rkisp1-capture.c 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
 * Rockchip ISP1 Driver - V4l capture device
 *
 * Copyright (C) 2019 Collabora, Ltd.
 *
 * Based on Rockchip ISP1 driver by Rockchip Electronics Co., Ltd.
 * Copyright (C) 2017 Rockchip Electronics Co., Ltd.
 */

#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-common.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>

#include "rkisp1-common.h"

/*
 * NOTE: There are two capture video devices in rkisp1, selfpath and mainpath.
 *
 * differences between selfpath and mainpath
 * available mp sink input: isp
 * available sp sink input : isp, dma(TODO)
 * available mp sink pad fmts: yuv422, raw
 * available sp sink pad fmts: yuv422, yuv420......
 * available mp source fmts: yuv, raw, jpeg(TODO)
 * available sp source fmts: yuv, rgb
 */

#define RKISP1_SP_DEV_NAME	RKISP1_DRIVER_NAME "_selfpath"
#define RKISP1_MP_DEV_NAME	RKISP1_DRIVER_NAME "_mainpath"

#define RKISP1_MIN_BUFFERS_NEEDED 3

enum rkisp1_plane {
	RKISP1_PLANE_Y	= 0,
	RKISP1_PLANE_CB	= 1,
	RKISP1_PLANE_CR	= 2
};

/*
 * @fourcc: pixel format
 * @fmt_type: helper filed for pixel format
 * @uv_swap: if cb cr swaped, for yuv
 * @write_format: defines how YCbCr self picture data is written to memory
 * @output_format: defines sp output format
52
 * @mbus: the mbus code on the src resizer pad that matches the pixel format
53 54 55 56 57 58
 */
struct rkisp1_capture_fmt_cfg {
	u32 fourcc;
	u8 uv_swap;
	u32 write_format;
	u32 output_format;
59
	u32 mbus;
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
};

struct rkisp1_capture_ops {
	void (*config)(struct rkisp1_capture *cap);
	void (*stop)(struct rkisp1_capture *cap);
	void (*enable)(struct rkisp1_capture *cap);
	void (*disable)(struct rkisp1_capture *cap);
	void (*set_data_path)(struct rkisp1_capture *cap);
	bool (*is_stopped)(struct rkisp1_capture *cap);
};

struct rkisp1_capture_config {
	const struct rkisp1_capture_fmt_cfg *fmts;
	int fmt_size;
	struct {
		u32 y_size_init;
		u32 cb_size_init;
		u32 cr_size_init;
		u32 y_base_ad_init;
		u32 cb_base_ad_init;
		u32 cr_base_ad_init;
		u32 y_offs_cnt_init;
		u32 cb_offs_cnt_init;
		u32 cr_offs_cnt_init;
	} mi;
};

87 88 89 90
/*
 * The supported pixel formats for mainpath. NOTE, pixel formats with identical 'mbus'
 * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
 */
91 92 93 94 95 96
static const struct rkisp1_capture_fmt_cfg rkisp1_mp_fmts[] = {
	/* yuv422 */
	{
		.fourcc = V4L2_PIX_FMT_YUYV,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUVINT,
97
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
98 99 100 101
	}, {
		.fourcc = V4L2_PIX_FMT_YUV422P,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
102
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
103 104 105 106
	}, {
		.fourcc = V4L2_PIX_FMT_NV16,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
107
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
108 109 110 111
	}, {
		.fourcc = V4L2_PIX_FMT_NV61,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
112
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
113 114 115 116
	}, {
		.fourcc = V4L2_PIX_FMT_YVU422M,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
117
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
118
	},
119 120 121 122
	/* yuv400 */
	{
		.fourcc = V4L2_PIX_FMT_GREY,
		.uv_swap = 0,
123
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
124 125
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
	},
126 127 128 129 130
	/* yuv420 */
	{
		.fourcc = V4L2_PIX_FMT_NV21,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
131
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
132 133 134 135
	}, {
		.fourcc = V4L2_PIX_FMT_NV12,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
136
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
137 138 139 140
	}, {
		.fourcc = V4L2_PIX_FMT_NV21M,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
141
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
142 143 144 145
	}, {
		.fourcc = V4L2_PIX_FMT_NV12M,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
146
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
147 148 149 150
	}, {
		.fourcc = V4L2_PIX_FMT_YUV420,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
151
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
152 153 154 155
	}, {
		.fourcc = V4L2_PIX_FMT_YVU420,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
156
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
157 158 159 160 161
	},
	/* raw */
	{
		.fourcc = V4L2_PIX_FMT_SRGGB8,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
162
		.mbus = MEDIA_BUS_FMT_SRGGB8_1X8,
163 164 165
	}, {
		.fourcc = V4L2_PIX_FMT_SGRBG8,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
166
		.mbus = MEDIA_BUS_FMT_SGRBG8_1X8,
167 168 169
	}, {
		.fourcc = V4L2_PIX_FMT_SGBRG8,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
170
		.mbus = MEDIA_BUS_FMT_SGBRG8_1X8,
171 172 173
	}, {
		.fourcc = V4L2_PIX_FMT_SBGGR8,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
174
		.mbus = MEDIA_BUS_FMT_SBGGR8_1X8,
175 176 177
	}, {
		.fourcc = V4L2_PIX_FMT_SRGGB10,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
178
		.mbus = MEDIA_BUS_FMT_SRGGB10_1X10,
179 180 181
	}, {
		.fourcc = V4L2_PIX_FMT_SGRBG10,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
182
		.mbus = MEDIA_BUS_FMT_SGRBG10_1X10,
183 184 185
	}, {
		.fourcc = V4L2_PIX_FMT_SGBRG10,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
186
		.mbus = MEDIA_BUS_FMT_SGBRG10_1X10,
187 188 189
	}, {
		.fourcc = V4L2_PIX_FMT_SBGGR10,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
190
		.mbus = MEDIA_BUS_FMT_SBGGR10_1X10,
191 192 193
	}, {
		.fourcc = V4L2_PIX_FMT_SRGGB12,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
194
		.mbus = MEDIA_BUS_FMT_SRGGB12_1X12,
195 196 197
	}, {
		.fourcc = V4L2_PIX_FMT_SGRBG12,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
198
		.mbus = MEDIA_BUS_FMT_SGRBG12_1X12,
199 200 201
	}, {
		.fourcc = V4L2_PIX_FMT_SGBRG12,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
202
		.mbus = MEDIA_BUS_FMT_SGBRG12_1X12,
203 204 205
	}, {
		.fourcc = V4L2_PIX_FMT_SBGGR12,
		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
206
		.mbus = MEDIA_BUS_FMT_SBGGR12_1X12,
207 208 209
	},
};

210 211 212 213
/*
 * The supported pixel formats for selfpath. NOTE, pixel formats with identical 'mbus'
 * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
 */
214 215 216 217 218 219 220
static const struct rkisp1_capture_fmt_cfg rkisp1_sp_fmts[] = {
	/* yuv422 */
	{
		.fourcc = V4L2_PIX_FMT_YUYV,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_INT,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
221
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
222 223 224 225 226
	}, {
		.fourcc = V4L2_PIX_FMT_YUV422P,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
227
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
228 229 230 231 232
	}, {
		.fourcc = V4L2_PIX_FMT_NV16,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
233
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
234 235 236 237 238
	}, {
		.fourcc = V4L2_PIX_FMT_NV61,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
239
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
240 241 242 243 244
	}, {
		.fourcc = V4L2_PIX_FMT_YVU422M,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
245
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
246
	},
247 248 249 250
	/* yuv400 */
	{
		.fourcc = V4L2_PIX_FMT_GREY,
		.uv_swap = 0,
251
		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV400,
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
	},
	/* rgb */
	{
		.fourcc = V4L2_PIX_FMT_XBGR32,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB888,
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
	}, {
		.fourcc = V4L2_PIX_FMT_RGB565,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB565,
		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
	},
267 268 269 270 271 272
	/* yuv420 */
	{
		.fourcc = V4L2_PIX_FMT_NV21,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
273
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
274 275 276 277 278
	}, {
		.fourcc = V4L2_PIX_FMT_NV12,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
279
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
280 281 282 283 284
	}, {
		.fourcc = V4L2_PIX_FMT_NV21M,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
285
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
286 287 288 289 290
	}, {
		.fourcc = V4L2_PIX_FMT_NV12M,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
291
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
292 293 294 295 296
	}, {
		.fourcc = V4L2_PIX_FMT_YUV420,
		.uv_swap = 0,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
297
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
298 299 300 301 302
	}, {
		.fourcc = V4L2_PIX_FMT_YVU420,
		.uv_swap = 1,
		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
303
		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	},
};

static const struct rkisp1_capture_config rkisp1_capture_config_mp = {
	.fmts = rkisp1_mp_fmts,
	.fmt_size = ARRAY_SIZE(rkisp1_mp_fmts),
	.mi = {
		.y_size_init =		RKISP1_CIF_MI_MP_Y_SIZE_INIT,
		.cb_size_init =		RKISP1_CIF_MI_MP_CB_SIZE_INIT,
		.cr_size_init =		RKISP1_CIF_MI_MP_CR_SIZE_INIT,
		.y_base_ad_init =	RKISP1_CIF_MI_MP_Y_BASE_AD_INIT,
		.cb_base_ad_init =	RKISP1_CIF_MI_MP_CB_BASE_AD_INIT,
		.cr_base_ad_init =	RKISP1_CIF_MI_MP_CR_BASE_AD_INIT,
		.y_offs_cnt_init =	RKISP1_CIF_MI_MP_Y_OFFS_CNT_INIT,
		.cb_offs_cnt_init =	RKISP1_CIF_MI_MP_CB_OFFS_CNT_INIT,
		.cr_offs_cnt_init =	RKISP1_CIF_MI_MP_CR_OFFS_CNT_INIT,
	},
};

static const struct rkisp1_capture_config rkisp1_capture_config_sp = {
	.fmts = rkisp1_sp_fmts,
	.fmt_size = ARRAY_SIZE(rkisp1_sp_fmts),
	.mi = {
		.y_size_init =		RKISP1_CIF_MI_SP_Y_SIZE_INIT,
		.cb_size_init =		RKISP1_CIF_MI_SP_CB_SIZE_INIT,
		.cr_size_init =		RKISP1_CIF_MI_SP_CR_SIZE_INIT,
		.y_base_ad_init =	RKISP1_CIF_MI_SP_Y_BASE_AD_INIT,
		.cb_base_ad_init =	RKISP1_CIF_MI_SP_CB_BASE_AD_INIT,
		.cr_base_ad_init =	RKISP1_CIF_MI_SP_CR_BASE_AD_INIT,
		.y_offs_cnt_init =	RKISP1_CIF_MI_SP_Y_OFFS_CNT_INIT,
		.cb_offs_cnt_init =	RKISP1_CIF_MI_SP_CB_OFFS_CNT_INIT,
		.cr_offs_cnt_init =	RKISP1_CIF_MI_SP_CR_OFFS_CNT_INIT,
	},
};

static inline struct rkisp1_vdev_node *
rkisp1_vdev_to_node(struct video_device *vdev)
{
	return container_of(vdev, struct rkisp1_vdev_node, vdev);
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
int rkisp1_cap_enum_mbus_codes(struct rkisp1_capture *cap,
			       struct v4l2_subdev_mbus_code_enum *code)
{
	const struct rkisp1_capture_fmt_cfg *fmts = cap->config->fmts;
	/*
	 * initialize curr_mbus to non existing mbus code 0 to ensure it is
	 * different from fmts[0].mbus
	 */
	u32 curr_mbus = 0;
	int i, n = 0;

	for (i = 0; i < cap->config->fmt_size; i++) {
		if (fmts[i].mbus == curr_mbus)
			continue;

		curr_mbus = fmts[i].mbus;
		if (n++ == code->index) {
			code->code = curr_mbus;
			return 0;
		}
	}
	return -EINVAL;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/* ----------------------------------------------------------------------------
 * Stream operations for self-picture path (sp) and main-picture path (mp)
 */

static void rkisp1_mi_config_ctrl(struct rkisp1_capture *cap)
{
	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);

	mi_ctrl &= ~GENMASK(17, 16);
	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_LUM_64;

	mi_ctrl &= ~GENMASK(19, 18);
	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_CHROM_64;

	mi_ctrl |= RKISP1_CIF_MI_CTRL_INIT_BASE_EN |
		   RKISP1_CIF_MI_CTRL_INIT_OFFSET_EN;

	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}

static u32 rkisp1_pixfmt_comp_size(const struct v4l2_pix_format_mplane *pixm,
				   unsigned int component)
{
	/*
	 * If packed format, then plane_fmt[0].sizeimage is the sum of all
	 * components, so we need to calculate just the size of Y component.
	 * See rkisp1_fill_pixfmt().
	 */
	if (!component && pixm->num_planes == 1)
		return pixm->plane_fmt[0].bytesperline * pixm->height;
	return pixm->plane_fmt[component].sizeimage;
}

static void rkisp1_irq_frame_end_enable(struct rkisp1_capture *cap)
{
	u32 mi_imsc = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_IMSC);

	mi_imsc |= RKISP1_CIF_MI_FRAME(cap);
	rkisp1_write(cap->rkisp1, mi_imsc, RKISP1_CIF_MI_IMSC);
}

static void rkisp1_mp_config(struct rkisp1_capture *cap)
{
	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
	struct rkisp1_device *rkisp1 = cap->rkisp1;
	u32 reg;

	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
		     cap->config->mi.y_size_init);
	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
		     cap->config->mi.cb_size_init);
	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR),
		     cap->config->mi.cr_size_init);

	rkisp1_irq_frame_end_enable(cap);
424 425 426 427 428 429 430 431 432 433

	/* set uv swapping for semiplanar formats */
	if (cap->pix.info->comp_planes == 2) {
		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
		if (cap->pix.cfg->uv_swap)
			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
		else
			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
		rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
	}
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

	rkisp1_mi_config_ctrl(cap);

	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
	reg &= ~RKISP1_MI_CTRL_MP_FMT_MASK;
	reg |= cap->pix.cfg->write_format;
	rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_CTRL);

	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
	reg |= RKISP1_CIF_MI_MP_AUTOUPDATE_ENABLE;
	rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_CTRL);
}

static void rkisp1_sp_config(struct rkisp1_capture *cap)
{
	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
	struct rkisp1_device *rkisp1 = cap->rkisp1;
451
	u32 mi_ctrl, reg;
452 453 454 455 456 457 458 459 460 461 462 463 464 465

	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
		     cap->config->mi.y_size_init);
	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
		     cap->config->mi.cb_size_init);
	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR),
		     cap->config->mi.cr_size_init);

	rkisp1_write(rkisp1, pixm->width, RKISP1_CIF_MI_SP_Y_PIC_WIDTH);
	rkisp1_write(rkisp1, pixm->height, RKISP1_CIF_MI_SP_Y_PIC_HEIGHT);
	rkisp1_write(rkisp1, cap->sp_y_stride, RKISP1_CIF_MI_SP_Y_LLENGTH);

	rkisp1_irq_frame_end_enable(cap);

466 467 468 469 470 471 472 473 474
	/* set uv swapping for semiplanar formats */
	if (cap->pix.info->comp_planes == 2) {
		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
		if (cap->pix.cfg->uv_swap)
			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
		else
			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
		rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
	}
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

	rkisp1_mi_config_ctrl(cap);

	mi_ctrl = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
	mi_ctrl &= ~RKISP1_MI_CTRL_SP_FMT_MASK;
	mi_ctrl |= cap->pix.cfg->write_format |
		   RKISP1_MI_CTRL_SP_INPUT_YUV422 |
		   cap->pix.cfg->output_format |
		   RKISP1_CIF_MI_SP_AUTOUPDATE_ENABLE;
	rkisp1_write(rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}

static void rkisp1_mp_disable(struct rkisp1_capture *cap)
{
	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);

	mi_ctrl &= ~(RKISP1_CIF_MI_CTRL_MP_ENABLE |
		     RKISP1_CIF_MI_CTRL_RAW_ENABLE);
	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}

static void rkisp1_sp_disable(struct rkisp1_capture *cap)
{
	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);

	mi_ctrl &= ~RKISP1_CIF_MI_CTRL_SP_ENABLE;
	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}

static void rkisp1_mp_enable(struct rkisp1_capture *cap)
{
	u32 mi_ctrl;

	rkisp1_mp_disable(cap);

	mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
511
	if (v4l2_is_format_bayer(cap->pix.info))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
		mi_ctrl |= RKISP1_CIF_MI_CTRL_RAW_ENABLE;
	/* YUV */
	else
		mi_ctrl |= RKISP1_CIF_MI_CTRL_MP_ENABLE;

	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}

static void rkisp1_sp_enable(struct rkisp1_capture *cap)
{
	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);

	mi_ctrl |= RKISP1_CIF_MI_CTRL_SP_ENABLE;
	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}

static void rkisp1_mp_sp_stop(struct rkisp1_capture *cap)
{
	if (!cap->is_streaming)
		return;
	rkisp1_write(cap->rkisp1,
		     RKISP1_CIF_MI_FRAME(cap), RKISP1_CIF_MI_ICR);
	cap->ops->disable(cap);
}

static bool rkisp1_mp_is_stopped(struct rkisp1_capture *cap)
{
	u32 en = RKISP1_CIF_MI_CTRL_SHD_MP_IN_ENABLED |
		 RKISP1_CIF_MI_CTRL_SHD_RAW_OUT_ENABLED;

	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) & en);
}

static bool rkisp1_sp_is_stopped(struct rkisp1_capture *cap)
{
	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) &
		 RKISP1_CIF_MI_CTRL_SHD_SP_IN_ENABLED);
}

static void rkisp1_mp_set_data_path(struct rkisp1_capture *cap)
{
	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);

	dpcl = dpcl | RKISP1_CIF_VI_DPCL_CHAN_MODE_MP |
	       RKISP1_CIF_VI_DPCL_MP_MUX_MRSZ_MI;
	rkisp1_write(cap->rkisp1, dpcl, RKISP1_CIF_VI_DPCL);
}

static void rkisp1_sp_set_data_path(struct rkisp1_capture *cap)
{
	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);

	dpcl |= RKISP1_CIF_VI_DPCL_CHAN_MODE_SP;
	rkisp1_write(cap->rkisp1, dpcl, RKISP1_CIF_VI_DPCL);
}

static struct rkisp1_capture_ops rkisp1_capture_ops_mp = {
	.config = rkisp1_mp_config,
	.enable = rkisp1_mp_enable,
	.disable = rkisp1_mp_disable,
	.stop = rkisp1_mp_sp_stop,
	.set_data_path = rkisp1_mp_set_data_path,
	.is_stopped = rkisp1_mp_is_stopped,
};

static struct rkisp1_capture_ops rkisp1_capture_ops_sp = {
	.config = rkisp1_sp_config,
	.enable = rkisp1_sp_enable,
	.disable = rkisp1_sp_disable,
	.stop = rkisp1_mp_sp_stop,
	.set_data_path = rkisp1_sp_set_data_path,
	.is_stopped = rkisp1_sp_is_stopped,
};

/* ----------------------------------------------------------------------------
 * Frame buffer operations
 */

static int rkisp1_dummy_buf_create(struct rkisp1_capture *cap)
{
	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
	struct rkisp1_dummy_buffer *dummy_buf = &cap->buf.dummy;

	dummy_buf->size = max3(rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));

	/* The driver never access vaddr, no mapping is required */
	dummy_buf->vaddr = dma_alloc_attrs(cap->rkisp1->dev,
					   dummy_buf->size,
					   &dummy_buf->dma_addr,
					   GFP_KERNEL,
					   DMA_ATTR_NO_KERNEL_MAPPING);
	if (!dummy_buf->vaddr)
		return -ENOMEM;

	return 0;
}

static void rkisp1_dummy_buf_destroy(struct rkisp1_capture *cap)
{
	dma_free_attrs(cap->rkisp1->dev,
		       cap->buf.dummy.size, cap->buf.dummy.vaddr,
		       cap->buf.dummy.dma_addr, DMA_ATTR_NO_KERNEL_MAPPING);
}

static void rkisp1_set_next_buf(struct rkisp1_capture *cap)
{
620 621 622 623 624 625 626 627 628 629
	cap->buf.curr = cap->buf.next;
	cap->buf.next = NULL;

	if (!list_empty(&cap->buf.queue)) {
		u32 *buff_addr;

		cap->buf.next = list_first_entry(&cap->buf.queue, struct rkisp1_buffer, queue);
		list_del(&cap->buf.next->queue);

		buff_addr = cap->buf.next->buff_addr;
630 631 632 633 634 635 636 637 638 639 640

		rkisp1_write(cap->rkisp1,
			     buff_addr[RKISP1_PLANE_Y],
			     cap->config->mi.y_base_ad_init);
		rkisp1_write(cap->rkisp1,
			     buff_addr[RKISP1_PLANE_CB],
			     cap->config->mi.cb_base_ad_init);
		rkisp1_write(cap->rkisp1,
			     buff_addr[RKISP1_PLANE_CR],
			     cap->config->mi.cr_base_ad_init);
	} else {
641 642 643 644
		/*
		 * Use the dummy space allocated by dma_alloc_coherent to
		 * throw data if there is no available buffer.
		 */
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		rkisp1_write(cap->rkisp1,
			     cap->buf.dummy.dma_addr,
			     cap->config->mi.y_base_ad_init);
		rkisp1_write(cap->rkisp1,
			     cap->buf.dummy.dma_addr,
			     cap->config->mi.cb_base_ad_init);
		rkisp1_write(cap->rkisp1,
			     cap->buf.dummy.dma_addr,
			     cap->config->mi.cr_base_ad_init);
	}

	/* Set plane offsets */
	rkisp1_write(cap->rkisp1, 0, cap->config->mi.y_offs_cnt_init);
	rkisp1_write(cap->rkisp1, 0, cap->config->mi.cb_offs_cnt_init);
	rkisp1_write(cap->rkisp1, 0, cap->config->mi.cr_offs_cnt_init);
}

/*
 * This function is called when a frame end comes. The next frame
 * is processing and we should set up buffer for next-next frame,
 * otherwise it will overflow.
 */
static void rkisp1_handle_buffer(struct rkisp1_capture *cap)
{
	struct rkisp1_isp *isp = &cap->rkisp1->isp;
670
	struct rkisp1_buffer *curr_buf;
671

672
	spin_lock(&cap->buf.lock);
673
	curr_buf = cap->buf.curr;
674 675

	if (curr_buf) {
676
		curr_buf->vb.sequence = isp->frame_sequence;
677 678 679 680 681 682 683 684
		curr_buf->vb.vb2_buf.timestamp = ktime_get_boottime_ns();
		curr_buf->vb.field = V4L2_FIELD_NONE;
		vb2_buffer_done(&curr_buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
	} else {
		cap->rkisp1->debug.frame_drop[cap->id]++;
	}

	rkisp1_set_next_buf(cap);
685
	spin_unlock(&cap->buf.lock);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
}

void rkisp1_capture_isr(struct rkisp1_device *rkisp1)
{
	unsigned int i;
	u32 status;

	status = rkisp1_read(rkisp1, RKISP1_CIF_MI_MIS);
	rkisp1_write(rkisp1, status, RKISP1_CIF_MI_ICR);

	for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); ++i) {
		struct rkisp1_capture *cap = &rkisp1->capture_devs[i];

		if (!(status & RKISP1_CIF_MI_FRAME(cap)))
			continue;
		if (!cap->is_stopping) {
			rkisp1_handle_buffer(cap);
			continue;
		}
		/*
		 * Make sure stream is actually stopped, whose state
		 * can be read from the shadow register, before
		 * wake_up() thread which would immediately free all
		 * frame buffers. stop() takes effect at the next
		 * frame end that sync the configurations to shadow
		 * regs.
		 */
		if (!cap->ops->is_stopped(cap)) {
			cap->ops->stop(cap);
			continue;
		}
		cap->is_stopping = false;
		cap->is_streaming = false;
		wake_up(&cap->done);
	}
}

/* ----------------------------------------------------------------------------
 * Vb2 operations
 */

static int rkisp1_vb2_queue_setup(struct vb2_queue *queue,
				  unsigned int *num_buffers,
				  unsigned int *num_planes,
				  unsigned int sizes[],
				  struct device *alloc_devs[])
{
	struct rkisp1_capture *cap = queue->drv_priv;
	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
	unsigned int i;

	if (*num_planes) {
		if (*num_planes != pixm->num_planes)
			return -EINVAL;

		for (i = 0; i < pixm->num_planes; i++)
			if (sizes[i] < pixm->plane_fmt[i].sizeimage)
				return -EINVAL;
	} else {
		*num_planes = pixm->num_planes;
		for (i = 0; i < pixm->num_planes; i++)
			sizes[i] = pixm->plane_fmt[i].sizeimage;
	}

	return 0;
}

static void rkisp1_vb2_buf_queue(struct vb2_buffer *vb)
{
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct rkisp1_buffer *ispbuf =
		container_of(vbuf, struct rkisp1_buffer, vb);
	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
	unsigned int i;

	memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
	for (i = 0; i < pixm->num_planes; i++)
		ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);

	/* Convert to non-MPLANE */
	if (pixm->num_planes == 1) {
		ispbuf->buff_addr[RKISP1_PLANE_CB] =
			ispbuf->buff_addr[RKISP1_PLANE_Y] +
			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y);
		ispbuf->buff_addr[RKISP1_PLANE_CR] =
			ispbuf->buff_addr[RKISP1_PLANE_CB] +
			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB);
	}

776 777 778 779 780 781 782 783
	/*
	 * uv swap can be supported for planar formats by switching
	 * the address of cb and cr
	 */
	if (cap->pix.info->comp_planes == 3 && cap->pix.cfg->uv_swap)
		swap(ispbuf->buff_addr[RKISP1_PLANE_CR],
		     ispbuf->buff_addr[RKISP1_PLANE_CB]);

784
	spin_lock_irq(&cap->buf.lock);
785
	list_add_tail(&ispbuf->queue, &cap->buf.queue);
786
	spin_unlock_irq(&cap->buf.lock);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
}

static int rkisp1_vb2_buf_prepare(struct vb2_buffer *vb)
{
	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
	unsigned int i;

	for (i = 0; i < cap->pix.fmt.num_planes; i++) {
		unsigned long size = cap->pix.fmt.plane_fmt[i].sizeimage;

		if (vb2_plane_size(vb, i) < size) {
			dev_err(cap->rkisp1->dev,
				"User buffer too small (%ld < %ld)\n",
				vb2_plane_size(vb, i), size);
			return -EINVAL;
		}
		vb2_set_plane_payload(vb, i, size);
	}

	return 0;
}

static void rkisp1_return_all_buffers(struct rkisp1_capture *cap,
				      enum vb2_buffer_state state)
{
	struct rkisp1_buffer *buf;

814
	spin_lock_irq(&cap->buf.lock);
815 816 817 818 819 820 821 822 823 824 825 826 827 828
	if (cap->buf.curr) {
		vb2_buffer_done(&cap->buf.curr->vb.vb2_buf, state);
		cap->buf.curr = NULL;
	}
	if (cap->buf.next) {
		vb2_buffer_done(&cap->buf.next->vb.vb2_buf, state);
		cap->buf.next = NULL;
	}
	while (!list_empty(&cap->buf.queue)) {
		buf = list_first_entry(&cap->buf.queue,
				       struct rkisp1_buffer, queue);
		list_del(&buf->queue);
		vb2_buffer_done(&buf->vb.vb2_buf, state);
	}
829
	spin_unlock_irq(&cap->buf.lock);
830 831 832
}

/*
833 834 835 836
 * Most of registers inside rockchip ISP1 have shadow register since
 * they must be not be changed during processing a frame.
 * Usually, each sub-module updates its shadow register after
 * processing the last pixel of a frame.
837
 */
838
static void rkisp1_cap_stream_enable(struct rkisp1_capture *cap)
839
{
840 841
	struct rkisp1_device *rkisp1 = cap->rkisp1;
	struct rkisp1_capture *other = &rkisp1->capture_devs[cap->id ^ 1];
842

843 844
	cap->ops->set_data_path(cap);
	cap->ops->config(cap);
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	/* Setup a buffer for the next frame */
	spin_lock_irq(&cap->buf.lock);
	rkisp1_set_next_buf(cap);
	cap->ops->enable(cap);
	/* It's safe to config ACTIVE and SHADOW regs for the
	 * first stream. While when the second is starting, do NOT
	 * force update because it also update the first one.
	 *
	 * The latter case would drop one more buf(that is 2) since
	 * there's not buf in shadow when the second FE received. This's
	 * also required because the second FE maybe corrupt especially
	 * when run at 120fps.
	 */
	if (!other->is_streaming) {
		/* force cfg update */
		rkisp1_write(rkisp1,
			     RKISP1_CIF_MI_INIT_SOFT_UPD, RKISP1_CIF_MI_INIT);
		rkisp1_set_next_buf(cap);
864
	}
865 866
	spin_unlock_irq(&cap->buf.lock);
	cap->is_streaming = true;
867 868
}

869
static void rkisp1_cap_stream_disable(struct rkisp1_capture *cap)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
{
	int ret;

	/* Stream should stop in interrupt. If it dosn't, stop it by force. */
	cap->is_stopping = true;
	ret = wait_event_timeout(cap->done,
				 !cap->is_streaming,
				 msecs_to_jiffies(1000));
	if (!ret) {
		cap->rkisp1->debug.stop_timeout[cap->id]++;
		cap->ops->stop(cap);
		cap->is_stopping = false;
		cap->is_streaming = false;
	}
}

886 887 888 889 890 891 892 893 894 895 896 897
/*
 * rkisp1_pipeline_stream_disable - disable nodes in the pipeline
 *
 * Call s_stream(false) in the reverse order from
 * rkisp1_pipeline_stream_enable() and disable the DMA engine.
 * Should be called before media_pipeline_stop()
 */
static void rkisp1_pipeline_stream_disable(struct rkisp1_capture *cap)
	__must_hold(&cap->rkisp1->stream_lock)
{
	struct rkisp1_device *rkisp1 = cap->rkisp1;

898 899
	rkisp1_cap_stream_disable(cap);

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	/*
	 * If the other capture is streaming, isp and sensor nodes shouldn't
	 * be disabled, skip them.
	 */
	if (rkisp1->pipe.streaming_count < 2) {
		v4l2_subdev_call(rkisp1->active_sensor->sd, video, s_stream,
				 false);
		v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
	}

	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
			 false);
}

/*
 * rkisp1_pipeline_stream_enable - enable nodes in the pipeline
 *
 * Enable the DMA Engine and call s_stream(true) through the pipeline.
 * Should be called after media_pipeline_start()
 */
static int rkisp1_pipeline_stream_enable(struct rkisp1_capture *cap)
	__must_hold(&cap->rkisp1->stream_lock)
{
	struct rkisp1_device *rkisp1 = cap->rkisp1;
	int ret;

	rkisp1_cap_stream_enable(cap);

	ret = v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video,
			       s_stream, true);
	if (ret)
		goto err_disable_cap;

	/*
	 * If the other capture is streaming, isp and sensor nodes are already
	 * enabled, skip them.
	 */
	if (rkisp1->pipe.streaming_count > 1)
		return 0;

	ret = v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, true);
	if (ret)
		goto err_disable_rsz;

	ret = v4l2_subdev_call(rkisp1->active_sensor->sd, video, s_stream,
			       true);
	if (ret)
		goto err_disable_isp;

	return 0;

err_disable_isp:
	v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
err_disable_rsz:
	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
			 false);
err_disable_cap:
	rkisp1_cap_stream_disable(cap);

	return ret;
}

962 963 964 965 966 967 968
static void rkisp1_vb2_stop_streaming(struct vb2_queue *queue)
{
	struct rkisp1_capture *cap = queue->drv_priv;
	struct rkisp1_vdev_node *node = &cap->vnode;
	struct rkisp1_device *rkisp1 = cap->rkisp1;
	int ret;

969 970
	mutex_lock(&cap->rkisp1->stream_lock);

971
	rkisp1_pipeline_stream_disable(cap);
972 973 974

	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_ERROR);

975
	v4l2_pipeline_pm_put(&node->vdev.entity);
976
	ret = pm_runtime_put(rkisp1->dev);
977
	if (ret < 0)
978 979 980
		dev_err(rkisp1->dev, "power down failed error:%d\n", ret);

	rkisp1_dummy_buf_destroy(cap);
981

982 983
	media_pipeline_stop(&node->vdev.entity);

984
	mutex_unlock(&cap->rkisp1->stream_lock);
985 986 987 988 989 990 991 992 993
}

static int
rkisp1_vb2_start_streaming(struct vb2_queue *queue, unsigned int count)
{
	struct rkisp1_capture *cap = queue->drv_priv;
	struct media_entity *entity = &cap->vnode.vdev.entity;
	int ret;

994 995
	mutex_lock(&cap->rkisp1->stream_lock);

996 997 998 999 1000 1001
	ret = media_pipeline_start(entity, &cap->rkisp1->pipe);
	if (ret) {
		dev_err(cap->rkisp1->dev, "start pipeline failed %d\n", ret);
		goto err_ret_buffers;
	}

1002 1003
	ret = rkisp1_dummy_buf_create(cap);
	if (ret)
1004
		goto err_pipeline_stop;
1005 1006

	ret = pm_runtime_get_sync(cap->rkisp1->dev);
1007
	if (ret < 0) {
1008
		pm_runtime_put_noidle(cap->rkisp1->dev);
1009 1010 1011
		dev_err(cap->rkisp1->dev, "power up failed %d\n", ret);
		goto err_destroy_dummy;
	}
1012
	ret = v4l2_pipeline_pm_get(entity);
1013 1014 1015 1016 1017
	if (ret) {
		dev_err(cap->rkisp1->dev, "open cif pipeline failed %d\n", ret);
		goto err_pipe_pm_put;
	}

1018
	ret = rkisp1_pipeline_stream_enable(cap);
1019
	if (ret)
1020
		goto err_v4l2_pm_put;
1021

1022 1023
	mutex_unlock(&cap->rkisp1->stream_lock);

1024 1025
	return 0;

1026
err_v4l2_pm_put:
1027
	v4l2_pipeline_pm_put(entity);
1028 1029 1030 1031
err_pipe_pm_put:
	pm_runtime_put(cap->rkisp1->dev);
err_destroy_dummy:
	rkisp1_dummy_buf_destroy(cap);
1032 1033
err_pipeline_stop:
	media_pipeline_stop(entity);
1034 1035
err_ret_buffers:
	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_QUEUED);
1036
	mutex_unlock(&cap->rkisp1->stream_lock);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	return ret;
}

static struct vb2_ops rkisp1_vb2_ops = {
	.queue_setup = rkisp1_vb2_queue_setup,
	.buf_queue = rkisp1_vb2_buf_queue,
	.buf_prepare = rkisp1_vb2_buf_prepare,
	.wait_prepare = vb2_ops_wait_prepare,
	.wait_finish = vb2_ops_wait_finish,
	.stop_streaming = rkisp1_vb2_stop_streaming,
	.start_streaming = rkisp1_vb2_start_streaming,
};

/* ----------------------------------------------------------------------------
 * IOCTLs operations
 */

static const struct v4l2_format_info *
rkisp1_fill_pixfmt(struct v4l2_pix_format_mplane *pixm,
		   enum rkisp1_stream_id id)
{
	struct v4l2_plane_pix_format *plane_y = &pixm->plane_fmt[0];
	const struct v4l2_format_info *info;
	unsigned int i;
	u32 stride;

1064
	memset(pixm->plane_fmt, 0, sizeof(pixm->plane_fmt));
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	info = v4l2_format_info(pixm->pixelformat);
	pixm->num_planes = info->mem_planes;
	stride = info->bpp[0] * pixm->width;
	/* Self path supports custom stride but Main path doesn't */
	if (id == RKISP1_MAINPATH || plane_y->bytesperline < stride)
		plane_y->bytesperline = stride;
	plane_y->sizeimage = plane_y->bytesperline * pixm->height;

	/* normalize stride to pixels per line */
	stride = DIV_ROUND_UP(plane_y->bytesperline, info->bpp[0]);

	for (i = 1; i < info->comp_planes; i++) {
		struct v4l2_plane_pix_format *plane = &pixm->plane_fmt[i];

		/* bytesperline for other components derive from Y component */
		plane->bytesperline = DIV_ROUND_UP(stride, info->hdiv) *
				      info->bpp[i];
		plane->sizeimage = plane->bytesperline *
				   DIV_ROUND_UP(pixm->height, info->vdiv);
	}

	/*
	 * If pixfmt is packed, then plane_fmt[0] should contain the total size
	 * considering all components. plane_fmt[i] for i > 0 should be ignored
	 * by userspace as mem_planes == 1, but we are keeping information there
	 * for convenience.
	 */
	if (info->mem_planes == 1)
		for (i = 1; i < info->comp_planes; i++)
			plane_y->sizeimage += pixm->plane_fmt[i].sizeimage;

	return info;
}

static const struct rkisp1_capture_fmt_cfg *
rkisp1_find_fmt_cfg(const struct rkisp1_capture *cap, const u32 pixelfmt)
{
	unsigned int i;

	for (i = 0; i < cap->config->fmt_size; i++) {
		if (cap->config->fmts[i].fourcc == pixelfmt)
			return &cap->config->fmts[i];
	}
	return NULL;
}

static void rkisp1_try_fmt(const struct rkisp1_capture *cap,
			   struct v4l2_pix_format_mplane *pixm,
			   const struct rkisp1_capture_fmt_cfg **fmt_cfg,
			   const struct v4l2_format_info **fmt_info)
{
	const struct rkisp1_capture_config *config = cap->config;
	const struct rkisp1_capture_fmt_cfg *fmt;
	const struct v4l2_format_info *info;
	const unsigned int max_widths[] = { RKISP1_RSZ_MP_SRC_MAX_WIDTH,
					    RKISP1_RSZ_SP_SRC_MAX_WIDTH };
	const unsigned int max_heights[] = { RKISP1_RSZ_MP_SRC_MAX_HEIGHT,
					     RKISP1_RSZ_SP_SRC_MAX_HEIGHT};

	fmt = rkisp1_find_fmt_cfg(cap, pixm->pixelformat);
	if (!fmt) {
		fmt = config->fmts;
		pixm->pixelformat = fmt->fourcc;
	}

	pixm->width = clamp_t(u32, pixm->width,
			      RKISP1_RSZ_SRC_MIN_WIDTH, max_widths[cap->id]);
	pixm->height = clamp_t(u32, pixm->height,
			       RKISP1_RSZ_SRC_MIN_HEIGHT, max_heights[cap->id]);

	pixm->field = V4L2_FIELD_NONE;
	pixm->colorspace = V4L2_COLORSPACE_DEFAULT;
	pixm->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1138
	pixm->quantization = V4L2_QUANTIZATION_DEFAULT;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	info = rkisp1_fill_pixfmt(pixm, cap->id);

	if (fmt_cfg)
		*fmt_cfg = fmt;
	if (fmt_info)
		*fmt_info = info;
}

static void rkisp1_set_fmt(struct rkisp1_capture *cap,
			   struct v4l2_pix_format_mplane *pixm)
{
	rkisp1_try_fmt(cap, pixm, &cap->pix.cfg, &cap->pix.info);
	cap->pix.fmt = *pixm;

	/* SP supports custom stride in number of pixels of the Y plane */
	if (cap->id == RKISP1_SELFPATH)
		cap->sp_y_stride = pixm->plane_fmt[0].bytesperline /
				   cap->pix.info->bpp[0];
}

static int rkisp1_try_fmt_vid_cap_mplane(struct file *file, void *fh,
					 struct v4l2_format *f)
{
	struct rkisp1_capture *cap = video_drvdata(file);

	rkisp1_try_fmt(cap, &f->fmt.pix_mp, NULL, NULL);

	return 0;
}

static int rkisp1_enum_fmt_vid_cap_mplane(struct file *file, void *priv,
					  struct v4l2_fmtdesc *f)
{
	struct rkisp1_capture *cap = video_drvdata(file);
	const struct rkisp1_capture_fmt_cfg *fmt = NULL;
1175
	unsigned int i, n = 0;
1176

1177 1178 1179
	if (!f->mbus_code) {
		if (f->index >= cap->config->fmt_size)
			return -EINVAL;
1180

1181 1182 1183 1184
		fmt = &cap->config->fmts[f->index];
		f->pixelformat = fmt->fourcc;
		return 0;
	}
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	for (i = 0; i < cap->config->fmt_size; i++) {
		if (cap->config->fmts[i].mbus != f->mbus_code)
			continue;

		if (n++ == f->index) {
			f->pixelformat = cap->config->fmts[i].fourcc;
			return 0;
		}
	}
	return -EINVAL;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
}

static int rkisp1_s_fmt_vid_cap_mplane(struct file *file,
				       void *priv, struct v4l2_format *f)
{
	struct rkisp1_capture *cap = video_drvdata(file);
	struct rkisp1_vdev_node *node =
				rkisp1_vdev_to_node(&cap->vnode.vdev);

	if (vb2_is_busy(&node->buf_queue))
		return -EBUSY;

	rkisp1_set_fmt(cap, &f->fmt.pix_mp);

	return 0;
}

static int rkisp1_g_fmt_vid_cap_mplane(struct file *file, void *fh,
				       struct v4l2_format *f)
{
	struct rkisp1_capture *cap = video_drvdata(file);

	f->fmt.pix_mp = cap->pix.fmt;

	return 0;
}

static int
rkisp1_querycap(struct file *file, void *priv, struct v4l2_capability *cap)
{
	struct rkisp1_capture *cap_dev = video_drvdata(file);
	struct rkisp1_device *rkisp1 = cap_dev->rkisp1;

	strscpy(cap->driver, rkisp1->dev->driver->name, sizeof(cap->driver));
	strscpy(cap->card, rkisp1->dev->driver->name, sizeof(cap->card));
	strscpy(cap->bus_info, RKISP1_BUS_INFO, sizeof(cap->bus_info));

	return 0;
}

static const struct v4l2_ioctl_ops rkisp1_v4l2_ioctl_ops = {
	.vidioc_reqbufs = vb2_ioctl_reqbufs,
	.vidioc_querybuf = vb2_ioctl_querybuf,
	.vidioc_create_bufs = vb2_ioctl_create_bufs,
	.vidioc_qbuf = vb2_ioctl_qbuf,
	.vidioc_expbuf = vb2_ioctl_expbuf,
	.vidioc_dqbuf = vb2_ioctl_dqbuf,
	.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
	.vidioc_streamon = vb2_ioctl_streamon,
	.vidioc_streamoff = vb2_ioctl_streamoff,
	.vidioc_try_fmt_vid_cap_mplane = rkisp1_try_fmt_vid_cap_mplane,
	.vidioc_s_fmt_vid_cap_mplane = rkisp1_s_fmt_vid_cap_mplane,
	.vidioc_g_fmt_vid_cap_mplane = rkisp1_g_fmt_vid_cap_mplane,
	.vidioc_enum_fmt_vid_cap = rkisp1_enum_fmt_vid_cap_mplane,
	.vidioc_querycap = rkisp1_querycap,
	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};

static int rkisp1_capture_link_validate(struct media_link *link)
{
	struct video_device *vdev =
		media_entity_to_video_device(link->sink->entity);
	struct v4l2_subdev *sd =
		media_entity_to_v4l2_subdev(link->source->entity);
	struct rkisp1_capture *cap = video_get_drvdata(vdev);
1262 1263
	const struct rkisp1_capture_fmt_cfg *fmt =
		rkisp1_find_fmt_cfg(cap, cap->pix.fmt.pixelformat);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	struct v4l2_subdev_format sd_fmt;
	int ret;

	sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
	sd_fmt.pad = link->source->index;
	ret = v4l2_subdev_call(sd, pad, get_fmt, NULL, &sd_fmt);
	if (ret)
		return ret;

	if (sd_fmt.format.height != cap->pix.fmt.height ||
1274 1275
	    sd_fmt.format.width != cap->pix.fmt.width ||
	    sd_fmt.format.code != fmt->mbus)
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		return -EPIPE;

	return 0;
}

/* ----------------------------------------------------------------------------
 * core functions
 */

static const struct media_entity_operations rkisp1_media_ops = {
	.link_validate = rkisp1_capture_link_validate,
};

static const struct v4l2_file_operations rkisp1_fops = {
	.open = v4l2_fh_open,
	.release = vb2_fop_release,
	.unlocked_ioctl = video_ioctl2,
	.poll = vb2_fop_poll,
	.mmap = vb2_fop_mmap,
};

static void rkisp1_unregister_capture(struct rkisp1_capture *cap)
{
	media_entity_cleanup(&cap->vnode.vdev.entity);
1300
	vb2_video_unregister_device(&cap->vnode.vdev);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}

void rkisp1_capture_devs_unregister(struct rkisp1_device *rkisp1)
{
	struct rkisp1_capture *mp = &rkisp1->capture_devs[RKISP1_MAINPATH];
	struct rkisp1_capture *sp = &rkisp1->capture_devs[RKISP1_SELFPATH];

	rkisp1_unregister_capture(mp);
	rkisp1_unregister_capture(sp);
}

static int rkisp1_register_capture(struct rkisp1_capture *cap)
{
	const char * const dev_names[] = {RKISP1_MP_DEV_NAME,
					  RKISP1_SP_DEV_NAME};
	struct v4l2_device *v4l2_dev = &cap->rkisp1->v4l2_dev;
	struct video_device *vdev = &cap->vnode.vdev;
	struct rkisp1_vdev_node *node;
	struct vb2_queue *q;
	int ret;

	strscpy(vdev->name, dev_names[cap->id], sizeof(vdev->name));
	node = rkisp1_vdev_to_node(vdev);
	mutex_init(&node->vlock);

	vdev->ioctl_ops = &rkisp1_v4l2_ioctl_ops;
	vdev->release = video_device_release_empty;
	vdev->fops = &rkisp1_fops;
	vdev->minor = -1;
	vdev->v4l2_dev = v4l2_dev;
	vdev->lock = &node->vlock;
	vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1333
			    V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
1334 1335 1336 1337 1338 1339 1340
	vdev->entity.ops = &rkisp1_media_ops;
	video_set_drvdata(vdev, cap);
	vdev->vfl_dir = VFL_DIR_RX;
	node->pad.flags = MEDIA_PAD_FL_SINK;

	q = &node->buf_queue;
	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1341
	q->io_modes = VB2_MMAP | VB2_DMABUF;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	q->drv_priv = cap;
	q->ops = &rkisp1_vb2_ops;
	q->mem_ops = &vb2_dma_contig_memops;
	q->buf_struct_size = sizeof(struct rkisp1_buffer);
	q->min_buffers_needed = RKISP1_MIN_BUFFERS_NEEDED;
	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
	q->lock = &node->vlock;
	q->dev = cap->rkisp1->dev;
	ret = vb2_queue_init(q);
	if (ret) {
		dev_err(cap->rkisp1->dev,
			"vb2 queue init failed (err=%d)\n", ret);
		return ret;
	}

	vdev->queue = q;

1359
	ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	if (ret) {
		dev_err(cap->rkisp1->dev,
			"failed to register %s, ret=%d\n", vdev->name, ret);
		return ret;
	}
	v4l2_info(v4l2_dev, "registered %s as /dev/video%d\n", vdev->name,
		  vdev->num);

	ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
	if (ret) {
		video_unregister_device(vdev);
		return ret;
	}

	return 0;
}

static void
rkisp1_capture_init(struct rkisp1_device *rkisp1, enum rkisp1_stream_id id)
{
	struct rkisp1_capture *cap = &rkisp1->capture_devs[id];
	struct v4l2_pix_format_mplane pixm;

	memset(cap, 0, sizeof(*cap));
	cap->id = id;
	cap->rkisp1 = rkisp1;

	INIT_LIST_HEAD(&cap->buf.queue);
	init_waitqueue_head(&cap->done);
	spin_lock_init(&cap->buf.lock);
	if (cap->id == RKISP1_SELFPATH) {
		cap->ops = &rkisp1_capture_ops_sp;
		cap->config = &rkisp1_capture_config_sp;
	} else {
		cap->ops = &rkisp1_capture_ops_mp;
		cap->config = &rkisp1_capture_config_mp;
	}

	cap->is_streaming = false;

	memset(&pixm, 0, sizeof(pixm));
	pixm.pixelformat = V4L2_PIX_FMT_YUYV;
	pixm.width = RKISP1_DEFAULT_WIDTH;
	pixm.height = RKISP1_DEFAULT_HEIGHT;
	rkisp1_set_fmt(cap, &pixm);
}

int rkisp1_capture_devs_register(struct rkisp1_device *rkisp1)
{
	struct rkisp1_capture *cap;
	unsigned int i, j;
	int ret;

	for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); i++) {
		rkisp1_capture_init(rkisp1, i);
		cap = &rkisp1->capture_devs[i];
		cap->rkisp1 = rkisp1;
		ret = rkisp1_register_capture(cap);
		if (ret)
			goto err_unreg_capture_devs;
	}

	return 0;

err_unreg_capture_devs:
	for (j = 0; j < i; j++) {
		cap = &rkisp1->capture_devs[j];
		rkisp1_unregister_capture(cap);
	}

	return ret;
}