pgtable.h 34.1 KB
Newer Older
1 2
#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3

4 5
#include <asm-generic/5level-fixup.h>

6 7
#ifndef __ASSEMBLY__
#include <linux/mmdebug.h>
8
#include <linux/bug.h>
9
#endif
10

11 12 13 14 15
/*
 * Common bits between hash and Radix page table
 */
#define _PAGE_BIT_SWAP_TYPE	0

16
#define _PAGE_RO		0
17
#define _PAGE_SHARED		0
18

19 20 21 22 23 24 25 26 27 28 29
#define _PAGE_EXEC		0x00001 /* execute permission */
#define _PAGE_WRITE		0x00002 /* write access allowed */
#define _PAGE_READ		0x00004	/* read access allowed */
#define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
#define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
#define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
#define _PAGE_SAO		0x00010 /* Strong access order */
#define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
#define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
#define _PAGE_DIRTY		0x00080 /* C: page changed */
#define _PAGE_ACCESSED		0x00100 /* R: page referenced */
30
/*
31
 * Software bits
32
 */
33 34 35 36
#define _RPAGE_SW0		0x2000000000000000UL
#define _RPAGE_SW1		0x00800
#define _RPAGE_SW2		0x00400
#define _RPAGE_SW3		0x00200
37 38 39 40
#define _RPAGE_RSV1		0x1000000000000000UL
#define _RPAGE_RSV2		0x0800000000000000UL
#define _RPAGE_RSV3		0x0400000000000000UL
#define _RPAGE_RSV4		0x0200000000000000UL
41 42 43 44 45 46 47 48 49

#define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
#define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */

/*
 * Top and bottom bits of RPN which can be used by hash
 * translation mode, because we expect them to be zero
 * otherwise.
 */
50 51
#define _RPAGE_RPN0		0x01000
#define _RPAGE_RPN1		0x02000
52 53 54 55
#define _RPAGE_RPN44		0x0100000000000000UL
#define _RPAGE_RPN43		0x0080000000000000UL
#define _RPAGE_RPN42		0x0040000000000000UL
#define _RPAGE_RPN41		0x0020000000000000UL
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/* Max physical address bit as per radix table */
#define _RPAGE_PA_MAX		57

/*
 * Max physical address bit we will use for now.
 *
 * This is mostly a hardware limitation and for now Power9 has
 * a 51 bit limit.
 *
 * This is different from the number of physical bit required to address
 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
 * number of sections we can support (SECTIONS_SHIFT).
 *
 * This is different from Radix page table limitation above and
 * should always be less than that. The limit is done such that
 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
 * for hash linux page table specific bits.
 *
 * In order to be compatible with future hardware generations we keep
 * some offsets and limit this for now to 53
 */
#define _PAGE_PA_MAX		53

81 82
#define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
#define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
83 84 85
#define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
#define __HAVE_ARCH_PTE_DEVMAP

86 87 88 89 90 91 92
/*
 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
 * Instead of fixing all of them, add an alternate define which
 * maps CI pte mapping.
 */
#define _PAGE_NO_CACHE		_PAGE_TOLERANT
/*
93 94 95
 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
 * and every thing below PAGE_SHIFT;
96
 */
97
#define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * set of bits not changed in pmd_modify. Even though we have hash specific bits
 * in here, on radix we expect them to be zero.
 */
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
			 _PAGE_SOFT_DIRTY)
/*
 * user access blocked by key
 */
#define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
#define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
#define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
				 _PAGE_RW | _PAGE_EXEC)
/*
 * No page size encoding in the linux PTE
 */
#define _PAGE_PSIZE		0
/*
 * _PAGE_CHG_MASK masks of bits that are to be preserved across
 * pgprot changes
 */
#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
			 _PAGE_SOFT_DIRTY)
/*
 * Mask of bits returned by pte_pgprot()
 */
#define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
			 _PAGE_SOFT_DIRTY)
130
/*
131 132 133 134
 * We define 2 sets of base prot bits, one for basic pages (ie,
 * cacheable kernel and user pages) and one for non cacheable
 * pages. We always set _PAGE_COHERENT when SMP is enabled or
 * the processor might need it for DMA coherency.
135
 */
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
#define _PAGE_BASE	(_PAGE_BASE_NC)

/* Permission masks used to generate the __P and __S table,
 *
 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
 *
 * Write permissions imply read permissions for now (we could make write-only
 * pages on BookE but we don't bother for now). Execute permission control is
 * possible on platforms that define _PAGE_EXEC
 *
 * Note due to the way vm flags are laid out, the bits are XWR
 */
#define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
#define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)

#define __P000	PAGE_NONE
#define __P001	PAGE_READONLY
#define __P010	PAGE_COPY
#define __P011	PAGE_COPY
#define __P100	PAGE_READONLY_X
#define __P101	PAGE_READONLY_X
#define __P110	PAGE_COPY_X
#define __P111	PAGE_COPY_X

#define __S000	PAGE_NONE
#define __S001	PAGE_READONLY
#define __S010	PAGE_SHARED
#define __S011	PAGE_SHARED
#define __S100	PAGE_READONLY_X
#define __S101	PAGE_READONLY_X
#define __S110	PAGE_SHARED_X
#define __S111	PAGE_SHARED_X

/* Permission masks used for kernel mappings */
#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
				 _PAGE_TOLERANT)
#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
				 _PAGE_NON_IDEMPOTENT)
#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)

/*
 * Protection used for kernel text. We want the debuggers to be able to
 * set breakpoints anywhere, so don't write protect the kernel text
 * on platforms where such control is possible.
 */
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
#define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
#else
#define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
#endif

/* Make modules code happy. We don't set RO yet */
#define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
#define PAGE_AGP		(PAGE_KERNEL_NC)
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifndef __ASSEMBLY__
/*
 * page table defines
 */
extern unsigned long __pte_index_size;
extern unsigned long __pmd_index_size;
extern unsigned long __pud_index_size;
extern unsigned long __pgd_index_size;
extern unsigned long __pmd_cache_index;
#define PTE_INDEX_SIZE  __pte_index_size
#define PMD_INDEX_SIZE  __pmd_index_size
#define PUD_INDEX_SIZE  __pud_index_size
#define PGD_INDEX_SIZE  __pgd_index_size
#define PMD_CACHE_INDEX __pmd_cache_index
/*
 * Because of use of pte fragments and THP, size of page table
 * are not always derived out of index size above.
 */
extern unsigned long __pte_table_size;
extern unsigned long __pmd_table_size;
extern unsigned long __pud_table_size;
extern unsigned long __pgd_table_size;
#define PTE_TABLE_SIZE	__pte_table_size
#define PMD_TABLE_SIZE	__pmd_table_size
#define PUD_TABLE_SIZE	__pud_table_size
#define PGD_TABLE_SIZE	__pgd_table_size
227 228 229 230 231 232 233

extern unsigned long __pmd_val_bits;
extern unsigned long __pud_val_bits;
extern unsigned long __pgd_val_bits;
#define PMD_VAL_BITS	__pmd_val_bits
#define PUD_VAL_BITS	__pud_val_bits
#define PGD_VAL_BITS	__pgd_val_bits
234 235 236 237 238 239

extern unsigned long __pte_frag_nr;
#define PTE_FRAG_NR __pte_frag_nr
extern unsigned long __pte_frag_size_shift;
#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
#define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
#define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)

/* PMD_SHIFT determines what a second-level page table entry can map */
#define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))

/* PUD_SHIFT determines what a third-level page table entry can map */
#define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
#define PUD_SIZE	(1UL << PUD_SHIFT)
#define PUD_MASK	(~(PUD_SIZE-1))

/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
#define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/* Bits to mask out from a PMD to get to the PTE page */
#define PMD_MASKED_BITS		0xc0000000000000ffUL
/* Bits to mask out from a PUD to get to the PMD page */
#define PUD_MASKED_BITS		0xc0000000000000ffUL
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS		0xc0000000000000ffUL
267 268 269 270 271 272 273 274 275 276 277 278

extern unsigned long __vmalloc_start;
extern unsigned long __vmalloc_end;
#define VMALLOC_START	__vmalloc_start
#define VMALLOC_END	__vmalloc_end

extern unsigned long __kernel_virt_start;
extern unsigned long __kernel_virt_size;
#define KERN_VIRT_START __kernel_virt_start
#define KERN_VIRT_SIZE  __kernel_virt_size
extern struct page *vmemmap;
extern unsigned long ioremap_bot;
279
extern unsigned long pci_io_base;
280
#endif /* __ASSEMBLY__ */
281

282
#include <asm/book3s/64/hash.h>
283
#include <asm/book3s/64/radix.h>
284

285 286 287 288 289 290
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/pgtable-64k.h>
#else
#include <asm/book3s/64/pgtable-4k.h>
#endif

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#include <asm/barrier.h>
/*
 * The second half of the kernel virtual space is used for IO mappings,
 * it's itself carved into the PIO region (ISA and PHB IO space) and
 * the ioremap space
 *
 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
 */
#define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
#define FULL_IO_SIZE	0x80000000ul
#define  ISA_IO_BASE	(KERN_IO_START)
#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
#define  PHB_IO_BASE	(ISA_IO_END)
#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE	(PHB_IO_END)
#define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)

310 311 312 313 314 315
/* Advertise special mapping type for AGP */
#define HAVE_PAGE_AGP

/* Advertise support for _PAGE_SPECIAL */
#define __HAVE_ARCH_PTE_SPECIAL

316 317 318 319 320 321 322 323 324 325 326
#ifndef __ASSEMBLY__

/*
 * This is the default implementation of various PTE accessors, it's
 * used in all cases except Book3S with 64K pages where we have a
 * concept of sub-pages
 */
#ifndef __real_pte

#define __real_pte(e,p)		((real_pte_t){(e)})
#define __rpte_to_pte(r)	((r).pte)
327
#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
	do {							         \
		index = 0;					         \
		shift = mmu_psize_defs[psize].shift;		         \

#define pte_iterate_hashed_end() } while(0)

/*
 * We expect this to be called only for user addresses or kernel virtual
 * addresses other than the linear mapping.
 */
#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K

#endif /* __real_pte */

344 345 346 347 348 349 350 351
static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
				       pte_t *ptep, unsigned long clr,
				       unsigned long set, int huge)
{
	if (radix_enabled())
		return radix__pte_update(mm, addr, ptep, clr, set, huge);
	return hash__pte_update(mm, addr, ptep, clr, set, huge);
}
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
 * We currently remove entries from the hashtable regardless of whether
 * the entry was young or dirty.
 *
 * We should be more intelligent about this but for the moment we override
 * these functions and force a tlb flush unconditionally
 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
 * function for both hash and radix.
 */
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
					      unsigned long addr, pte_t *ptep)
{
	unsigned long old;

367
	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
368 369 370 371 372 373 374 375 376 377 378 379 380
		return 0;
	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
	return (old & _PAGE_ACCESSED) != 0;
}

#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
({								\
	int __r;						\
	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
	__r;							\
})

381
static inline int __pte_write(pte_t pte)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
}

#ifdef CONFIG_NUMA_BALANCING
#define pte_savedwrite pte_savedwrite
static inline bool pte_savedwrite(pte_t pte)
{
	/*
	 * Saved write ptes are prot none ptes that doesn't have
	 * privileged bit sit. We mark prot none as one which has
	 * present and pviliged bit set and RWX cleared. To mark
	 * protnone which used to have _PAGE_WRITE set we clear
	 * the privileged bit.
	 */
	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
}
#else
#define pte_savedwrite pte_savedwrite
static inline bool pte_savedwrite(pte_t pte)
{
	return false;
}
#endif

407 408 409 410 411
static inline int pte_write(pte_t pte)
{
	return __pte_write(pte) || pte_savedwrite(pte);
}

412 413 414 415
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pte_t *ptep)
{
416
	if (__pte_write(*ptep))
417 418 419
		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
	else if (unlikely(pte_savedwrite(*ptep)))
		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
420 421 422 423 424
}

static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
					   unsigned long addr, pte_t *ptep)
{
425 426 427 428
	/*
	 * We should not find protnone for hugetlb, but this complete the
	 * interface.
	 */
429
	if (__pte_write(*ptep))
430 431 432
		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
	else if (unlikely(pte_savedwrite(*ptep)))
		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
433 434 435 436 437 438 439 440 441 442
}

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
				       unsigned long addr, pte_t *ptep)
{
	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
	return __pte(old);
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
					    unsigned long addr,
					    pte_t *ptep, int full)
{
	if (full && radix_enabled()) {
		/*
		 * Let's skip the DD1 style pte update here. We know that
		 * this is a full mm pte clear and hence can be sure there is
		 * no parallel set_pte.
		 */
		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
	}
	return ptep_get_and_clear(mm, addr, ptep);
}


460 461 462 463 464
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
			     pte_t * ptep)
{
	pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

static inline int pte_dirty(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
}

static inline int pte_young(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
}

static inline int pte_special(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
}

481 482 483 484 485
static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }

#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline bool pte_soft_dirty(pte_t pte)
{
486
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
487
}
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
}

static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */

#ifdef CONFIG_NUMA_BALANCING
static inline int pte_protnone(pte_t pte)
{
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
}

#define pte_mk_savedwrite pte_mk_savedwrite
static inline pte_t pte_mk_savedwrite(pte_t pte)
{
	/*
	 * Used by Autonuma subsystem to preserve the write bit
	 * while marking the pte PROT_NONE. Only allow this
	 * on PROT_NONE pte
	 */
	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
	return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
}

#define pte_clear_savedwrite pte_clear_savedwrite
static inline pte_t pte_clear_savedwrite(pte_t pte)
{
	/*
	 * Used by KSM subsystem to make a protnone pte readonly.
	 */
	VM_BUG_ON(!pte_protnone(pte));
	return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
}
529 530 531 532 533 534 535
#else
#define pte_clear_savedwrite pte_clear_savedwrite
static inline pte_t pte_clear_savedwrite(pte_t pte)
{
	VM_WARN_ON(1);
	return __pte(pte_val(pte) & ~_PAGE_WRITE);
}
536 537 538 539
#endif /* CONFIG_NUMA_BALANCING */

static inline int pte_present(pte_t pte)
{
540
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
}
/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 *
 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 * long for now.
 */
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
		     pgprot_val(pgprot));
}

static inline unsigned long pte_pfn(pte_t pte)
{
	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
}

/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
563 564
	if (unlikely(pte_savedwrite(pte)))
		return pte_clear_savedwrite(pte);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	return __pte(pte_val(pte) & ~_PAGE_WRITE);
}

static inline pte_t pte_mkclean(pte_t pte)
{
	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}

static inline pte_t pte_mkold(pte_t pte)
{
	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}

static inline pte_t pte_mkwrite(pte_t pte)
{
	/*
	 * write implies read, hence set both
	 */
	return __pte(pte_val(pte) | _PAGE_RW);
}

static inline pte_t pte_mkdirty(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
}

static inline pte_t pte_mkyoung(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_ACCESSED);
}

static inline pte_t pte_mkspecial(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_SPECIAL);
}

static inline pte_t pte_mkhuge(pte_t pte)
{
	return pte;
}

606 607 608 609 610 611 612 613 614 615
static inline pte_t pte_mkdevmap(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
}

static inline int pte_devmap(pte_t pte)
{
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DEVMAP));
}

616 617 618 619 620 621
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	/* FIXME!! check whether this need to be a conditional */
	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}

622 623
static inline bool pte_user(pte_t pte)
{
624
	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
}

/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() do { \
	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
	/*							\
	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
	 * We filter HPTEFLAGS on set_pte.			\
	 */							\
	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
	} while (0)
/*
 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
 */
#define SWP_TYPE_BITS 5
#define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
				& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
#define __swp_entry(type, offset)	((swp_entry_t) { \
				((type) << _PAGE_BIT_SWAP_TYPE) \
				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
/*
 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
 * swap type and offset we get from swap and convert that to pte to find a
 * matching pte in linux page table.
 * Clear bits not found in swap entries here.
 */
#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
#define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)

#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
#else
#define _PAGE_SWP_SOFT_DIRTY	0UL
#endif /* CONFIG_MEM_SOFT_DIRTY */

#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
}
667

668 669
static inline bool pte_swp_soft_dirty(pte_t pte)
{
670
	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
671
}
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */

static inline bool check_pte_access(unsigned long access, unsigned long ptev)
{
	/*
	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
	 */
	if (access & ~ptev)
		return false;
	/*
	 * This check for access to privilege space
	 */
	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
		return false;

	return true;
}
694 695 696 697
/*
 * Generic functions with hash/radix callbacks
 */

698
static inline void __ptep_set_access_flags(struct mm_struct *mm,
699 700
					   pte_t *ptep, pte_t entry,
					   unsigned long address)
701 702
{
	if (radix_enabled())
703
		return radix__ptep_set_access_flags(mm, ptep, entry, address);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	return hash__ptep_set_access_flags(ptep, entry);
}

#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
	if (radix_enabled())
		return radix__pte_same(pte_a, pte_b);
	return hash__pte_same(pte_a, pte_b);
}

static inline int pte_none(pte_t pte)
{
	if (radix_enabled())
		return radix__pte_none(pte);
	return hash__pte_none(pte);
}

static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, pte_t pte, int percpu)
{
	if (radix_enabled())
		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
}
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)

#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
			_PAGE_NON_IDEMPOTENT);
}

#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
			_PAGE_TOLERANT);
}

#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
}

#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
	return pgprot_noncached_wc(prot);
}
/*
 * check a pte mapping have cache inhibited property
 */
static inline bool pte_ci(pte_t pte)
{
	unsigned long pte_v = pte_val(pte);

	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
		return true;
	return false;
}

770 771 772 773 774 775 776 777 778 779
static inline void pmd_set(pmd_t *pmdp, unsigned long val)
{
	*pmdp = __pmd(val);
}

static inline void pmd_clear(pmd_t *pmdp)
{
	*pmdp = __pmd(0);
}

780 781 782 783 784 785 786 787 788 789
static inline int pmd_none(pmd_t pmd)
{
	return !pmd_raw(pmd);
}

static inline int pmd_present(pmd_t pmd)
{

	return !pmd_none(pmd);
}
790

791 792 793 794 795 796 797
static inline int pmd_bad(pmd_t pmd)
{
	if (radix_enabled())
		return radix__pmd_bad(pmd);
	return hash__pmd_bad(pmd);
}

798 799 800 801 802 803 804 805 806 807
static inline void pud_set(pud_t *pudp, unsigned long val)
{
	*pudp = __pud(val);
}

static inline void pud_clear(pud_t *pudp)
{
	*pudp = __pud(0);
}

808 809 810 811 812 813 814 815 816
static inline int pud_none(pud_t pud)
{
	return !pud_raw(pud);
}

static inline int pud_present(pud_t pud)
{
	return !pud_none(pud);
}
817 818

extern struct page *pud_page(pud_t pud);
819
extern struct page *pmd_page(pmd_t pmd);
820 821
static inline pte_t pud_pte(pud_t pud)
{
822
	return __pte_raw(pud_raw(pud));
823 824 825 826
}

static inline pud_t pte_pud(pte_t pte)
{
827
	return __pud_raw(pte_raw(pte));
828 829
}
#define pud_write(pud)		pte_write(pud_pte(pud))
830 831 832 833 834 835 836 837 838

static inline int pud_bad(pud_t pud)
{
	if (radix_enabled())
		return radix__pud_bad(pud);
	return hash__pud_bad(pud);
}


839
#define pgd_write(pgd)		pte_write(pgd_pte(pgd))
840 841 842 843
static inline void pgd_set(pgd_t *pgdp, unsigned long val)
{
	*pgdp = __pgd(val);
}
844

845 846 847 848 849
static inline void pgd_clear(pgd_t *pgdp)
{
	*pgdp = __pgd(0);
}

850 851 852 853 854 855 856 857 858
static inline int pgd_none(pgd_t pgd)
{
	return !pgd_raw(pgd);
}

static inline int pgd_present(pgd_t pgd)
{
	return !pgd_none(pgd);
}
859 860 861

static inline pte_t pgd_pte(pgd_t pgd)
{
862
	return __pte_raw(pgd_raw(pgd));
863 864 865 866
}

static inline pgd_t pte_pgd(pte_t pte)
{
867
	return __pgd_raw(pte_raw(pte));
868 869
}

870 871 872 873 874 875 876
static inline int pgd_bad(pgd_t pgd)
{
	if (radix_enabled())
		return radix__pgd_bad(pgd);
	return hash__pgd_bad(pgd);
}

877 878
extern struct page *pgd_page(pgd_t pgd);

879 880 881 882 883 884 885 886 887 888 889 890
/* Pointers in the page table tree are physical addresses */
#define __pgtable_ptr_val(ptr)	__pa(ptr)

#define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
#define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
#define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)

#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))

891 892 893 894 895 896 897
/*
 * Find an entry in a page-table-directory.  We combine the address region
 * (the high order N bits) and the pgd portion of the address.
 */

#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))

898 899
#define pud_offset(pgdp, addr)	\
	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
900
#define pmd_offset(pudp,addr) \
901
	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
902
#define pte_offset_kernel(dir,addr) \
903
	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
904 905 906 907 908 909 910 911 912 913 914 915

#define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
#define pte_unmap(pte)			do { } while(0)

/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

#define pte_ERROR(e) \
	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
916 917
#define pud_ERROR(e) \
	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
918 919 920
#define pgd_ERROR(e) \
	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))

921 922
static inline int map_kernel_page(unsigned long ea, unsigned long pa,
				  unsigned long flags)
923
{
924 925 926 927 928 929 930
	if (radix_enabled()) {
#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
#endif
		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
	}
931
	return hash__map_kernel_page(ea, pa, flags);
932
}
933 934 935 936

static inline int __meminit vmemmap_create_mapping(unsigned long start,
						   unsigned long page_size,
						   unsigned long phys)
937
{
938 939
	if (radix_enabled())
		return radix__vmemmap_create_mapping(start, page_size, phys);
940
	return hash__vmemmap_create_mapping(start, page_size, phys);
941
}
942 943 944 945

#ifdef CONFIG_MEMORY_HOTPLUG
static inline void vmemmap_remove_mapping(unsigned long start,
					  unsigned long page_size)
946
{
947 948
	if (radix_enabled())
		return radix__vmemmap_remove_mapping(start, page_size);
949
	return hash__vmemmap_remove_mapping(start, page_size);
950
}
951
#endif
952 953 954 955
struct page *realmode_pfn_to_page(unsigned long pfn);

static inline pte_t pmd_pte(pmd_t pmd)
{
956
	return __pte_raw(pmd_raw(pmd));
957 958 959 960
}

static inline pmd_t pte_pmd(pte_t pte)
{
961
	return __pmd_raw(pte_raw(pte));
962 963 964 965 966 967 968 969 970 971 972 973
}

static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
	return (pte_t *)pmd;
}
#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
974
#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
975 976
#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
977 978
#define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
#define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
979 980 981 982 983 984 985

#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */

986 987 988 989 990 991
#ifdef CONFIG_NUMA_BALANCING
static inline int pmd_protnone(pmd_t pmd)
{
	return pte_protnone(pmd_pte(pmd));
}
#endif /* CONFIG_NUMA_BALANCING */
992 993 994

#define __HAVE_ARCH_PMD_WRITE
#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
995
#define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
996
#define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
997

998 999 1000 1001 1002 1003 1004 1005
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
		       pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
				 pmd_t *pmd);
1006 1007 1008
extern int hash__has_transparent_hugepage(void);
static inline int has_transparent_hugepage(void)
{
1009 1010
	if (radix_enabled())
		return radix__has_transparent_hugepage();
1011 1012
	return hash__has_transparent_hugepage();
}
1013
#define has_transparent_hugepage has_transparent_hugepage
1014

1015 1016 1017
static inline unsigned long
pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
		    unsigned long clr, unsigned long set)
1018
{
1019 1020
	if (radix_enabled())
		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1021 1022 1023 1024 1025
	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
}

static inline int pmd_large(pmd_t pmd)
{
1026
	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
}

static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
/*
 * For radix we should always find H_PAGE_HASHPTE zero. Hence
 * the below will work for radix too
 */
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
					      unsigned long addr, pmd_t *pmdp)
{
	unsigned long old;

1042
	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1043 1044 1045 1046 1047 1048 1049 1050 1051
		return 0;
	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
	return ((old & _PAGE_ACCESSED) != 0);
}

#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pmd_t *pmdp)
{
1052
	if (__pmd_write((*pmdp)))
1053 1054 1055
		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
	else if (unlikely(pmd_savedwrite(*pmdp)))
		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static inline int pmd_trans_huge(pmd_t pmd)
{
	if (radix_enabled())
		return radix__pmd_trans_huge(pmd);
	return hash__pmd_trans_huge(pmd);
}

#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
	if (radix_enabled())
		return radix__pmd_same(pmd_a, pmd_b);
	return hash__pmd_same(pmd_a, pmd_b);
}

1073 1074
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
1075 1076 1077
	if (radix_enabled())
		return radix__pmd_mkhuge(pmd);
	return hash__pmd_mkhuge(pmd);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
}

#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp,
				 pmd_t entry, int dirty);

#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
				     unsigned long address, pmd_t *pmdp);

#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1090 1091 1092
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
					    unsigned long addr, pmd_t *pmdp)
{
1093 1094
	if (radix_enabled())
		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1095 1096
	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
}
1097

1098 1099 1100
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
					unsigned long address, pmd_t *pmdp)
{
1101 1102
	if (radix_enabled())
		return radix__pmdp_collapse_flush(vma, address, pmdp);
1103 1104
	return hash__pmdp_collapse_flush(vma, address, pmdp);
}
1105 1106 1107
#define pmdp_collapse_flush pmdp_collapse_flush

#define __HAVE_ARCH_PGTABLE_DEPOSIT
1108 1109 1110
static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
					      pmd_t *pmdp, pgtable_t pgtable)
{
1111 1112
	if (radix_enabled())
		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1113 1114 1115
	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
}

1116
#define __HAVE_ARCH_PGTABLE_WITHDRAW
1117 1118 1119
static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
						    pmd_t *pmdp)
{
1120 1121
	if (radix_enabled())
		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1122 1123
	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
}
1124 1125 1126 1127 1128

#define __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
			    pmd_t *pmdp);

1129
#define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1130 1131 1132
static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
					   unsigned long address, pmd_t *pmdp)
{
1133 1134
	if (radix_enabled())
		return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1135 1136
	return hash__pmdp_huge_split_prepare(vma, address, pmdp);
}
1137

1138 1139 1140
#define pmd_move_must_withdraw pmd_move_must_withdraw
struct spinlock;
static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1141 1142
					 struct spinlock *old_pmd_ptl,
					 struct vm_area_struct *vma)
1143
{
1144 1145
	if (radix_enabled())
		return false;
1146 1147 1148 1149 1150 1151 1152
	/*
	 * Archs like ppc64 use pgtable to store per pmd
	 * specific information. So when we switch the pmd,
	 * we should also withdraw and deposit the pgtable
	 */
	return true;
}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162


#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
static inline bool arch_needs_pgtable_deposit(void)
{
	if (radix_enabled())
		return false;
	return true;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
}

static inline int pmd_devmap(pmd_t pmd)
{
	return pte_devmap(pmd_pte(pmd));
}

static inline int pud_devmap(pud_t pud)
{
	return 0;
}

static inline int pgd_devmap(pgd_t pgd)
{
	return 0;
}
1183
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

static inline const int pud_pfn(pud_t pud)
{
	/*
	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
	 * check so this should never be used. If it grows another user we
	 * want to know about it.
	 */
	BUILD_BUG();
	return 0;
}
1195

1196 1197
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */