep_on_sclk;

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
					for (j = 1; j < sclk_table->count; j++) {
						if (sclk_table->entries[j].clk == sclk &&
								sclk_table->entries[j].cks_enable == 0) {
							sclk += 5000;
							break;
						}
					}
				}

				if (phm_get_voltage_evv_on_sclk(hwmgr,
							VOLTAGE_TYPE_VDDC,
							sclk, vv_id, &vddc) == 0) {
					if (vddc >= 2000 || vddc == 0)
						return -EINVAL;
				} else {
1657
					pr_debug("failed to retrieving EVV voltage!\n");
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
					continue;
				}

				/* the voltage should not be zero nor equal to leakage ID */
				if (vddc != 0 && vddc != vv_id) {
					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
					data->vddc_leakage.count++;
				}
			}
		}
	}

	return 0;
}

/**
 * Change virtual leakage voltage to actual value.
 *
 * @param     hwmgr  the address of the powerplay hardware manager.
 * @param     pointer to changing voltage
 * @param     pointer to leakage table
 */
static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
		uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
{
	uint32_t index;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
	for (index = 0; index < leakage_table->count; index++) {
		/* if this voltage matches a leakage voltage ID */
		/* patch with actual leakage voltage */
		if (leakage_table->leakage_id[index] == *voltage) {
			*voltage = leakage_table->actual_voltage[index];
			break;
		}
	}

	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
1697
		pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
}

/**
* Patch voltage lookup table by EVV leakages.
*
* @param     hwmgr  the address of the powerplay hardware manager.
* @param     pointer to voltage lookup table
* @param     pointer to leakage table
* @return     always 0
*/
static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
		phm_ppt_v1_voltage_lookup_table *lookup_table,
		struct smu7_leakage_voltage *leakage_table)
{
	uint32_t i;

	for (i = 0; i < lookup_table->count; i++)
		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
				&lookup_table->entries[i].us_vdd, leakage_table);

	return 0;
}

static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
		struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
		uint16_t *vddc)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
			table_info->max_clock_voltage_on_dc.vddc;
	return 0;
}

static int smu7_patch_voltage_dependency_tables_with_lookup_table(
		struct pp_hwmgr *hwmgr)
{
	uint8_t entry_id;
	uint8_t voltage_id;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
			table_info->vdd_dep_on_mclk;
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;

	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
			voltage_id = sclk_table->entries[entry_id].vddInd;
			sclk_table->entries[entry_id].vddgfx =
				table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
		}
	} else {
		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
			voltage_id = sclk_table->entries[entry_id].vddInd;
			sclk_table->entries[entry_id].vddc =
				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
		}
	}

	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
		voltage_id = mclk_table->entries[entry_id].vddInd;
		mclk_table->entries[entry_id].vddc =
			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
	}

	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
		voltage_id = mm_table->entries[entry_id].vddcInd;
		mm_table->entries[entry_id].vddc =
			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
	}

	return 0;

}

static int phm_add_voltage(struct pp_hwmgr *hwmgr,
			phm_ppt_v1_voltage_lookup_table *look_up_table,
			phm_ppt_v1_voltage_lookup_record *record)
{
	uint32_t i;

	PP_ASSERT_WITH_CODE((NULL != look_up_table),
		"Lookup Table empty.", return -EINVAL);
	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
		"Lookup Table empty.", return -EINVAL);

1790
	i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	PP_ASSERT_WITH_CODE((i >= look_up_table->count),
		"Lookup Table is full.", return -EINVAL);

	/* This is to avoid entering duplicate calculated records. */
	for (i = 0; i < look_up_table->count; i++) {
		if (look_up_table->entries[i].us_vdd == record->us_vdd) {
			if (look_up_table->entries[i].us_calculated == 1)
				return 0;
			break;
		}
	}

	look_up_table->entries[i].us_calculated = 1;
	look_up_table->entries[i].us_vdd = record->us_vdd;
	look_up_table->entries[i].us_cac_low = record->us_cac_low;
	look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
	look_up_table->entries[i].us_cac_high = record->us_cac_high;
	/* Only increment the count when we're appending, not replacing duplicate entry. */
	if (i == look_up_table->count)
		look_up_table->count++;

	return 0;
}


static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
{
	uint8_t entry_id;
	struct phm_ppt_v1_voltage_lookup_record v_record;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);

	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;

	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
			if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
					sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
			else
				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
					sclk_table->entries[entry_id].vdd_offset;

			sclk_table->entries[entry_id].vddc =
				v_record.us_cac_low = v_record.us_cac_mid =
				v_record.us_cac_high = v_record.us_vdd;

			phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
		}

		for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
			if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
					mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
			else
				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
					mclk_table->entries[entry_id].vdd_offset;

			mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
		}
	}
	return 0;
}

static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
{
	uint8_t entry_id;
	struct phm_ppt_v1_voltage_lookup_record v_record;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;

	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
		for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
			if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
				v_record.us_vdd = mm_table->entries[entry_id].vddc +
					mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
			else
				v_record.us_vdd = mm_table->entries[entry_id].vddc +
					mm_table->entries[entry_id].vddgfx_offset;

			/* Add the calculated VDDGFX to the VDDGFX lookup table */
			mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
		}
	}
	return 0;
}

static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
	uint32_t table_size, i, j;
	struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
	table_size = lookup_table->count;

	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
		"Lookup table is empty", return -EINVAL);

	/* Sorting voltages */
	for (i = 0; i < table_size - 1; i++) {
		for (j = i + 1; j > 0; j--) {
			if (lookup_table->entries[j].us_vdd <
					lookup_table->entries[j - 1].us_vdd) {
				tmp_voltage_lookup_record = lookup_table->entries[j - 1];
				lookup_table->entries[j - 1] = lookup_table->entries[j];
				lookup_table->entries[j] = tmp_voltage_lookup_record;
			}
		}
	}

	return 0;
}

static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
{
	int result = 0;
	int tmp_result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
			table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
		if (tmp_result != 0)
			result = tmp_result;

		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
			&table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
	} else {

		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
				table_info->vddc_lookup_table, &(data->vddc_leakage));
		if (tmp_result)
			result = tmp_result;

		tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
				&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
		if (tmp_result)
			result = tmp_result;
	}

	tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
	if (tmp_result)
		result = tmp_result;

	tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
	if (tmp_result)
		result = tmp_result;

	tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
	if (tmp_result)
		result = tmp_result;

	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
	if (tmp_result)
		result = tmp_result;

	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
	if (tmp_result)
		result = tmp_result;

	return result;
}

static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
						table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
						table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
		"VDD dependency on SCLK table is missing.",
		return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
		"VDD dependency on SCLK table has to have is missing.",
		return -EINVAL);

	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
		"VDD dependency on MCLK table is missing",
		return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
		"VDD dependency on MCLK table has to have is missing.",
		return -EINVAL);

	table_info->max_clock_voltage_on_ac.sclk =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.mclk =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.vddc =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
	table_info->max_clock_voltage_on_ac.vddci =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;

	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;

	return 0;
}

2002
static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2003 2004 2005 2006 2007 2008 2009
{
	struct phm_ppt_v1_information *table_info =
		       (struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
	struct phm_ppt_v1_voltage_lookup_table *lookup_table;
	uint32_t i;
	uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2010
	struct amdgpu_device *adev = hwmgr->adev;
2011 2012 2013 2014 2015 2016 2017

	if (table_info != NULL) {
		dep_mclk_table = table_info->vdd_dep_on_mclk;
		lookup_table = table_info->vddc_lookup_table;
	} else
		return 0;

2018 2019 2020
	hw_revision = adev->pdev->revision;
	sub_sys_id = adev->pdev->subsystem_device;
	sub_vendor_id = adev->pdev->subsystem_vendor;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

	if (hwmgr->chip_id == CHIP_POLARIS10 && hw_revision == 0xC7 &&
			((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
		    (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
		    (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
		if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
			return 0;

		for (i = 0; i < lookup_table->count; i++) {
			if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
				dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
				return 0;
			}
		}
	}
	return 0;
}

static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
{
	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
	uint32_t temp_reg;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);


	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
		temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
		switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
		case 0:
			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
			break;
		case 1:
			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
			break;
		case 2:
			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
			break;
		case 3:
			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
			break;
		case 4:
			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
			break;
		default:
			break;
		}
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
	}

	if (table_info == NULL)
		return 0;

	if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;

		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;

		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;

		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;

		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;

		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;

		table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
								(table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;

		table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
		table_info->cac_dtp_table->usOperatingTempStep = 1;
		table_info->cac_dtp_table->usOperatingTempHyst = 1;

		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;

		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;

		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
			       table_info->cac_dtp_table->usOperatingTempMinLimit;

		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
			       table_info->cac_dtp_table->usOperatingTempMaxLimit;

		hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
			       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;

		hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
			       table_info->cac_dtp_table->usOperatingTempStep;

		hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
			       table_info->cac_dtp_table->usTargetOperatingTemp;
2118 2119 2120
		if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_ODFuzzyFanControlSupport);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	}

	return 0;
}

/**
 * Change virtual leakage voltage to actual value.
 *
 * @param     hwmgr  the address of the powerplay hardware manager.
 * @param     pointer to changing voltage
 * @param     pointer to leakage table
 */
static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
		uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
{
	uint32_t index;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
	for (index = 0; index < leakage_table->count; index++) {
		/* if this voltage matches a leakage voltage ID */
		/* patch with actual leakage voltage */
		if (leakage_table->leakage_id[index] == *voltage) {
			*voltage = leakage_table->actual_voltage[index];
			break;
		}
	}

	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2149
		pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
}


static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
			      struct phm_clock_voltage_dependency_table *tab)
{
	uint16_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab)
		for (i = 0; i < tab->count; i++)
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
						&data->vddc_leakage);

	return 0;
}

static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
			       struct phm_clock_voltage_dependency_table *tab)
{
	uint16_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab)
		for (i = 0; i < tab->count; i++)
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
							&data->vddci_leakage);

	return 0;
}

static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
				  struct phm_vce_clock_voltage_dependency_table *tab)
{
	uint16_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab)
		for (i = 0; i < tab->count; i++)
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
							&data->vddc_leakage);

	return 0;
}


static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
				  struct phm_uvd_clock_voltage_dependency_table *tab)
{
	uint16_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab)
		for (i = 0; i < tab->count; i++)
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
							&data->vddc_leakage);

	return 0;
}

static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
					 struct phm_phase_shedding_limits_table *tab)
{
	uint16_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab)
		for (i = 0; i < tab->count; i++)
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
							&data->vddc_leakage);

	return 0;
}

static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
				   struct phm_samu_clock_voltage_dependency_table *tab)
{
	uint16_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab)
		for (i = 0; i < tab->count; i++)
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
							&data->vddc_leakage);

	return 0;
}

static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
				  struct phm_acp_clock_voltage_dependency_table *tab)
{
	uint16_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab)
		for (i = 0; i < tab->count; i++)
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
					&data->vddc_leakage);

	return 0;
}

static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2253
				  struct phm_clock_and_voltage_limits *tab)
2254
{
2255
	uint32_t vddc, vddci;
2256 2257 2258
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab) {
2259
		vddc = tab->vddc;
2260 2261 2262
		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
						   &data->vddc_leakage);
		tab->vddc = vddc;
2263
		vddci = tab->vddci;
2264 2265 2266
		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
						   &data->vddci_leakage);
		tab->vddci = vddci;
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	}

	return 0;
}

static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
{
	uint32_t i;
	uint32_t vddc;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (tab) {
		for (i = 0; i < tab->count; i++) {
			vddc = (uint32_t)(tab->entries[i].Vddc);
			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
			tab->entries[i].Vddc = (uint16_t)vddc;
		}
	}

	return 0;
}

static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
{
	int tmp;

	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
	if (tmp)
		return -EINVAL;

	tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
	if (tmp)
		return -EINVAL;

	return 0;
}


static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
	struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
	struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;

	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2354 2355
		"VDDC dependency on SCLK table is missing. This table is mandatory",
		return -EINVAL);
2356
	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2357 2358
		"VDDC dependency on SCLK table has to have is missing. This table is mandatory",
		return -EINVAL);
2359 2360

	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2361 2362
		"VDDC dependency on MCLK table is missing. This table is mandatory",
		return -EINVAL);
2363
	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2364 2365
		"VDD dependency on MCLK table has to have is missing. This table is mandatory",
		return -EINVAL);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

	data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
	data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;

	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
		allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;

	if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
		data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
		data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
	}

2382
	if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2383 2384 2385 2386 2387
		hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;

	return 0;
}

2388 2389
static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
2390 2391 2392 2393
	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
	kfree(hwmgr->backend);
	hwmgr->backend = NULL;
2394 2395 2396 2397

	return 0;
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
{
	uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	int i;

	if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
		for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
			virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
			if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
								virtual_voltage_id,
								efuse_voltage_id) == 0) {
				if (vddc != 0 && vddc != virtual_voltage_id) {
					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
					data->vddc_leakage.count++;
				}
				if (vddci != 0 && vddci != virtual_voltage_id) {
					data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
					data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
					data->vddci_leakage.count++;
				}
			}
		}
	}
	return 0;
}

2426
static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2427 2428
{
	struct smu7_hwmgr *data;
2429
	int result = 0;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

	data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;
	smu7_patch_voltage_workaround(hwmgr);
	smu7_init_dpm_defaults(hwmgr);

	/* Get leakage voltage based on leakage ID. */
2440 2441 2442 2443 2444 2445 2446 2447 2448
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EVV)) {
		result = smu7_get_evv_voltages(hwmgr);
		if (result) {
			pr_info("Get EVV Voltage Failed.  Abort Driver loading!\n");
			return -EINVAL;
		}
	} else {
		smu7_get_elb_voltages(hwmgr);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	}

	if (hwmgr->pp_table_version == PP_TABLE_V1) {
		smu7_complete_dependency_tables(hwmgr);
		smu7_set_private_data_based_on_pptable_v1(hwmgr);
	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
		smu7_patch_dependency_tables_with_leakage(hwmgr);
		smu7_set_private_data_based_on_pptable_v0(hwmgr);
	}

	/* Initalize Dynamic State Adjustment Rule Settings */
	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);

	if (0 == result) {
2463
		struct amdgpu_device *adev = hwmgr->adev;
2464 2465 2466 2467 2468 2469 2470 2471

		data->is_tlu_enabled = false;

		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
							SMU7_MAX_HARDWARE_POWERLEVELS;
		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;

2472
		data->pcie_gen_cap = adev->pm.pcie_gen_mask;
2473 2474
		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
			data->pcie_spc_cap = 20;
2475
		data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
2476 2477 2478 2479 2480 2481 2482 2483

		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
		hwmgr->platform_descriptor.clockStep.engineClock = 500;
		hwmgr->platform_descriptor.clockStep.memoryClock = 500;
		smu7_thermal_parameter_init(hwmgr);
	} else {
		/* Ignore return value in here, we are cleaning up a mess. */
2484
		smu7_hwmgr_backend_fini(hwmgr);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	}

	return 0;
}

static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t level, tmp;

	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
2503
				smum_send_msg_to_smc_with_parameter(hwmgr,
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
						PPSMC_MSG_PCIeDPM_ForceLevel, level);
		}
	}

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
2516
				smum_send_msg_to_smc_with_parameter(hwmgr,
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
						PPSMC_MSG_SCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
2530
				smum_send_msg_to_smc_with_parameter(hwmgr,
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
						PPSMC_MSG_MCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	return 0;
}

static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (hwmgr->pp_table_version == PP_TABLE_V1)
		phm_apply_dal_min_voltage_request(hwmgr);
/* TO DO  for v0 iceland and Ci*/

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
2549
			smum_send_msg_to_smc_with_parameter(hwmgr,
2550 2551 2552 2553 2554 2555
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.sclk_dpm_enable_mask);
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
2556
			smum_send_msg_to_smc_with_parameter(hwmgr,
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.mclk_dpm_enable_mask);
	}

	return 0;
}

static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (!smum_is_dpm_running(hwmgr))
		return -EINVAL;

	if (!data->pcie_dpm_key_disabled) {
2572
		smum_send_msg_to_smc(hwmgr,
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
				PPSMC_MSG_PCIeDPM_UnForceLevel);
	}

	return smu7_upload_dpm_level_enable_mask(hwmgr);
}

static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data =
			(struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t level;

	if (!data->sclk_dpm_key_disabled)
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2589
			smum_send_msg_to_smc_with_parameter(hwmgr,
2590 2591 2592 2593 2594 2595 2596 2597 2598
							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
							    (1 << level));

	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2599
			smum_send_msg_to_smc_with_parameter(hwmgr,
2600 2601 2602 2603 2604 2605 2606 2607 2608
							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
							    (1 << level));
		}
	}

	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
2609
			smum_send_msg_to_smc_with_parameter(hwmgr,
2610 2611 2612 2613 2614 2615
							    PPSMC_MSG_PCIeDPM_ForceLevel,
							    (level));
		}
	}

	return 0;
R
Rex Zhu 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
}

static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
{
	uint32_t percentage;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
	int32_t tmp_mclk;
	int32_t tmp_sclk;
	int32_t count;

	if (golden_dpm_table->mclk_table.count < 1)
		return -EINVAL;

	percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
			golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
2633

R
Rex Zhu 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	if (golden_dpm_table->mclk_table.count == 1) {
		percentage = 70;
		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
	} else {
		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
		*mclk_mask = golden_dpm_table->mclk_table.count - 2;
	}

	tmp_sclk = tmp_mclk * percentage / 100;

	if (hwmgr->pp_table_version == PP_TABLE_V0) {
		for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
			count >= 0; count--) {
			if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
				tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk;
				*sclk_mask = count;
				break;
			}
		}
R
Rex Zhu 已提交
2654
		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
R
Rex Zhu 已提交
2655
			*sclk_mask = 0;
R
Rex Zhu 已提交
2656 2657
			tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk;
		}
R
Rex Zhu 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			*sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
		struct phm_ppt_v1_information *table_info =
				(struct phm_ppt_v1_information *)(hwmgr->pptable);

		for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
			if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
				tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk;
				*sclk_mask = count;
				break;
			}
		}
R
Rex Zhu 已提交
2672
		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
R
Rex Zhu 已提交
2673
			*sclk_mask = 0;
R
Rex Zhu 已提交
2674 2675
			tmp_sclk =  table_info->vdd_dep_on_sclk->entries[0].clk;
		}
R
Rex Zhu 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
	}

	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
		*mclk_mask = 0;
	else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
		*mclk_mask = golden_dpm_table->mclk_table.count - 1;

	*pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
R
Rex Zhu 已提交
2687 2688 2689
	hwmgr->pstate_sclk = tmp_sclk;
	hwmgr->pstate_mclk = tmp_mclk;

R
Rex Zhu 已提交
2690
	return 0;
2691
}
R
Rex Zhu 已提交
2692

2693 2694 2695 2696
static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
				enum amd_dpm_forced_level level)
{
	int ret = 0;
R
Rex Zhu 已提交
2697 2698 2699
	uint32_t sclk_mask = 0;
	uint32_t mclk_mask = 0;
	uint32_t pcie_mask = 0;
2700

R
Rex Zhu 已提交
2701 2702 2703
	if (hwmgr->pstate_sclk == 0)
		smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu7_force_dpm_highest(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu7_force_dpm_lowest(hwmgr);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
		ret = smu7_unforce_dpm_levels(hwmgr);
		break;
R
Rex Zhu 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
		if (ret)
			return ret;
		smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
		smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
		smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
		break;
2725
	case AMD_DPM_FORCED_LEVEL_MANUAL:
R
Rex Zhu 已提交
2726
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
2727 2728 2729 2730
	default:
		break;
	}

2731 2732 2733 2734 2735 2736 2737
	if (!ret) {
		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
			smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
	}
	return ret;
2738 2739 2740 2741 2742 2743 2744
}

static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
{
	return sizeof(struct smu7_power_state);
}

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
				 uint32_t vblank_time_us)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t switch_limit_us;

	switch (hwmgr->chip_id) {
	case CHIP_POLARIS10:
	case CHIP_POLARIS11:
	case CHIP_POLARIS12:
		switch_limit_us = data->is_memory_gddr5 ? 190 : 150;
		break;
	default:
		switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
		break;
	}

	if (vblank_time_us < switch_limit_us)
		return true;
	else
		return false;
}
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
				struct pp_power_state *request_ps,
			const struct pp_power_state *current_ps)
{

	struct smu7_power_state *smu7_ps =
				cast_phw_smu7_power_state(&request_ps->hardware);
	uint32_t sclk;
	uint32_t mclk;
	struct PP_Clocks minimum_clocks = {0};
	bool disable_mclk_switching;
	bool disable_mclk_switching_for_frame_lock;
	struct cgs_display_info info = {0};
2781
	struct cgs_mode_info mode_info = {0};
2782 2783 2784 2785 2786 2787 2788 2789
	const struct phm_clock_and_voltage_limits *max_limits;
	uint32_t i;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	int32_t count;
	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;

2790
	info.mode_info = &mode_info;
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	data->battery_state = (PP_StateUILabel_Battery ==
			request_ps->classification.ui_label);

	PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2,
				 "VI should always have 2 performance levels",
				);

	max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
			&(hwmgr->dyn_state.max_clock_voltage_on_dc);

	/* Cap clock DPM tables at DC MAX if it is in DC. */
	if (PP_PowerSource_DC == hwmgr->power_source) {
		for (i = 0; i < smu7_ps->performance_level_count; i++) {
			if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
				smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
			if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
				smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
		}
	}

	cgs_get_active_displays_info(hwmgr->device, &info);

	minimum_clocks.engineClock = hwmgr->display_config.min_core_set_clock;
	minimum_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
		stable_pstate_sclk = (max_limits->sclk * 75) / 100;

		for (count = table_info->vdd_dep_on_sclk->count - 1;
				count >= 0; count--) {
			if (stable_pstate_sclk >=
					table_info->vdd_dep_on_sclk->entries[count].clk) {
				stable_pstate_sclk =
						table_info->vdd_dep_on_sclk->entries[count].clk;
				break;
			}
		}

		if (count < 0)
			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;

		stable_pstate_mclk = max_limits->mclk;

		minimum_clocks.engineClock = stable_pstate_sclk;
		minimum_clocks.memoryClock = stable_pstate_mclk;
	}

	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
				    hwmgr->platform_descriptor.platformCaps,
				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);


2846 2847 2848 2849 2850
	if (info.display_count == 0)
		disable_mclk_switching = false;
	else
		disable_mclk_switching = ((1 < info.display_count) ||
					  disable_mclk_switching_for_frame_lock ||
2851
					  smu7_vblank_too_short(hwmgr, mode_info.vblank_time_us));
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

	sclk = smu7_ps->performance_levels[0].engine_clock;
	mclk = smu7_ps->performance_levels[0].memory_clock;

	if (disable_mclk_switching)
		mclk = smu7_ps->performance_levels
		[smu7_ps->performance_level_count - 1].memory_clock;

	if (sclk < minimum_clocks.engineClock)
		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
				max_limits->sclk : minimum_clocks.engineClock;

	if (mclk < minimum_clocks.memoryClock)
		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
				max_limits->mclk : minimum_clocks.memoryClock;

	smu7_ps->performance_levels[0].engine_clock = sclk;
	smu7_ps->performance_levels[0].memory_clock = mclk;

	smu7_ps->performance_levels[1].engine_clock =
		(smu7_ps->performance_levels[1].engine_clock >=
				smu7_ps->performance_levels[0].engine_clock) ?
						smu7_ps->performance_levels[1].engine_clock :
						smu7_ps->performance_levels[0].engine_clock;

	if (disable_mclk_switching) {
		if (mclk < smu7_ps->performance_levels[1].memory_clock)
			mclk = smu7_ps->performance_levels[1].memory_clock;

		smu7_ps->performance_levels[0].memory_clock = mclk;
		smu7_ps->performance_levels[1].memory_clock = mclk;
	} else {
		if (smu7_ps->performance_levels[1].memory_clock <
				smu7_ps->performance_levels[0].memory_clock)
			smu7_ps->performance_levels[1].memory_clock =
					smu7_ps->performance_levels[0].memory_clock;
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
		for (i = 0; i < smu7_ps->performance_level_count; i++) {
			smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
			smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
			smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
			smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
		}
	}
	return 0;
}


2903
static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
{
	struct pp_power_state  *ps;
	struct smu7_power_state  *smu7_ps;

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);

	if (low)
		return smu7_ps->performance_levels[0].memory_clock;
	else
		return smu7_ps->performance_levels
				[smu7_ps->performance_level_count-1].memory_clock;
}

2925
static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
{
	struct pp_power_state  *ps;
	struct smu7_power_state  *smu7_ps;

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);

	if (low)
		return smu7_ps->performance_levels[0].engine_clock;
	else
		return smu7_ps->performance_levels
				[smu7_ps->performance_level_count-1].engine_clock;
}

static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
					struct pp_hw_power_state *hw_ps)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
	uint16_t size;
	uint8_t frev, crev;
	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);

	/* First retrieve the Boot clocks and VDDC from the firmware info table.
	 * We assume here that fw_info is unchanged if this call fails.
	 */
	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
			hwmgr->device, index,
			&size, &frev, &crev);
	if (!fw_info)
		/* During a test, there is no firmware info table. */
		return 0;

	/* Patch the state. */
	data->vbios_boot_state.sclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultEngineClock);
	data->vbios_boot_state.mclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultMemoryClock);
	data->vbios_boot_state.mvdd_bootup_value =
			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
	data->vbios_boot_state.vddc_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
	data->vbios_boot_state.vddci_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
	data->vbios_boot_state.pcie_gen_bootup_value =
			smu7_get_current_pcie_speed(hwmgr);

	data->vbios_boot_state.pcie_lane_bootup_value =
			(uint16_t)smu7_get_current_pcie_lane_number(hwmgr);

	/* set boot power state */
	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;

	return 0;
}

static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
{
	int result;
	unsigned long ret = 0;

	if (hwmgr->pp_table_version == PP_TABLE_V0) {
		result = pp_tables_get_num_of_entries(hwmgr, &ret);
		return result ? 0 : ret;
	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
		result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
		return result;
	}
	return 0;
}

static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
		void *state, struct pp_power_state *power_state,
		void *pp_table, uint32_t classification_flag)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_power_state  *smu7_power_state =
			(struct smu7_power_state *)(&(power_state->hardware));
	struct smu7_performance_level *performance_level;
	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
	PPTable_Generic_SubTable_Header *sclk_dep_table =
			(PPTable_Generic_SubTable_Header *)
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));

	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
			(ATOM_Tonga_MCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));

	/* The following fields are not initialized here: id orderedList allStatesList */
	power_state->classification.ui_label =
			(le16_to_cpu(state_entry->usClassification) &
			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
	power_state->classification.flags = classification_flag;
	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */

	power_state->classification.temporary_state = false;
	power_state->classification.to_be_deleted = false;

	power_state->validation.disallowOnDC =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_DISALLOW_ON_DC));

	power_state->pcie.lanes = 0;

	power_state->display.disableFrameModulation = false;
	power_state->display.limitRefreshrate = false;
	power_state->display.enableVariBright =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_ENABLE_VARIBRIGHT));

	power_state->validation.supportedPowerLevels = 0;
	power_state->uvd_clocks.VCLK = 0;
	power_state->uvd_clocks.DCLK = 0;
	power_state->temperatures.min = 0;
	power_state->temperatures.max = 0;

	performance_level = &(smu7_power_state->performance_levels
			[smu7_power_state->performance_level_count++]);

	PP_ASSERT_WITH_CODE(
3062
			(smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
			"Performance levels exceeds SMC limit!",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(
			(smu7_power_state->performance_level_count <=
					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
			"Performance levels exceeds Driver limit!",
			return -EINVAL);

	/* Performance levels are arranged from low to high. */
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexLow].ulMclk;
	if (sclk_dep_table->ucRevId == 0)
		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexLow].ulSclk;
	else if (sclk_dep_table->ucRevId == 1)
		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexLow].ulSclk;
	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenLow);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

	performance_level = &(smu7_power_state->performance_levels
			[smu7_power_state->performance_level_count++]);
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexHigh].ulMclk;

	if (sclk_dep_table->ucRevId == 0)
		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexHigh].ulSclk;
	else if (sclk_dep_table->ucRevId == 1)
		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexHigh].ulSclk;

	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenHigh);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

	return 0;
}

static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
		unsigned long entry_index, struct pp_power_state *state)
{
	int result;
	struct smu7_power_state *ps;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;

	state->hardware.magic = PHM_VIslands_Magic;

	ps = (struct smu7_power_state *)(&state->hardware);

	result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
			smu7_get_pp_table_entry_callback_func_v1);

	/* This is the earliest time we have all the dependency table and the VBIOS boot state
	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
	 */
	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
		if (dep_mclk_table->entries[0].clk !=
				data->vbios_boot_state.mclk_bootup_value)
3131
			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3132 3133 3134
					"does not match VBIOS boot MCLK level");
		if (dep_mclk_table->entries[0].vddci !=
				data->vbios_boot_state.vddci_bootup_value)
3135
			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
					"does not match VBIOS boot VDDCI level");
	}

	/* set DC compatible flag if this state supports DC */
	if (!state->validation.disallowOnDC)
		ps->dc_compatible = true;

	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;

	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;

	if (!result) {
		uint32_t i;

		switch (state->classification.ui_label) {
		case PP_StateUILabel_Performance:
			data->use_pcie_performance_levels = true;
			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_performance.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_performance.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_performance.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.max =
							ps->performance_levels[i].pcie_lane;
				if (data->pcie_lane_performance.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		case PP_StateUILabel_Battery:
			data->use_pcie_power_saving_levels = true;

			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_power_saving.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_power_saving.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_power_saving.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.max =
							ps->performance_levels[i].pcie_lane;

				if (data->pcie_lane_power_saving.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		default:
			break;
		}
	}
	return 0;
}

static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
					struct pp_hw_power_state *power_state,
					unsigned int index, const void *clock_info)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_power_state  *ps = cast_phw_smu7_power_state(power_state);
	const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
	struct smu7_performance_level *performance_level;
	uint32_t engine_clock, memory_clock;
	uint16_t pcie_gen_from_bios;

	engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
	memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;

	if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
		data->highest_mclk = memory_clock;

	PP_ASSERT_WITH_CODE(
3226
			(ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3227 3228 3229 3230
			"Performance levels exceeds SMC limit!",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(
3231
			(ps->performance_level_count <
3232
					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3233 3234 3235 3236 3237
			"Performance levels exceeds Driver limit, Skip!",
			return 0);

	performance_level = &(ps->performance_levels
			[ps->performance_level_count++]);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	/* Performance levels are arranged from low to high. */
	performance_level->memory_clock = memory_clock;
	performance_level->engine_clock = engine_clock;

	pcie_gen_from_bios = visland_clk_info->ucPCIEGen;

	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);

	return 0;
}

static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
		unsigned long entry_index, struct pp_power_state *state)
{
	int result;
	struct smu7_power_state *ps;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_clock_voltage_dependency_table *dep_mclk_table =
			hwmgr->dyn_state.vddci_dependency_on_mclk;

	memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));

	state->hardware.magic = PHM_VIslands_Magic;

	ps = (struct smu7_power_state *)(&state->hardware);

	result = pp_tables_get_entry(hwmgr, entry_index, state,
			smu7_get_pp_table_entry_callback_func_v0);

	/*
	 * This is the earliest time we have all the dependency table
	 * and the VBIOS boot state as
	 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
	 * state if there is only one VDDCI/MCLK level, check if it's
	 * the same as VBIOS boot state
	 */
	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
		if (dep_mclk_table->entries[0].clk !=
				data->vbios_boot_state.mclk_bootup_value)
3279
			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3280 3281 3282
					"does not match VBIOS boot MCLK level");
		if (dep_mclk_table->entries[0].v !=
				data->vbios_boot_state.vddci_bootup_value)
3283
			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
					"does not match VBIOS boot VDDCI level");
	}

	/* set DC compatible flag if this state supports DC */
	if (!state->validation.disallowOnDC)
		ps->dc_compatible = true;

	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;

	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;

	if (!result) {
		uint32_t i;

		switch (state->classification.ui_label) {
		case PP_StateUILabel_Performance:
			data->use_pcie_performance_levels = true;

			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_performance.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_performance.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_performance.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.max =
							ps->performance_levels[i].pcie_lane;

				if (data->pcie_lane_performance.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		case PP_StateUILabel_Battery:
			data->use_pcie_power_saving_levels = true;

			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_power_saving.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_power_saving.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_power_saving.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.max =
							ps->performance_levels[i].pcie_lane;

				if (data->pcie_lane_power_saving.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		default:
			break;
		}
	}
	return 0;
}

static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
		unsigned long entry_index, struct pp_power_state *state)
{
	if (hwmgr->pp_table_version == PP_TABLE_V0)
		return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
	else if (hwmgr->pp_table_version == PP_TABLE_V1)
		return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);

	return 0;
}

3369 3370 3371
static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr,
		struct pp_gpu_power *query)
{
3372
	PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
3373 3374 3375 3376
			PPSMC_MSG_PmStatusLogStart),
			"Failed to start pm status log!",
			return -1);

3377 3378
	/* Sampling period from 50ms to 4sec */
	msleep_interruptible(200);
3379

3380
	PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
			PPSMC_MSG_PmStatusLogSample),
			"Failed to sample pm status log!",
			return -1);

	query->vddc_power = cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC,
			ixSMU_PM_STATUS_40);
	query->vddci_power = cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC,
			ixSMU_PM_STATUS_49);
	query->max_gpu_power = cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC,
			ixSMU_PM_STATUS_94);
	query->average_gpu_power = cgs_read_ind_register(hwmgr->device,
			CGS_IND_REG__SMC,
			ixSMU_PM_STATUS_95);

	return 0;
}

3401 3402
static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
			    void *value, int *size)
3403 3404
{
	uint32_t sclk, mclk, activity_percent;
3405
	uint32_t offset, val_vid;
3406 3407
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

3408 3409 3410 3411
	/* size must be at least 4 bytes for all sensors */
	if (*size < 4)
		return -EINVAL;

3412 3413
	switch (idx) {
	case AMDGPU_PP_SENSOR_GFX_SCLK:
3414
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency);
3415
		sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3416
		*((uint32_t *)value) = sclk;
3417
		*size = 4;
3418 3419
		return 0;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
3420
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency);
3421
		mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3422
		*((uint32_t *)value) = mclk;
3423
		*size = 4;
3424 3425
		return 0;
	case AMDGPU_PP_SENSOR_GPU_LOAD:
3426
		offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
3427 3428 3429 3430 3431 3432
								SMU_SoftRegisters,
								AverageGraphicsActivity);

		activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
		activity_percent += 0x80;
		activity_percent >>= 8;
3433
		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3434
		*size = 4;
3435 3436
		return 0;
	case AMDGPU_PP_SENSOR_GPU_TEMP:
3437
		*((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
3438
		*size = 4;
3439
		return 0;
3440
	case AMDGPU_PP_SENSOR_UVD_POWER:
3441
		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3442
		*size = 4;
3443 3444
		return 0;
	case AMDGPU_PP_SENSOR_VCE_POWER:
3445
		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3446
		*size = 4;
3447
		return 0;
3448
	case AMDGPU_PP_SENSOR_GPU_POWER:
3449 3450 3451
		if (*size < sizeof(struct pp_gpu_power))
			return -EINVAL;
		*size = sizeof(struct pp_gpu_power);
3452
		return smu7_get_gpu_power(hwmgr, (struct pp_gpu_power *)value);
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	case AMDGPU_PP_SENSOR_VDDGFX:
		if ((data->vr_config & 0xff) == 0x2)
			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
		else
			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);

		*((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
		return 0;
3463 3464 3465 3466 3467
	default:
		return -EINVAL;
	}
}

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	const struct smu7_power_state *smu7_ps =
			cast_const_phw_smu7_power_state(states->pnew_state);
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	uint32_t sclk = smu7_ps->performance_levels
			[smu7_ps->performance_level_count - 1].engine_clock;
	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	uint32_t mclk = smu7_ps->performance_levels
			[smu7_ps->performance_level_count - 1].memory_clock;
	struct PP_Clocks min_clocks = {0};
	uint32_t i;
	struct cgs_display_info info = {0};

	for (i = 0; i < sclk_table->count; i++) {
		if (sclk == sclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= sclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
	else {
	/* TODO: Check SCLK in DAL's minimum clocks
	 * in case DeepSleep divider update is required.
	 */
		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
			(min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
				data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
	}

	for (i = 0; i < mclk_table->count; i++) {
		if (mclk == mclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= mclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;

	return 0;
}

static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
		const struct smu7_power_state *smu7_ps)
{
	uint32_t i;
	uint32_t sclk, max_sclk = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;

	for (i = 0; i < smu7_ps->performance_level_count; i++) {
		sclk = smu7_ps->performance_levels[i].engine_clock;
		if (max_sclk < sclk)
			max_sclk = sclk;
	}

	for (i = 0; i < dpm_table->sclk_table.count; i++) {
		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
					dpm_table->pcie_speed_table.dpm_levels
					[dpm_table->pcie_speed_table.count - 1].value :
					dpm_table->pcie_speed_table.dpm_levels[i].value);
	}

	return 0;
}

static int smu7_request_link_speed_change_before_state_change(
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	const struct smu7_power_state *smu7_nps =
			cast_const_phw_smu7_power_state(states->pnew_state);
	const struct smu7_power_state *polaris10_cps =
			cast_const_phw_smu7_power_state(states->pcurrent_state);

	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
	uint16_t current_link_speed;

	if (data->force_pcie_gen == PP_PCIEGenInvalid)
		current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
	else
		current_link_speed = data->force_pcie_gen;

	data->force_pcie_gen = PP_PCIEGenInvalid;
	data->pspp_notify_required = false;

	if (target_link_speed > current_link_speed) {
		switch (target_link_speed) {
3567
#ifdef CONFIG_ACPI
3568
		case PP_PCIEGen3:
3569
			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
3570 3571 3572 3573 3574
				break;
			data->force_pcie_gen = PP_PCIEGen2;
			if (current_link_speed == PP_PCIEGen2)
				break;
		case PP_PCIEGen2:
3575
			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
3576
				break;
3577
#endif
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		default:
			data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
			break;
		}
	} else {
		if (target_link_speed < current_link_speed)
			data->pspp_notify_required = true;
	}

	return 0;
}

static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
				"Trying to freeze SCLK DPM when DPM is disabled",
				);
3603
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
				PPSMC_MSG_SCLKDPM_FreezeLevel),
				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
				return -EINVAL);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		 DPMTABLE_OD_UPDATE_MCLK)) {
		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
				"Trying to freeze MCLK DPM when DPM is disabled",
				);
3615
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
				PPSMC_MSG_MCLKDPM_FreezeLevel),
				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
				return -EINVAL);
	}

	return 0;
}

static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
3630 3631 3632 3633
	uint32_t count;
	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
3634 3635 3636 3637

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

3638 3639 3640 3641
	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
		for (count = 0; count < dpm_table->sclk_table.count; count++) {
			dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
			dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
3642 3643 3644
		}
	}

3645 3646 3647 3648
	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
		for (count = 0; count < dpm_table->mclk_table.count; count++) {
			dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
			dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
		}
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
		result = smum_populate_all_graphic_levels(hwmgr);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
		/*populate MCLK dpm table to SMU7 */
		result = smum_populate_all_memory_levels(hwmgr);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	return result;
}

static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
			  struct smu7_single_dpm_table *dpm_table,
			uint32_t low_limit, uint32_t high_limit)
{
	uint32_t i;

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit)
		|| (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}

	return 0;
}

static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
		const struct smu7_power_state *smu7_ps)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t high_limit_count;

	PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
			"power state did not have any performance level",
			return -EINVAL);

	high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;

	smu7_trim_single_dpm_states(hwmgr,
			&(data->dpm_table.sclk_table),
			smu7_ps->performance_levels[0].engine_clock,
			smu7_ps->performance_levels[high_limit_count].engine_clock);

	smu7_trim_single_dpm_states(hwmgr,
			&(data->dpm_table.mclk_table),
			smu7_ps->performance_levels[0].memory_clock,
			smu7_ps->performance_levels[high_limit_count].memory_clock);

	return 0;
}

static int smu7_generate_dpm_level_enable_mask(
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	const struct smu7_power_state *smu7_ps =
			cast_const_phw_smu7_power_state(states->pnew_state);

	result = smu7_trim_dpm_states(hwmgr, smu7_ps);
	if (result)
		return result;

	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);

	return 0;
}

static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {

		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
				"Trying to Unfreeze SCLK DPM when DPM is disabled",
				);
3752
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
				PPSMC_MSG_SCLKDPM_UnfreezeLevel),
			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
			return -EINVAL);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {

		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
				"Trying to Unfreeze MCLK DPM when DPM is disabled",
				);
3764
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3765
				PPSMC_MSG_MCLKDPM_UnfreezeLevel),
3766 3767 3768 3769
		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
		    return -EINVAL);
	}

3770
	data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

	return 0;
}

static int smu7_notify_link_speed_change_after_state_change(
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	const struct smu7_power_state *smu7_ps =
			cast_const_phw_smu7_power_state(states->pnew_state);
	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
	uint8_t  request;

	if (data->pspp_notify_required) {
		if (target_link_speed == PP_PCIEGen3)
			request = PCIE_PERF_REQ_GEN3;
		else if (target_link_speed == PP_PCIEGen2)
			request = PCIE_PERF_REQ_GEN2;
		else
			request = PCIE_PERF_REQ_GEN1;

		if (request == PCIE_PERF_REQ_GEN1 &&
				smu7_get_current_pcie_speed(hwmgr) > 0)
			return 0;

3798
#ifdef CONFIG_ACPI
3799
		if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
3800
			if (PP_PCIEGen2 == target_link_speed)
3801
				pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
3802
			else
3803
				pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
3804
		}
3805
#endif
3806 3807 3808 3809 3810 3811 3812 3813 3814
	}

	return 0;
}

static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

3815
	if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK)
3816
		smum_send_msg_to_smc_with_parameter(hwmgr,
3817
			(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2);
3818
	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ?  0 : -EINVAL;
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
}

static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
{
	int tmp_result, result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to find DPM states clocks in DPM table!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
			smu7_request_link_speed_change_before_state_change(hwmgr, input);
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to request link speed change before state change!",
				result = tmp_result);
	}

	tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);

	tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to populate and upload SCLK MCLK DPM levels!",
			result = tmp_result);

3849 3850 3851 3852 3853
	tmp_result = smu7_update_avfs(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update avfs voltages!",
			result = tmp_result);

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to generate DPM level enabled mask!",
			result = tmp_result);

	tmp_result = smum_update_sclk_threshold(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update SCLK threshold!",
			result = tmp_result);

	tmp_result = smu7_notify_smc_display(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to notify smc display settings!",
			result = tmp_result);

	tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to unfreeze SCLK MCLK DPM!",
			result = tmp_result);

	tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to upload DPM level enabled mask!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
			smu7_notify_link_speed_change_after_state_change(hwmgr, input);
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to notify link speed change after state change!",
				result = tmp_result);
	}
	data->apply_optimized_settings = false;
	return result;
}

static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
{
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;

3896
	return smum_send_msg_to_smc_with_parameter(hwmgr,
3897 3898 3899
			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
}

3900 3901
static int
smu7_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
3902 3903 3904
{
	PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;

3905
	return (smum_send_msg_to_smc(hwmgr, msg) == 0) ?  0 : -1;
3906 3907
}

3908 3909
static int
smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
{
	uint32_t num_active_displays = 0;
	struct cgs_display_info info = {0};

	info.mode_info = NULL;
	cgs_get_active_displays_info(hwmgr->device, &info);

	num_active_displays = info.display_count;

	if (num_active_displays > 1 && hwmgr->display_config.multi_monitor_in_sync != true)
		smu7_notify_smc_display_change(hwmgr, false);

	return 0;
}

/**
* Programs the display gap
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always OK
*/
3931
static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t num_active_displays = 0;
	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
	uint32_t display_gap2;
	uint32_t pre_vbi_time_in_us;
	uint32_t frame_time_in_us;
	uint32_t ref_clock;
	uint32_t refresh_rate = 0;
	struct cgs_display_info info = {0};
3942
	struct cgs_mode_info mode_info = {0};
3943 3944 3945 3946 3947 3948 3949 3950

	info.mode_info = &mode_info;
	cgs_get_active_displays_info(hwmgr->device, &info);
	num_active_displays = info.display_count;

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);

3951 3952
	ref_clock =  amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);

3953 3954 3955 3956 3957 3958 3959 3960
	refresh_rate = mode_info.refresh_rate;

	if (0 == refresh_rate)
		refresh_rate = 60;

	frame_time_in_us = 1000000 / refresh_rate;

	pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
3961

3962 3963 3964 3965 3966 3967 3968
	data->frame_time_x2 = frame_time_in_us * 2 / 100;

	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3969
			data->soft_regs_start + smum_get_offsetof(hwmgr,
3970 3971 3972 3973
							SMU_SoftRegisters,
							PreVBlankGap), 0x64);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3974
			data->soft_regs_start + smum_get_offsetof(hwmgr,
3975 3976 3977 3978 3979 3980 3981
							SMU_SoftRegisters,
							VBlankTimeout),
					(frame_time_in_us - pre_vbi_time_in_us));

	return 0;
}

3982
static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
{
	return smu7_program_display_gap(hwmgr);
}

/**
*  Set maximum target operating fan output RPM
*
* @param    hwmgr:  the address of the powerplay hardware manager.
* @param    usMaxFanRpm:  max operating fan RPM value.
* @return   The response that came from the SMC.
*/
static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
{
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;

3999
	return smum_send_msg_to_smc_with_parameter(hwmgr,
4000 4001 4002
			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
}

4003 4004 4005 4006
static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
	.process = phm_irq_process,
};

4007
static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4008
{
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	struct amdgpu_irq_src *source =
		kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);

	if (!source)
		return -ENOMEM;

	source->funcs = &smu7_irq_funcs;

	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
			AMDGPU_IH_CLIENTID_LEGACY,
			230,
			source);
	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
			AMDGPU_IH_CLIENTID_LEGACY,
			231,
			source);

	/* Register CTF(GPIO_19) interrupt */
	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
			AMDGPU_IH_CLIENTID_LEGACY,
			83,
			source);

4032 4033 4034
	return 0;
}

4035 4036
static bool
smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	bool is_update_required = false;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		is_update_required = true;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
		if (data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr &&
			(data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
			hwmgr->display_config.min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
			is_update_required = true;
	}
	return is_update_required;
}

static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
							   const struct smu7_performance_level *pl2)
{
	return ((pl1->memory_clock == pl2->memory_clock) &&
		  (pl1->engine_clock == pl2->engine_clock) &&
		  (pl1->pcie_gen == pl2->pcie_gen) &&
		  (pl1->pcie_lane == pl2->pcie_lane));
}

4065 4066 4067
static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
		const struct pp_hw_power_state *pstate1,
		const struct pp_hw_power_state *pstate2, bool *equal)
4068
{
4069 4070
	const struct smu7_power_state *psa;
	const struct smu7_power_state *psb;
4071
	int i;
4072
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4073 4074 4075 4076

	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
		return -EINVAL;

4077 4078
	psa = cast_const_phw_smu7_power_state(pstate1);
	psb = cast_const_phw_smu7_power_state(pstate2);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
	if (psa->performance_level_count != psb->performance_level_count) {
		*equal = false;
		return 0;
	}

	for (i = 0; i < psa->performance_level_count; i++) {
		if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
			/* If we have found even one performance level pair that is different the states are different. */
			*equal = false;
			return 0;
		}
	}

	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4097 4098 4099 4100
	/* For OD call, set value based on flag */
	*equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
							DPMTABLE_OD_UPDATE_MCLK |
							DPMTABLE_OD_UPDATE_VDDC));
4101 4102 4103 4104

	return 0;
}

4105
static int smu7_upload_mc_firmware(struct pp_hwmgr *hwmgr)
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	uint32_t vbios_version;
	uint32_t tmp;

	/* Read MC indirect register offset 0x9F bits [3:0] to see
	 * if VBIOS has already loaded a full version of MC ucode
	 * or not.
	 */

	smu7_get_mc_microcode_version(hwmgr);
	vbios_version = hwmgr->microcode_version_info.MC & 0xf;

	data->need_long_memory_training = false;

	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
							ixMC_IO_DEBUG_UP_13);
	tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);

	if (tmp & (1 << 23)) {
		data->mem_latency_high = MEM_LATENCY_HIGH;
		data->mem_latency_low = MEM_LATENCY_LOW;
	} else {
		data->mem_latency_high = 330;
		data->mem_latency_low = 330;
	}

	return 0;
}

static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	data->clock_registers.vCG_SPLL_FUNC_CNTL         =
		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
	data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
	data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
	data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
	data->clock_registers.vDLL_CNTL                  =
		cgs_read_register(hwmgr->device, mmDLL_CNTL);
	data->clock_registers.vMCLK_PWRMGT_CNTL          =
		cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
	data->clock_registers.vMPLL_AD_FUNC_CNTL         =
		cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
	data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
		cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
	data->clock_registers.vMPLL_FUNC_CNTL            =
		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
	data->clock_registers.vMPLL_FUNC_CNTL_1          =
		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
	data->clock_registers.vMPLL_FUNC_CNTL_2          =
		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
	data->clock_registers.vMPLL_SS1                  =
		cgs_read_register(hwmgr->device, mmMPLL_SS1);
	data->clock_registers.vMPLL_SS2                  =
		cgs_read_register(hwmgr->device, mmMPLL_SS2);
	return 0;

}

/**
 * Find out if memory is GDDR5.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t temp;

	temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);

	data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
			((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
			 MC_SEQ_MISC0_GDDR5_SHIFT));

	return 0;
}

/**
 * Enables Dynamic Power Management by SMC
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, STATIC_PM_EN, 1);

	return 0;
}

/**
 * Initialize PowerGating States for different engines
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	data->uvd_power_gated = false;
	data->vce_power_gated = false;
	data->samu_power_gated = false;

	return 0;
}

static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	data->low_sclk_interrupt_threshold = 0;
	return 0;
}

4234
static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
{
	int tmp_result, result = 0;

	smu7_upload_mc_firmware(hwmgr);

	tmp_result = smu7_read_clock_registers(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to read clock registers!", result = tmp_result);

	tmp_result = smu7_get_memory_type(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get memory type!", result = tmp_result);

	tmp_result = smu7_enable_acpi_power_management(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ACPI power management!", result = tmp_result);

	tmp_result = smu7_init_power_gate_state(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init power gate state!", result = tmp_result);

	tmp_result = smu7_get_mc_microcode_version(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get MC microcode version!", result = tmp_result);

	tmp_result = smu7_init_sclk_threshold(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init sclk threshold!", result = tmp_result);

	return result;
}

static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

4272 4273 4274
	if (mask == 0)
		return -EINVAL;

4275 4276 4277
	switch (type) {
	case PP_SCLK:
		if (!data->sclk_dpm_key_disabled)
4278
			smum_send_msg_to_smc_with_parameter(hwmgr,
4279 4280 4281 4282 4283
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
		break;
	case PP_MCLK:
		if (!data->mclk_dpm_key_disabled)
4284
			smum_send_msg_to_smc_with_parameter(hwmgr,
4285 4286 4287 4288 4289 4290 4291
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
		break;
	case PP_PCIE:
	{
		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;

4292 4293 4294 4295 4296
		if (!data->pcie_dpm_key_disabled) {
			if (fls(tmp) != ffs(tmp))
				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel);
			else
				smum_send_msg_to_smc_with_parameter(hwmgr,
4297
					PPSMC_MSG_PCIeDPM_ForceLevel,
4298 4299
					fls(tmp) - 1);
		}
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		break;
	}
	default:
		break;
	}

	return 0;
}

static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4316 4317 4318
	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4319 4320 4321 4322 4323
	int i, now, size = 0;
	uint32_t clock, pcie_speed;

	switch (type) {
	case PP_SCLK:
4324
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency);
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < sclk_table->count; i++) {
			if (clock > sclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < sclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, sclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_MCLK:
4340
		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency);
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < mclk_table->count; i++) {
			if (clock > mclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < mclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, mclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_PCIE:
		pcie_speed = smu7_get_current_pcie_speed(hwmgr);
		for (i = 0; i < pcie_table->count; i++) {
			if (pcie_speed != pcie_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < pcie_table->count; i++)
			size += sprintf(buf + size, "%d: %s %s\n", i,
4366 4367 4368
					(pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
					(pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
					(pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
4369 4370
					(i == now) ? "*" : "");
		break;
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
	case OD_SCLK:
		if (hwmgr->od_enabled) {
			size = sprintf(buf, "%s: \n", "OD_SCLK");
			for (i = 0; i < odn_sclk_table->num_of_pl; i++)
				size += sprintf(buf + size, "%d: %10uMhz %10u mV\n",
					i, odn_sclk_table->entries[i].clock / 100,
					odn_sclk_table->entries[i].vddc);
		}
		break;
	case OD_MCLK:
		if (hwmgr->od_enabled) {
			size = sprintf(buf, "%s: \n", "OD_MCLK");
			for (i = 0; i < odn_mclk_table->num_of_pl; i++)
				size += sprintf(buf + size, "%d: %10uMhz %10u mV\n",
					i, odn_mclk_table->entries[i].clock / 100,
					odn_mclk_table->entries[i].vddc);
		}
		break;
4389 4390 4391 4392 4393 4394
	default:
		break;
	}
	return size;
}

4395
static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4396
{
4397 4398
	switch (mode) {
	case AMD_FAN_CTRL_NONE:
4399
		smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4400 4401 4402 4403
		break;
	case AMD_FAN_CTRL_MANUAL:
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_MicrocodeFanControl))
4404
			smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
4405 4406
		break;
	case AMD_FAN_CTRL_AUTO:
4407 4408
		if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
			smu7_fan_ctrl_start_smc_fan_control(hwmgr);
4409 4410 4411 4412
		break;
	default:
		break;
	}
4413 4414
}

4415
static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4416
{
4417
	return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
}

static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	struct smu7_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.sclk_table);
	int value;

	value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
			100 /
			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;

	return value;
}

static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.sclk_table);
	struct pp_power_state  *ps;
	struct smu7_power_state  *smu7_ps;

	if (value > 20)
		value = 20;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);

	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
			value / 100 +
			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;

	return 0;
}

static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	struct smu7_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mclk_table);
	int value;

	value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
			100 /
			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;

	return value;
}

static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mclk_table);
	struct pp_power_state  *ps;
	struct smu7_power_state  *smu7_ps;

	if (value > 20)
		value = 20;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);

	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
			value / 100 +
			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;

	return 0;
}


static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
4509 4510
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
	struct phm_clock_voltage_dependency_table *sclk_table;
4511 4512
	int i;

4513 4514 4515 4516
	if (hwmgr->pp_table_version == PP_TABLE_V1) {
		if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
			return -EINVAL;
		dep_sclk_table = table_info->vdd_dep_on_sclk;
4517
		for (i = 0; i < dep_sclk_table->count; i++)
4518
			clocks->clock[i] = dep_sclk_table->entries[i].clk;
4519
		clocks->count = dep_sclk_table->count;
4520 4521
	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
		sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
4522
		for (i = 0; i < sclk_table->count; i++)
4523
			clocks->clock[i] = sclk_table->entries[i].clk;
4524
		clocks->count = sclk_table->count;
4525
	}
4526

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	return 0;
}

static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
		return data->mem_latency_high;
	else if (clk >= MEM_FREQ_HIGH_LATENCY)
		return data->mem_latency_low;
	else
		return MEM_LATENCY_ERR;
}

static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
	int i;
4548
	struct phm_clock_voltage_dependency_table *mclk_table;
4549

4550 4551 4552 4553 4554 4555 4556
	if (hwmgr->pp_table_version == PP_TABLE_V1) {
		if (table_info == NULL)
			return -EINVAL;
		dep_mclk_table = table_info->vdd_dep_on_mclk;
		for (i = 0; i < dep_mclk_table->count; i++) {
			clocks->clock[i] = dep_mclk_table->entries[i].clk;
			clocks->latency[i] = smu7_get_mem_latency(hwmgr,
4557
						dep_mclk_table->entries[i].clk);
4558
		}
4559
		clocks->count = dep_mclk_table->count;
4560 4561
	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
		mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
4562
		for (i = 0; i < mclk_table->count; i++)
4563
			clocks->clock[i] = mclk_table->entries[i].clk;
4564
		clocks->count = mclk_table->count;
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	}
	return 0;
}

static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
						struct amd_pp_clocks *clocks)
{
	switch (type) {
	case amd_pp_sys_clock:
		smu7_get_sclks(hwmgr, clocks);
		break;
	case amd_pp_mem_clock:
		smu7_get_mclks(hwmgr, clocks);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
					uint32_t virtual_addr_low,
					uint32_t virtual_addr_hi,
					uint32_t mc_addr_low,
					uint32_t mc_addr_hi,
					uint32_t size)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					data->soft_regs_start +
					smum_get_offsetof(hwmgr,
					SMU_SoftRegisters, DRAM_LOG_ADDR_H),
					mc_addr_hi);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					data->soft_regs_start +
					smum_get_offsetof(hwmgr,
					SMU_SoftRegisters, DRAM_LOG_ADDR_L),
					mc_addr_low);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					data->soft_regs_start +
					smum_get_offsetof(hwmgr,
					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
					virtual_addr_hi);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					data->soft_regs_start +
					smum_get_offsetof(hwmgr,
					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
					virtual_addr_low);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					data->soft_regs_start +
					smum_get_offsetof(hwmgr,
					SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
					size);
	return 0;
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
					struct amd_pp_simple_clock_info *clocks)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);

	if (clocks == NULL)
		return -EINVAL;

	clocks->memory_max_clock = mclk_table->count > 1 ?
				mclk_table->dpm_levels[mclk_table->count-1].value :
				mclk_table->dpm_levels[0].value;
	clocks->engine_max_clock = sclk_table->count > 1 ?
				sclk_table->dpm_levels[sclk_table->count-1].value :
				sclk_table->dpm_levels[0].value;
	return 0;
}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
		struct PP_TemperatureRange *thermal_data)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;

	memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));

	if (hwmgr->pp_table_version == PP_TABLE_V1)
		thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	else if (hwmgr->pp_table_version == PP_TABLE_V0)
		thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
					enum PP_OD_DPM_TABLE_COMMAND type,
					uint32_t clk,
					uint32_t voltage)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t min_vddc;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;

	if (table_info == NULL)
4678
		return false;
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

	dep_sclk_table = table_info->vdd_dep_on_sclk;
	min_vddc = dep_sclk_table->entries[0].vddc;

	if (voltage < min_vddc || voltage > 2000) {
		pr_info("OD voltage is out of range [%d - 2000] mV\n", min_vddc);
		return false;
	}

	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
		if (data->vbios_boot_state.sclk_bootup_value > clk ||
			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
				data->vbios_boot_state.sclk_bootup_value,
				hwmgr->platform_descriptor.overdriveLimit.engineClock / 100);
			return false;
		}
	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
		if (data->vbios_boot_state.mclk_bootup_value > clk ||
			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
				data->vbios_boot_state.mclk_bootup_value/100,
				hwmgr->platform_descriptor.overdriveLimit.memoryClock / 100);
			return false;
		}
	} else {
		return false;
	}

	return true;
}

static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;

	if (table_info == NULL)
		return;

	for (i=0; i<data->dpm_table.sclk_table.count; i++) {
		if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
					data->dpm_table.sclk_table.dpm_levels[i].value) {
			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
			break;
		}
	}

4733
	for (i=0; i<data->dpm_table.mclk_table.count; i++) {
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
					data->dpm_table.mclk_table.dpm_levels[i].value) {
			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
			break;
		}
	}

	dep_table = table_info->vdd_dep_on_mclk;
	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);

4744
	for (i=0; i < dep_table->count; i++) {
4745
		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
4746 4747
			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
			return;
4748 4749
		}
	}
4750
	if (i == dep_table->count && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
4751
		data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
4752 4753
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
	}
4754 4755 4756

	dep_table = table_info->vdd_dep_on_sclk;
	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
4757
	for (i=0; i < dep_table->count; i++) {
4758
		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
4759 4760
			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
			return;
4761 4762
		}
	}
4763
	if (i == dep_table->count && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
4764
		data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
4765 4766
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
	}
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
}

static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
					enum PP_OD_DPM_TABLE_COMMAND type,
					long *input, uint32_t size)
{
	uint32_t i;
	struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
	struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	uint32_t input_clk;
	uint32_t input_vol;
	uint32_t input_level;

	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
				return -EINVAL);

	if (!hwmgr->od_enabled) {
		pr_info("OverDrive feature not enabled\n");
		return -EINVAL;
	}

	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
				"Failed to get ODN SCLK and Voltage tables",
				return -EINVAL);
	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;

		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
			"Failed to get ODN MCLK and Voltage tables",
			return -EINVAL);
	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
		smu7_odn_initial_default_setting(hwmgr);
		return 0;
	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
		smu7_check_dpm_table_updated(hwmgr);
		return 0;
	} else {
		return -EINVAL;
	}

	for (i = 0; i < size; i += 3) {
		if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
			pr_info("invalid clock voltage input \n");
			return 0;
		}
		input_level = input[i];
		input_clk = input[i+1] * 100;
		input_vol = input[i+2];

		if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
			podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
			podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
			podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
			podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
		} else {
			return -EINVAL;
		}
	}

	return 0;
}

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t i, size = 0;
	uint32_t len;

	static const char *profile_name[6] = {"3D_FULL_SCREEN",
					"POWER_SAVING",
					"VIDEO",
					"VR",
					"COMPUTE",
					"CUSTOM"};

	static const char *title[8] = {"NUM",
			"MODE_NAME",
			"SCLK_UP_HYST",
			"SCLK_DOWN_HYST",
			"SCLK_ACTIVE_LEVEL",
			"MCLK_UP_HYST",
			"MCLK_DOWN_HYST",
			"MCLK_ACTIVE_LEVEL"};

	if (!buf)
		return -EINVAL;

	size += sprintf(buf + size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
			title[0], title[1], title[2], title[3],
			title[4], title[5], title[6], title[7]);

	len = sizeof(smu7_profiling) / sizeof(struct profile_mode_setting);

	for (i = 0; i < len; i++) {
		if (smu7_profiling[i].bupdate_sclk)
			size += sprintf(buf + size, "%3d %16s: %8d %16d %16d ",
			i, profile_name[i], smu7_profiling[i].sclk_up_hyst,
			smu7_profiling[i].sclk_down_hyst,
			smu7_profiling[i].sclk_activity);
		else
			size += sprintf(buf + size, "%3d %16s: %8s %16s %16s ",
			i, profile_name[i], "-", "-", "-");

		if (smu7_profiling[i].bupdate_mclk)
			size += sprintf(buf + size, "%16d %16d %16d\n",
			smu7_profiling[i].mclk_up_hyst,
			smu7_profiling[i].mclk_down_hyst,
			smu7_profiling[i].mclk_activity);
		else
			size += sprintf(buf + size, "%16s %16s %16s\n",
			"-", "-", "-");
	}

	size += sprintf(buf + size, "%3d %16s: %8d %16d %16d %16d %16d %16d\n",
			i, profile_name[i],
			data->custom_profile_setting.sclk_up_hyst,
			data->custom_profile_setting.sclk_down_hyst,
			data->custom_profile_setting.sclk_activity,
			data->custom_profile_setting.mclk_up_hyst,
			data->custom_profile_setting.mclk_down_hyst,
			data->custom_profile_setting.mclk_activity);

	size += sprintf(buf + size, "%3s %16s: %8d %16d %16d %16d %16d %16d\n",
			"*", "CURRENT",
			data->current_profile_setting.sclk_up_hyst,
			data->current_profile_setting.sclk_down_hyst,
			data->current_profile_setting.sclk_activity,
			data->current_profile_setting.mclk_up_hyst,
			data->current_profile_setting.mclk_down_hyst,
			data->current_profile_setting.mclk_activity);

	return size;
}

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
					enum PP_SMC_POWER_PROFILE requst)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t tmp, level;

	if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;
			if (level > 0)
				smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
		}
	} else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
		smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
	}
}

4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct profile_mode_setting tmp;
	enum PP_SMC_POWER_PROFILE mode;

	if (input == NULL)
		return -EINVAL;

	mode = input[size];
	switch (mode) {
	case PP_SMC_POWER_PROFILE_CUSTOM:
		if (size < 8)
			return -EINVAL;

		data->custom_profile_setting.bupdate_sclk = input[0];
		data->custom_profile_setting.sclk_up_hyst = input[1];
		data->custom_profile_setting.sclk_down_hyst = input[2];
		data->custom_profile_setting.sclk_activity = input[3];
		data->custom_profile_setting.bupdate_mclk = input[4];
		data->custom_profile_setting.mclk_up_hyst = input[5];
		data->custom_profile_setting.mclk_down_hyst = input[6];
		data->custom_profile_setting.mclk_activity = input[7];
		if (!smum_update_dpm_settings(hwmgr, &data->custom_profile_setting)) {
			memcpy(&data->current_profile_setting, &data->custom_profile_setting, sizeof(struct profile_mode_setting));
			hwmgr->power_profile_mode = mode;
		}
		break;
	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
	case PP_SMC_POWER_PROFILE_POWERSAVING:
	case PP_SMC_POWER_PROFILE_VIDEO:
	case PP_SMC_POWER_PROFILE_VR:
	case PP_SMC_POWER_PROFILE_COMPUTE:
		if (mode == hwmgr->power_profile_mode)
			return 0;

		memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
			if (tmp.bupdate_sclk) {
				data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
				data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
				data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
				data->current_profile_setting.sclk_activity = tmp.sclk_activity;
			}
			if (tmp.bupdate_mclk) {
				data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
				data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
				data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
				data->current_profile_setting.mclk_activity = tmp.mclk_activity;
			}
4977
			smu7_patch_compute_profile_mode(hwmgr, mode);
4978 4979 4980 4981 4982 4983 4984 4985 4986
			hwmgr->power_profile_mode = mode;
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}
4987

N
Nils Wallménius 已提交
4988
static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
4989
	.backend_init = &smu7_hwmgr_backend_init,
4990
	.backend_fini = &smu7_hwmgr_backend_fini,
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	.asic_setup = &smu7_setup_asic_task,
	.dynamic_state_management_enable = &smu7_enable_dpm_tasks,
	.apply_state_adjust_rules = smu7_apply_state_adjust_rules,
	.force_dpm_level = &smu7_force_dpm_level,
	.power_state_set = smu7_set_power_state_tasks,
	.get_power_state_size = smu7_get_power_state_size,
	.get_mclk = smu7_dpm_get_mclk,
	.get_sclk = smu7_dpm_get_sclk,
	.patch_boot_state = smu7_dpm_patch_boot_state,
	.get_pp_table_entry = smu7_get_pp_table_entry,
	.get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
	.powerdown_uvd = smu7_powerdown_uvd,
	.powergate_uvd = smu7_powergate_uvd,
	.powergate_vce = smu7_powergate_vce,
	.disable_clock_power_gating = smu7_disable_clock_power_gating,
	.update_clock_gatings = smu7_update_clock_gatings,
	.notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
	.display_config_changed = smu7_display_configuration_changed_task,
	.set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
	.set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
	.stop_thermal_controller = smu7_thermal_stop_thermal_controller,
	.get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
	.get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent,
	.set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent,
	.reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
	.get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
	.set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
	.uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5019
	.register_irq_handlers = smu7_register_irq_handlers,
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
	.check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
	.check_states_equal = smu7_check_states_equal,
	.set_fan_control_mode = smu7_set_fan_control_mode,
	.get_fan_control_mode = smu7_get_fan_control_mode,
	.force_clock_level = smu7_force_clock_level,
	.print_clock_levels = smu7_print_clock_levels,
	.enable_per_cu_power_gating = smu7_enable_per_cu_power_gating,
	.get_sclk_od = smu7_get_sclk_od,
	.set_sclk_od = smu7_set_sclk_od,
	.get_mclk_od = smu7_get_mclk_od,
	.set_mclk_od = smu7_set_mclk_od,
	.get_clock_by_type = smu7_get_clock_by_type,
5032
	.read_sensor = smu7_read_sensor,
5033
	.dynamic_state_management_disable = smu7_disable_dpm_tasks,
5034
	.avfs_control = smu7_avfs_control,
5035
	.disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5036
	.start_thermal_controller = smu7_start_thermal_controller,
5037
	.notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5038
	.get_max_high_clocks = smu7_get_max_high_clocks,
5039
	.get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5040
	.odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5041
	.set_power_limit = smu7_set_power_limit,
5042 5043
	.get_power_profile_mode = smu7_get_power_profile_mode,
	.set_power_profile_mode = smu7_set_power_profile_mode,
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
};

uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
		uint32_t clock_insr)
{
	uint8_t i;
	uint32_t temp;
	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);

	PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
	for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
		temp = clock >> i;

		if (temp >= min || i == 0)
			break;
	}
	return i;
}

5063
int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
{
	int ret = 0;

	hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
	if (hwmgr->pp_table_version == PP_TABLE_V0)
		hwmgr->pptable_func = &pptable_funcs;
	else if (hwmgr->pp_table_version == PP_TABLE_V1)
		hwmgr->pptable_func = &pptable_v1_0_funcs;

	return ret;
}