rt2800lib.c 101.7 KB
Newer Older
1
/*
2
	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
I
Ivo van Doorn 已提交
3
	Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
4
	Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
5
	Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6

7 8 9 10 11 12 13
	Based on the original rt2800pci.c and rt2800usb.c.
	  Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	  Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	  Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	  Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	  Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	  Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
	  <http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800lib
	Abstract: rt2800 generic device routines.
 */

37
#include <linux/crc-ccitt.h>
38 39
#include <linux/kernel.h>
#include <linux/module.h>
40
#include <linux/slab.h>
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

#include "rt2x00.h"
#include "rt2800lib.h"
#include "rt2800.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2800_register_read and rt2800_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 * The _lock versions must be used if you already hold the csr_mutex
 */
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RFCSR(__dev, __reg) \
	rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
	rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
			    H2M_MAILBOX_CSR_OWNER, (__reg))

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
{
	/* check for rt2872 on SoC */
	if (!rt2x00_is_soc(rt2x00dev) ||
	    !rt2x00_rt(rt2x00dev, RT2872))
		return false;

	/* we know for sure that these rf chipsets are used on rt305x boards */
	if (rt2x00_rf(rt2x00dev, RF3020) ||
	    rt2x00_rf(rt2x00dev, RF3021) ||
	    rt2x00_rf(rt2x00dev, RF3022))
		return true;

	NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
	return false;
}

87 88
static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
			     const unsigned int word, const u8 value)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
104
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
105 106 107 108 109 110 111

		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

112 113
static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
			    const unsigned int word, u8 *value)
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
132
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
133 134 135 136 137 138 139 140 141 142 143

		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);

		WAIT_FOR_BBP(rt2x00dev, &reg);
	}

	*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);

	mutex_unlock(&rt2x00dev->csr_mutex);
}

144 145
static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
			       const unsigned int word, const u8 value)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RFCSR becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);

		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

168 169
static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
			      const unsigned int word, u8 *value)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RFCSR becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);

		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);

		WAIT_FOR_RFCSR(rt2x00dev, &reg);
	}

	*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);

	mutex_unlock(&rt2x00dev->csr_mutex);
}

199 200
static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
			    const unsigned int word, const u32 value)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);

		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
			const u8 command, const u8 token,
			const u8 arg0, const u8 arg1)
{
	u32 reg;

230
	/*
231
	 * SOC devices don't support MCU requests.
232
	 */
233
	if (rt2x00_is_soc(rt2x00dev))
234
		return;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
		rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);

		reg = 0;
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
		rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}
EXPORT_SYMBOL_GPL(rt2800_mcu_request);
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u32 reg;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
		if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
		    !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
			return 0;

		msleep(1);
	}

	ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
	return -EACCES;
}
EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
{
	u16 fw_crc;
	u16 crc;

	/*
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc ccitt algorithm.
	 * This will return the same value as the legacy driver which
	 * used bit ordering reversion on the both the firmware bytes
	 * before input input as well as on the final output.
	 * Obviously using crc ccitt directly is much more efficient.
	 */
	crc = crc_ccitt(~0, data, len - 2);

	/*
	 * There is a small difference between the crc-itu-t + bitrev and
	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
	 * will be swapped, use swab16 to convert the crc to the correct
	 * value.
	 */
	crc = swab16(crc);

	return fw_crc == crc;
}

int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
			  const u8 *data, const size_t len)
{
	size_t offset = 0;
	size_t fw_len;
	bool multiple;

	/*
	 * PCI(e) & SOC devices require firmware with a length
	 * of 8kb. USB devices require firmware files with a length
	 * of 4kb. Certain USB chipsets however require different firmware,
	 * which Ralink only provides attached to the original firmware
	 * file. Thus for USB devices, firmware files have a length
	 * which is a multiple of 4kb.
	 */
	if (rt2x00_is_usb(rt2x00dev)) {
		fw_len = 4096;
		multiple = true;
	} else {
		fw_len = 8192;
		multiple = true;
	}

	/*
	 * Validate the firmware length
	 */
	if (len != fw_len && (!multiple || (len % fw_len) != 0))
		return FW_BAD_LENGTH;

	/*
	 * Check if the chipset requires one of the upper parts
	 * of the firmware.
	 */
	if (rt2x00_is_usb(rt2x00dev) &&
	    !rt2x00_rt(rt2x00dev, RT2860) &&
	    !rt2x00_rt(rt2x00dev, RT2872) &&
	    !rt2x00_rt(rt2x00dev, RT3070) &&
	    ((len / fw_len) == 1))
		return FW_BAD_VERSION;

	/*
	 * 8kb firmware files must be checked as if it were
	 * 2 separate firmware files.
	 */
	while (offset < len) {
		if (!rt2800_check_firmware_crc(data + offset, fw_len))
			return FW_BAD_CRC;

		offset += fw_len;
	}

	return FW_OK;
}
EXPORT_SYMBOL_GPL(rt2800_check_firmware);

int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
			 const u8 *data, const size_t len)
{
	unsigned int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
		if (reg && reg != ~0)
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

	if (rt2x00_is_pci(rt2x00dev))
		rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);

	/*
	 * Disable DMA, will be reenabled later when enabling
	 * the radio.
	 */
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);

	/*
	 * Write firmware to the device.
	 */
	rt2800_drv_write_firmware(rt2x00dev, data, len);

	/*
	 * Wait for device to stabilize.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "PBF system register not ready.\n");
		return -EBUSY;
	}

	/*
	 * Initialize firmware.
	 */
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	msleep(1);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_load_firmware);

431 432
void rt2800_write_tx_data(struct queue_entry *entry,
			  struct txentry_desc *txdesc)
433
{
434
	__le32 *txwi = rt2800_drv_get_txwi(entry);
435 436 437 438 439 440 441 442
	u32 word;

	/*
	 * Initialize TX Info descriptor
	 */
	rt2x00_desc_read(txwi, 0, &word);
	rt2x00_set_field32(&word, TXWI_W0_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
443 444
	rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
			   test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
	rt2x00_set_field32(&word, TXWI_W0_TS,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_AMPDU,
			   test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
	rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->txop);
	rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
	rt2x00_set_field32(&word, TXWI_W0_BW,
			   test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
			   test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
	rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
	rt2x00_desc_write(txwi, 0, word);

	rt2x00_desc_read(txwi, 1, &word);
	rt2x00_set_field32(&word, TXWI_W1_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_NSEQ,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
	rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
			   test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
			   txdesc->key_idx : 0xff);
	rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
			   txdesc->length);
	rt2x00_set_field32(&word, TXWI_W1_PACKETID, txdesc->queue + 1);
	rt2x00_desc_write(txwi, 1, word);

	/*
	 * Always write 0 to IV/EIV fields, hardware will insert the IV
	 * from the IVEIV register when TXD_W3_WIV is set to 0.
	 * When TXD_W3_WIV is set to 1 it will use the IV data
	 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
	 * crypto entry in the registers should be used to encrypt the frame.
	 */
	_rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
	_rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
}
485
EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
486

487
static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxwi_w2)
488
{
489 490 491 492 493 494 495 496
	int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
	int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
	int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
	u16 eeprom;
	u8 offset0;
	u8 offset1;
	u8 offset2;

497
	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
	} else {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
	}

	/*
	 * Convert the value from the descriptor into the RSSI value
	 * If the value in the descriptor is 0, it is considered invalid
	 * and the default (extremely low) rssi value is assumed
	 */
	rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
	rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
	rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;

	/*
	 * mac80211 only accepts a single RSSI value. Calculating the
	 * average doesn't deliver a fair answer either since -60:-60 would
	 * be considered equally good as -50:-70 while the second is the one
	 * which gives less energy...
	 */
	rssi0 = max(rssi0, rssi1);
	return max(rssi0, rssi2);
}

void rt2800_process_rxwi(struct queue_entry *entry,
			 struct rxdone_entry_desc *rxdesc)
{
	__le32 *rxwi = (__le32 *) entry->skb->data;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	u32 word;

	rt2x00_desc_read(rxwi, 0, &word);

	rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
	rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);

	rt2x00_desc_read(rxwi, 1, &word);

	if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
		rxdesc->flags |= RX_FLAG_SHORT_GI;

	if (rt2x00_get_field32(word, RXWI_W1_BW))
		rxdesc->flags |= RX_FLAG_40MHZ;

	/*
	 * Detect RX rate, always use MCS as signal type.
	 */
	rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
	rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
	rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);

	/*
	 * Mask of 0x8 bit to remove the short preamble flag.
	 */
	if (rxdesc->rate_mode == RATE_MODE_CCK)
		rxdesc->signal &= ~0x8;

	rt2x00_desc_read(rxwi, 2, &word);

564 565 566 567
	/*
	 * Convert descriptor AGC value to RSSI value.
	 */
	rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
568 569 570 571

	/*
	 * Remove RXWI descriptor from start of buffer.
	 */
572
	skb_pull(entry->skb, RXWI_DESC_SIZE);
573 574 575
}
EXPORT_SYMBOL_GPL(rt2800_process_rxwi);

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
void rt2800_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
	__le32 *txwi;
	struct txdone_entry_desc txdesc;
	u32 word;
	u32 reg;
	int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
	u16 mcs, real_mcs;
	int i;

	/*
	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
	 * flag is not set anymore.
	 *
	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
	 * tx ring size for now.
	 */
	for (i = 0; i < TX_ENTRIES; i++) {
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
			break;

		wcid	= rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
		ack	= rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
		pid	= rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);

		/*
		 * Skip this entry when it contains an invalid
		 * queue identication number.
		 */
		if (pid <= 0 || pid > QID_RX)
			continue;

		queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
		if (unlikely(!queue))
			continue;

		/*
		 * Inside each queue, we process each entry in a chronological
		 * order. We first check that the queue is not empty.
		 */
		entry = NULL;
		while (!rt2x00queue_empty(queue)) {
			entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
			if (!test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
				break;

			rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
		}

		if (!entry || rt2x00queue_empty(queue))
			break;

		/*
		 * Check if we got a match by looking at WCID/ACK/PID
		 * fields
		 */
		txwi = rt2800_drv_get_txwi(entry);

		rt2x00_desc_read(txwi, 1, &word);
		tx_wcid	= rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
		tx_ack	= rt2x00_get_field32(word, TXWI_W1_ACK);
		tx_pid	= rt2x00_get_field32(word, TXWI_W1_PACKETID);

		if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
			WARNING(rt2x00dev, "invalid TX_STA_FIFO content");

		/*
		 * Obtain the status about this packet.
		 */
		txdesc.flags = 0;
		rt2x00_desc_read(txwi, 0, &word);
		mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
		mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
		real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);

		/*
		 * Ralink has a retry mechanism using a global fallback
		 * table. We setup this fallback table to try the immediate
		 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
		 * always contains the MCS used for the last transmission, be
		 * it successful or not.
		 */
		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
			/*
			 * Transmission succeeded. The number of retries is
			 * mcs - real_mcs
			 */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
		} else {
			/*
			 * Transmission failed. The number of retries is
			 * always 7 in this case (for a total number of 8
			 * frames sent).
			 */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
			txdesc.retry = rt2x00dev->long_retry;
		}

		/*
		 * the frame was retried at least once
		 * -> hw used fallback rates
		 */
		if (txdesc.retry)
			__set_bit(TXDONE_FALLBACK, &txdesc.flags);

		rt2x00lib_txdone(entry, &txdesc);
	}
}
EXPORT_SYMBOL_GPL(rt2800_txdone);

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	unsigned int beacon_base;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);

	/*
	 * Add space for the TXWI in front of the skb.
	 */
	skb_push(entry->skb, TXWI_DESC_SIZE);
	memset(entry->skb, 0, TXWI_DESC_SIZE);

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
	skbdesc->desc = entry->skb->data;
	skbdesc->desc_len = TXWI_DESC_SIZE;

	/*
	 * Add the TXWI for the beacon to the skb.
	 */
723
	rt2800_write_tx_data(entry, txdesc);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);

	/*
	 * Write entire beacon with TXWI to register.
	 */
	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
	rt2800_register_multiwrite(rt2x00dev, beacon_base,
				   entry->skb->data, entry->skb->len);

	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);

	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}
751
EXPORT_SYMBOL_GPL(rt2800_write_beacon);
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766
static void inline rt2800_clear_beacon(struct rt2x00_dev *rt2x00dev,
				       unsigned int beacon_base)
{
	int i;

	/*
	 * For the Beacon base registers we only need to clear
	 * the whole TXWI which (when set to 0) will invalidate
	 * the entire beacon.
	 */
	for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
		rt2800_register_write(rt2x00dev, beacon_base + i, 0);
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
const struct rt2x00debug rt2800_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
		.read		= rt2800_register_read,
		.write		= rt2800_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_base	= EEPROM_BASE,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2800_bbp_read,
		.write		= rt2800_bbp_write,
		.word_base	= BBP_BASE,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2800_rf_write,
		.word_base	= RF_BASE,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
	return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
}
EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);

#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt2800_brightness_set(struct led_classdev *led_cdev,
				  enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
	unsigned int polarity =
		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
				   EEPROM_FREQ_LED_POLARITY);
	unsigned int ledmode =
		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
				   EEPROM_FREQ_LED_MODE);

	if (led->type == LED_TYPE_RADIO) {
		rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
				      enabled ? 0x20 : 0);
	} else if (led->type == LED_TYPE_ASSOC) {
		rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
				      enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * The specs tell us the following levels:
		 *	0, 1 ,3, 7, 15, 31
		 * to determine the level in a simple way we can simply
		 * work with bitshifting:
		 *	(1 << level) - 1
		 */
		rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
				      (1 << brightness / (LED_FULL / 6)) - 1,
				      polarity);
	}
}

static int rt2800_blink_set(struct led_classdev *led_cdev,
			    unsigned long *delay_on, unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
	rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
	rt2800_register_write(led->rt2x00dev, LED_CFG, reg);

	return 0;
}

864
static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
		     struct rt2x00_led *led, enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2800_brightness_set;
	led->led_dev.blink_set = rt2800_blink_set;
	led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */

/*
 * Configuration handlers.
 */
static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_crypto *crypto,
				    struct ieee80211_key_conf *key)
{
	struct mac_wcid_entry wcid_entry;
	struct mac_iveiv_entry iveiv_entry;
	u32 offset;
	u32 reg;

	offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	if (crypto->cmd == SET_KEY) {
		rt2800_register_read(rt2x00dev, offset, &reg);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
				   !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
		/*
		 * Both the cipher as the BSS Idx numbers are split in a main
		 * value of 3 bits, and a extended field for adding one additional
		 * bit to the value.
		 */
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
				   (crypto->cipher & 0x7));
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
				   (crypto->cipher & 0x8) >> 3);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
				   (crypto->bssidx & 0x7));
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
				   (crypto->bssidx & 0x8) >> 3);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
		rt2800_register_write(rt2x00dev, offset, reg);
	} else {
		rt2800_register_write(rt2x00dev, offset, 0);
	}
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	offset = MAC_IVEIV_ENTRY(key->hw_key_idx);

	memset(&iveiv_entry, 0, sizeof(iveiv_entry));
	if ((crypto->cipher == CIPHER_TKIP) ||
	    (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
	    (crypto->cipher == CIPHER_AES))
		iveiv_entry.iv[3] |= 0x20;
	iveiv_entry.iv[3] |= key->keyidx << 6;
	rt2800_register_multiwrite(rt2x00dev, offset,
				      &iveiv_entry, sizeof(iveiv_entry));

	offset = MAC_WCID_ENTRY(key->hw_key_idx);

	memset(&wcid_entry, 0, sizeof(wcid_entry));
	if (crypto->cmd == SET_KEY)
		memcpy(&wcid_entry, crypto->address, ETH_ALEN);
	rt2800_register_multiwrite(rt2x00dev, offset,
				      &wcid_entry, sizeof(wcid_entry));
}

int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00lib_crypto *crypto,
			     struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 offset;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;

		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		offset = SHARED_KEY_ENTRY(key->hw_key_idx);
		rt2800_register_multiwrite(rt2x00dev, offset,
					      &key_entry, sizeof(key_entry));
	}

	/*
	 * The cipher types are stored over multiple registers
	 * starting with SHARED_KEY_MODE_BASE each word will have
	 * 32 bits and contains the cipher types for 2 bssidx each.
	 * Using the correct defines correctly will cause overhead,
	 * so just calculate the correct offset.
	 */
	field.bit_offset = 4 * (key->hw_key_idx % 8);
	field.bit_mask = 0x7 << field.bit_offset;

	offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);

	rt2800_register_read(rt2x00dev, offset, &reg);
	rt2x00_set_field32(&reg, field,
			   (crypto->cmd == SET_KEY) * crypto->cipher);
	rt2800_register_write(rt2x00dev, offset, reg);

	/*
	 * Update WCID information
	 */
	rt2800_config_wcid_attr(rt2x00dev, crypto, key);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_shared_key);

int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00lib_crypto *crypto,
			       struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	u32 offset;

	if (crypto->cmd == SET_KEY) {
		/*
		 * 1 pairwise key is possible per AID, this means that the AID
		 * equals our hw_key_idx. Make sure the WCID starts _after_ the
		 * last possible shared key entry.
		 */
		if (crypto->aid > (256 - 32))
			return -ENOSPC;

		key->hw_key_idx = 32 + crypto->aid;

		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
		rt2800_register_multiwrite(rt2x00dev, offset,
					      &key_entry, sizeof(key_entry));
	}

	/*
	 * Update WCID information
	 */
	rt2800_config_wcid_attr(rt2x00dev, crypto, key);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);

void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
			  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
			   !(filter_flags & FIF_PSPOLL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
			   !(filter_flags & FIF_CONTROL));
	rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_config_filter);

void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
			struct rt2x00intf_conf *conf, const unsigned int flags)
{
	u32 reg;

	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Clear current synchronisation setup.
		 */
1074 1075
		rt2800_clear_beacon(rt2x00dev,
				    HW_BEACON_OFFSET(intf->beacon->entry_idx));
1076 1077 1078 1079 1080 1081
		/*
		 * Enable synchronisation.
		 */
		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
1082
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE,
1083 1084
				   (conf->sync == TSF_SYNC_ADHOC ||
				    conf->sync == TSF_SYNC_AP_NONE));
1085
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1086 1087 1088 1089 1090 1091

		/*
		 * Enable pre tbtt interrupt for beaconing modes
		 */
		rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER,
1092
				   (conf->sync == TSF_SYNC_AP_NONE));
1093 1094
		rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	}

	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);

		rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
					      conf->mac, sizeof(conf->mac));
	}

	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
1108 1109
		rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
		rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		conf->bssid[1] = cpu_to_le32(reg);

		rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
					      conf->bssid, sizeof(conf->bssid));
	}
}
EXPORT_SYMBOL_GPL(rt2800_config_intf);

void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp)
{
	u32 reg;

	rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
			   !!erp->short_preamble);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
			   !!erp->short_preamble);
	rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);

	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
			   erp->cts_protection ? 2 : 0);
	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);

	rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
				 erp->basic_rates);
	rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);

	rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time);
	rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);

	rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
	rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);

	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
			   erp->beacon_int * 16);
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_config_erp);

void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
{
	u8 r1;
	u8 r3;

	rt2800_bbp_read(rt2x00dev, 1, &r1);
	rt2800_bbp_read(rt2x00dev, 3, &r3);

	/*
	 * Configure the TX antenna.
	 */
	switch ((int)ant->tx) {
	case 1:
		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
		break;
	case 2:
		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
		break;
	case 3:
1172
		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch ((int)ant->rx) {
	case 1:
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
		break;
	case 2:
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
		break;
	case 3:
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
		break;
	}

	rt2800_bbp_write(rt2x00dev, 3, r3);
	rt2800_bbp_write(rt2x00dev, 1, r1);
}
EXPORT_SYMBOL_GPL(rt2800_config_ant);

static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				   struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain;

	if (libconf->rf.channel <= 14) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
	} else if (libconf->rf.channel <= 64) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
	} else if (libconf->rf.channel <= 128) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
	} else {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
	}

	rt2x00dev->lna_gain = lna_gain;
}

1219 1220 1221 1222
static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
{
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

	if (rt2x00dev->default_ant.tx == 1)
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);

	if (rt2x00dev->default_ant.rx == 1) {
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
	} else if (rt2x00dev->default_ant.rx == 2)
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);

	if (rf->channel > 14) {
		/*
		 * When TX power is below 0, we should increase it by 7 to
		 * make it a positive value (Minumum value is -7).
		 * However this means that values between 0 and 7 have
		 * double meaning, and we should set a 7DBm boost flag.
		 */
		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
				   (info->tx_power1 >= 0));

		if (info->tx_power1 < 0)
			info->tx_power1 += 7;

		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A,
				   TXPOWER_A_TO_DEV(info->tx_power1));

		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
				   (info->tx_power2 >= 0));

		if (info->tx_power2 < 0)
			info->tx_power2 += 7;

		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A,
				   TXPOWER_A_TO_DEV(info->tx_power2));
	} else {
		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G,
				   TXPOWER_G_TO_DEV(info->tx_power1));
		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G,
				   TXPOWER_G_TO_DEV(info->tx_power2));
	}

	rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));

	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
}

1288 1289 1290 1291
static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
1292 1293 1294 1295
{
	u8 rfcsr;

	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
1296
	rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
1297 1298

	rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
1299
	rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
1300 1301 1302 1303 1304 1305 1306
	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);

	rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
	rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
			  TXPOWER_G_TO_DEV(info->tx_power1));
	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);

1307 1308 1309 1310 1311
	rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
	rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
			  TXPOWER_G_TO_DEV(info->tx_power2));
	rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);

1312 1313 1314 1315 1316 1317 1318
	rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);

	rt2800_rfcsr_write(rt2x00dev, 24,
			      rt2x00dev->calibration[conf_is_ht40(conf)]);

1319
	rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
1320
	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
1321
	rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}

static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
				  struct ieee80211_conf *conf,
				  struct rf_channel *rf,
				  struct channel_info *info)
{
	u32 reg;
	unsigned int tx_pin;
	u8 bbp;

1333 1334 1335 1336 1337
	if (rt2x00_rf(rt2x00dev, RF2020) ||
	    rt2x00_rf(rt2x00dev, RF3020) ||
	    rt2x00_rf(rt2x00dev, RF3021) ||
	    rt2x00_rf(rt2x00dev, RF3022))
		rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
1338
	else
1339
		rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

	/*
	 * Change BBP settings
	 */
	rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 86, 0);

	if (rf->channel <= 14) {
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
			rt2800_bbp_write(rt2x00dev, 82, 0x62);
			rt2800_bbp_write(rt2x00dev, 75, 0x46);
		} else {
			rt2800_bbp_write(rt2x00dev, 82, 0x84);
			rt2800_bbp_write(rt2x00dev, 75, 0x50);
		}
	} else {
		rt2800_bbp_write(rt2x00dev, 82, 0xf2);

		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
			rt2800_bbp_write(rt2x00dev, 75, 0x46);
		else
			rt2800_bbp_write(rt2x00dev, 75, 0x50);
	}

	rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
1367
	rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
	rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
	rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);

	tx_pin = 0;

	/* Turn on unused PA or LNA when not using 1T or 1R */
	if (rt2x00dev->default_ant.tx != 1) {
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
	}

	/* Turn on unused PA or LNA when not using 1T or 1R */
	if (rt2x00dev->default_ant.rx != 1) {
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
	}

	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);

	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);

	rt2800_bbp_read(rt2x00dev, 4, &bbp);
	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
	rt2800_bbp_write(rt2x00dev, 4, bbp);

	rt2800_bbp_read(rt2x00dev, 3, &bbp);
1400
	rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
1401 1402
	rt2800_bbp_write(rt2x00dev, 3, bbp);

1403
	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		if (conf_is_ht40(conf)) {
			rt2800_bbp_write(rt2x00dev, 69, 0x1a);
			rt2800_bbp_write(rt2x00dev, 70, 0x0a);
			rt2800_bbp_write(rt2x00dev, 73, 0x16);
		} else {
			rt2800_bbp_write(rt2x00dev, 69, 0x16);
			rt2800_bbp_write(rt2x00dev, 70, 0x08);
			rt2800_bbp_write(rt2x00dev, 73, 0x11);
		}
	}

	msleep(1);
}

static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
1419
				  const int max_txpower)
1420
{
1421 1422 1423 1424
	u8 txpower;
	u8 max_value = (u8)max_txpower;
	u16 eeprom;
	int i;
1425 1426
	u32 reg;
	u8 r1;
1427
	u32 offset;
1428

1429 1430 1431
	/*
	 * set to normal tx power mode: +/- 0dBm
	 */
1432
	rt2800_bbp_read(rt2x00dev, 1, &r1);
1433
	rt2x00_set_field8(&r1, BBP1_TX_POWER, 0);
1434 1435
	rt2800_bbp_write(rt2x00dev, 1, r1);

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * The eeprom contains the tx power values for each rate. These
	 * values map to 100% tx power. Each 16bit word contains four tx
	 * power values and the order is the same as used in the TX_PWR_CFG
	 * registers.
	 */
	offset = TX_PWR_CFG_0;

	for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
		/* just to be safe */
		if (offset > TX_PWR_CFG_4)
			break;

		rt2800_register_read(rt2x00dev, offset, &reg);

		/* read the next four txpower values */
		rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
				   &eeprom);

		/* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
		 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE0);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0,
				   min(txpower, max_value));

		/* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
		 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE1);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1,
				   min(txpower, max_value));

		/* TX_PWR_CFG_0: 55MBS, TX_PWR_CFG_1: 48MBS,
		 * TX_PWR_CFG_2: MCS6,  TX_PWR_CFG_3: MCS14,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE2);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2,
				   min(txpower, max_value));

		/* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
		 * TX_PWR_CFG_2: MCS7,  TX_PWR_CFG_3: MCS15,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE3);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3,
				   min(txpower, max_value));

		/* read the next four txpower values */
		rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
				   &eeprom);

		/* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
		 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE0);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4,
				   min(txpower, max_value));

		/* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
		 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE1);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5,
				   min(txpower, max_value));

		/* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
		 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE2);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6,
				   min(txpower, max_value));

		/* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
		 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE3);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7,
				   min(txpower, max_value));

		rt2800_register_write(rt2x00dev, offset, reg);

		/* next TX_PWR_CFG register */
		offset += 4;
	}
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
				      struct rt2x00lib_conf *libconf)
{
	u32 reg;

	rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
	rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
			   libconf->conf->long_frame_max_tx_count);
	rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
}

static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);

		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
				   libconf->conf->listen_interval - 1);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);

		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
	} else {
		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
1568 1569

		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	}
}

void rt2800_config(struct rt2x00_dev *rt2x00dev,
		   struct rt2x00lib_conf *libconf,
		   const unsigned int flags)
{
	/* Always recalculate LNA gain before changing configuration */
	rt2800_config_lna_gain(rt2x00dev, libconf);

	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
		rt2800_config_channel(rt2x00dev, libconf->conf,
				      &libconf->rf, &libconf->channel);
	if (flags & IEEE80211_CONF_CHANGE_POWER)
		rt2800_config_txpower(rt2x00dev, libconf->conf->power_level);
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2800_config_retry_limit(rt2x00dev, libconf);
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2800_config_ps(rt2x00dev, libconf);
}
EXPORT_SYMBOL_GPL(rt2800_config);

/*
 * Link tuning
 */
void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
	qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
}
EXPORT_SYMBOL_GPL(rt2800_link_stats);

static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
{
	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
1610
		if (rt2x00_rt(rt2x00dev, RT3070) ||
1611
		    rt2x00_rt(rt2x00dev, RT3071) ||
1612 1613
		    rt2x00_rt(rt2x00dev, RT3090) ||
		    rt2x00_rt(rt2x00dev, RT3390))
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
			return 0x1c + (2 * rt2x00dev->lna_gain);
		else
			return 0x2e + rt2x00dev->lna_gain;
	}

	if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
		return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
	else
		return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
}

static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual, u8 vgc_level)
{
	if (qual->vgc_level != vgc_level) {
		rt2800_bbp_write(rt2x00dev, 66, vgc_level);
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
	}
}

void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
{
	rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
}
EXPORT_SYMBOL_GPL(rt2800_reset_tuner);

void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
		       const u32 count)
{
1644
	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		return;

	/*
	 * When RSSI is better then -80 increase VGC level with 0x10
	 */
	rt2800_set_vgc(rt2x00dev, qual,
		       rt2800_get_default_vgc(rt2x00dev) +
		       ((qual->rssi > -80) * 0x10));
}
EXPORT_SYMBOL_GPL(rt2800_link_tuner);
1655 1656 1657 1658 1659 1660 1661

/*
 * Initialization functions.
 */
int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
1662
	u16 eeprom;
1663
	unsigned int i;
1664
	int ret;
1665

1666 1667 1668 1669 1670 1671 1672 1673
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);

1674 1675 1676
	ret = rt2800_drv_init_registers(rt2x00dev);
	if (ret)
		return ret;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
	rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);

	rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
	rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);

	rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
	rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);

	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1698
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
1699 1700 1701 1702 1703 1704 1705
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);

1706 1707 1708 1709 1710 1711 1712
	rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);

	rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
	rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);

1713
	if (rt2x00_rt(rt2x00dev, RT3071) ||
1714 1715
	    rt2x00_rt(rt2x00dev, RT3090) ||
	    rt2x00_rt(rt2x00dev, RT3390)) {
1716 1717
		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
1718
		if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
1719 1720
		    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
		    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
			rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
			if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST))
				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
						      0x0000002c);
			else
				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
						      0x0000000f);
		} else {
			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
		}
	} else if (rt2x00_rt(rt2x00dev, RT3070)) {
1732
		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
1733 1734 1735 1736 1737 1738 1739 1740

		if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
			rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
		} else {
			rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
		}
1741 1742 1743 1744
	} else if (rt2800_is_305x_soc(rt2x00dev)) {
		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
		rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000001f);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	} else {
		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
	}

	rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
	rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
	rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);

	rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
1763
	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
1764 1765 1766 1767 1768
	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
	rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);

	rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
	rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
1769
	if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
1770
	    rt2x00_rt(rt2x00dev, RT2883) ||
1771
	    rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
1772 1773 1774 1775 1776 1777 1778
		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
	else
		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
	rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	rt2800_register_read(rt2x00dev, LED_CFG, &reg);
	rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
	rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
	rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
	rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
	rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
	rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
	rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
	rt2800_register_write(rt2x00dev, LED_CFG, reg);

1789 1790
	rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);

1791 1792 1793 1794 1795 1796 1797 1798 1799
	rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
	rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
	rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
	rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
	rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
	rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);

1800 1801
	rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
1802
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
1803 1804
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
1805
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
1806 1807 1808 1809 1810
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
	rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);

	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
1811
	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
1812 1813 1814 1815 1816
	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
1817
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
1818
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
1819 1820
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
1821 1822 1823
	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
1824
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
1825 1826 1827 1828 1829
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
1830
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
1831
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
1832 1833
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
1846
	rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
1847 1848 1849 1850
	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
1851 1852
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL,
			   !rt2x00_is_usb(rt2x00dev));
1853 1854 1855 1856 1857 1858 1859
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
1860
	rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
1873
	rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
1886
	rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
1887 1888
	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);

1889
	if (rt2x00_is_usb(rt2x00dev)) {
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);

		rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
		rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
	}

	rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f);
	rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);

	rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
	rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
			   IEEE80211_MAX_RTS_THRESHOLD);
	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);

	rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
1916

1917 1918 1919 1920 1921 1922 1923
	/*
	 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
	 * time should be set to 16. However, the original Ralink driver uses
	 * 16 for both and indeed using a value of 10 for CCK SIFS results in
	 * connection problems with 11g + CTS protection. Hence, use the same
	 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
	 */
1924
	rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
1925 1926
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
1927 1928 1929 1930 1931
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
	rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	/*
	 * ASIC will keep garbage value after boot, clear encryption keys.
	 */
	for (i = 0; i < 4; i++)
		rt2800_register_write(rt2x00dev,
					 SHARED_KEY_MODE_ENTRY(i), 0);

	for (i = 0; i < 256; i++) {
		u32 wcid[2] = { 0xffffffff, 0x00ffffff };
		rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
					      wcid, sizeof(wcid));

		rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
		rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
	}

	/*
	 * Clear all beacons
	 */
1953 1954 1955 1956 1957 1958 1959 1960
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE0);
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE1);
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE2);
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE3);
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE4);
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE5);
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE6);
	rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE7);
1961

1962
	if (rt2x00_is_usb(rt2x00dev)) {
1963 1964 1965
		rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
		rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
		rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	}

	rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
	rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);

	rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
	rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);

	rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
	rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);

	rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
	rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);

	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
	rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
	rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
	rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
	rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
	rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);

2020 2021 2022 2023 2024 2025 2026
	/*
	 * Setup leadtime for pre tbtt interrupt to 6ms
	 */
	rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
	rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
	rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_init_registers);

static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u32 reg;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
		if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
			return 0;

		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
	return -EACCES;
}

static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u8 value;

	/*
	 * BBP was enabled after firmware was loaded,
	 * but we need to reactivate it now.
	 */
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	msleep(1);

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2800_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
			return 0;
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
}

int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
		     rt2800_wait_bbp_ready(rt2x00dev)))
		return -EACCES;

2083 2084 2085
	if (rt2800_is_305x_soc(rt2x00dev))
		rt2800_bbp_write(rt2x00dev, 31, 0x08);

2086 2087
	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
	rt2800_bbp_write(rt2x00dev, 66, 0x38);
2088 2089 2090 2091 2092 2093 2094 2095 2096

	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
		rt2800_bbp_write(rt2x00dev, 69, 0x16);
		rt2800_bbp_write(rt2x00dev, 73, 0x12);
	} else {
		rt2800_bbp_write(rt2x00dev, 69, 0x12);
		rt2800_bbp_write(rt2x00dev, 73, 0x10);
	}

2097
	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
2098

2099
	if (rt2x00_rt(rt2x00dev, RT3070) ||
2100
	    rt2x00_rt(rt2x00dev, RT3071) ||
2101 2102
	    rt2x00_rt(rt2x00dev, RT3090) ||
	    rt2x00_rt(rt2x00dev, RT3390)) {
2103 2104 2105
		rt2800_bbp_write(rt2x00dev, 79, 0x13);
		rt2800_bbp_write(rt2x00dev, 80, 0x05);
		rt2800_bbp_write(rt2x00dev, 81, 0x33);
2106 2107 2108
	} else if (rt2800_is_305x_soc(rt2x00dev)) {
		rt2800_bbp_write(rt2x00dev, 78, 0x0e);
		rt2800_bbp_write(rt2x00dev, 80, 0x08);
2109 2110 2111 2112
	} else {
		rt2800_bbp_write(rt2x00dev, 81, 0x37);
	}

2113 2114
	rt2800_bbp_write(rt2x00dev, 82, 0x62);
	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
2115

2116
	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
2117 2118 2119 2120
		rt2800_bbp_write(rt2x00dev, 84, 0x19);
	else
		rt2800_bbp_write(rt2x00dev, 84, 0x99);

2121 2122 2123
	rt2800_bbp_write(rt2x00dev, 86, 0x00);
	rt2800_bbp_write(rt2x00dev, 91, 0x04);
	rt2800_bbp_write(rt2x00dev, 92, 0x00);
2124

2125
	if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
2126
	    rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
2127
	    rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
2128 2129
	    rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
	    rt2800_is_305x_soc(rt2x00dev))
2130 2131 2132 2133
		rt2800_bbp_write(rt2x00dev, 103, 0xc0);
	else
		rt2800_bbp_write(rt2x00dev, 103, 0x00);

2134 2135 2136 2137
	if (rt2800_is_305x_soc(rt2x00dev))
		rt2800_bbp_write(rt2x00dev, 105, 0x01);
	else
		rt2800_bbp_write(rt2x00dev, 105, 0x05);
2138
	rt2800_bbp_write(rt2x00dev, 106, 0x35);
2139

2140
	if (rt2x00_rt(rt2x00dev, RT3071) ||
2141 2142
	    rt2x00_rt(rt2x00dev, RT3090) ||
	    rt2x00_rt(rt2x00dev, RT3390)) {
2143
		rt2800_bbp_read(rt2x00dev, 138, &value);
2144

2145 2146 2147 2148 2149
		rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1)
			value |= 0x20;
		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1)
			value &= ~0x02;
2150

2151
		rt2800_bbp_write(rt2x00dev, 138, value);
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	}


	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2800_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_init_bbp);

static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
				bool bw40, u8 rfcsr24, u8 filter_target)
{
	unsigned int i;
	u8 bbp;
	u8 rfcsr;
	u8 passband;
	u8 stopband;
	u8 overtuned = 0;

	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);

	rt2800_bbp_read(rt2x00dev, 4, &bbp);
	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
	rt2800_bbp_write(rt2x00dev, 4, bbp);

	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);

	/*
	 * Set power & frequency of passband test tone
	 */
	rt2800_bbp_write(rt2x00dev, 24, 0);

	for (i = 0; i < 100; i++) {
		rt2800_bbp_write(rt2x00dev, 25, 0x90);
		msleep(1);

		rt2800_bbp_read(rt2x00dev, 55, &passband);
		if (passband)
			break;
	}

	/*
	 * Set power & frequency of stopband test tone
	 */
	rt2800_bbp_write(rt2x00dev, 24, 0x06);

	for (i = 0; i < 100; i++) {
		rt2800_bbp_write(rt2x00dev, 25, 0x90);
		msleep(1);

		rt2800_bbp_read(rt2x00dev, 55, &stopband);

		if ((passband - stopband) <= filter_target) {
			rfcsr24++;
			overtuned += ((passband - stopband) == filter_target);
		} else
			break;

		rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
	}

	rfcsr24 -= !!overtuned;

	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
	return rfcsr24;
}

int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
{
	u8 rfcsr;
	u8 bbp;
2233 2234
	u32 reg;
	u16 eeprom;
2235

2236
	if (!rt2x00_rt(rt2x00dev, RT3070) &&
2237
	    !rt2x00_rt(rt2x00dev, RT3071) &&
2238
	    !rt2x00_rt(rt2x00dev, RT3090) &&
2239
	    !rt2x00_rt(rt2x00dev, RT3390) &&
2240
	    !rt2800_is_305x_soc(rt2x00dev))
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		return 0;

	/*
	 * Init RF calibration.
	 */
	rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
	msleep(1);
	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);

2253
	if (rt2x00_rt(rt2x00dev, RT3070) ||
2254 2255
	    rt2x00_rt(rt2x00dev, RT3071) ||
	    rt2x00_rt(rt2x00dev, RT3090)) {
2256 2257 2258 2259 2260
		rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
		rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
		rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
		rt2800_rfcsr_write(rt2x00dev, 7, 0x70);
		rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
2261
		rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
		rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
		rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
		rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
		rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
		rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
		rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
		rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
		rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
		rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
		rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
		rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
		rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
2275 2276 2277 2278 2279
	} else if (rt2x00_rt(rt2x00dev, RT3390)) {
		rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
		rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
		rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
		rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
2280
		rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
2281 2282 2283 2284 2285 2286
		rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
		rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
		rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
		rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
		rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
2287
		rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
2288 2289
		rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
		rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
2290
		rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
2291 2292 2293 2294 2295 2296 2297
		rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
		rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
		rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
		rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
		rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
		rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
		rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
2298
		rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
2299
		rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
2300
		rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
2301 2302 2303 2304 2305 2306 2307
		rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
		rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
		rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
		rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
		rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
		rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
2308
	} else if (rt2800_is_305x_soc(rt2x00dev)) {
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
		rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
		rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
		rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
		rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
		rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
		rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
		rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
		rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
		rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
		rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
		rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
		rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
		rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
		rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
		rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
		rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
		rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
		rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
		rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
		rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
		rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
		rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
		rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
		rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
		rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
		rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
		rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
		rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
2339 2340 2341
		rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
		return 0;
2342 2343 2344 2345 2346 2347 2348
	}

	if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
		rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
		rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
		rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
		rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
2349 2350
	} else if (rt2x00_rt(rt2x00dev, RT3071) ||
		   rt2x00_rt(rt2x00dev, RT3090)) {
2351 2352 2353 2354 2355 2356 2357 2358
		rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
		rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
		rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);

		rt2800_rfcsr_write(rt2x00dev, 31, 0x14);

		rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
		rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
2359 2360
		if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
		    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
2361 2362 2363 2364 2365 2366 2367
			rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
			if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST))
				rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
			else
				rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
		}
		rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
2368 2369 2370 2371
	} else if (rt2x00_rt(rt2x00dev, RT3390)) {
		rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
		rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
		rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
2372 2373 2374 2375 2376
	}

	/*
	 * Set RX Filter calibration for 20MHz and 40MHz
	 */
2377 2378 2379 2380 2381
	if (rt2x00_rt(rt2x00dev, RT3070)) {
		rt2x00dev->calibration[0] =
			rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
		rt2x00dev->calibration[1] =
			rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
2382
	} else if (rt2x00_rt(rt2x00dev, RT3071) ||
2383 2384
		   rt2x00_rt(rt2x00dev, RT3090) ||
		   rt2x00_rt(rt2x00dev, RT3390)) {
2385 2386 2387 2388
		rt2x00dev->calibration[0] =
			rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
		rt2x00dev->calibration[1] =
			rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
2389
	}
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	/*
	 * Set back to initial state
	 */
	rt2800_bbp_write(rt2x00dev, 24, 0);

	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);

	/*
	 * set BBP back to BW20
	 */
	rt2800_bbp_read(rt2x00dev, 4, &bbp);
	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
	rt2800_bbp_write(rt2x00dev, 4, bbp);

2407
	if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
2408
	    rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2409 2410
	    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
	    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
2411 2412 2413 2414 2415 2416 2417 2418
		rt2800_rfcsr_write(rt2x00dev, 27, 0x03);

	rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
	rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
	rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);

	rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
	rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
2419
	if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2420 2421
	    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
	    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
2422
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
2423 2424
			rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
	}
2425 2426 2427 2428 2429 2430 2431
	rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
	if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
		rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
				  rt2x00_get_field16(eeprom,
						   EEPROM_TXMIXER_GAIN_BG_VAL));
	rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	if (rt2x00_rt(rt2x00dev, RT3090)) {
		rt2800_bbp_read(rt2x00dev, 138, &bbp);

		rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1)
			rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
		if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1)
			rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);

		rt2800_bbp_write(rt2x00dev, 138, bbp);
	}

	if (rt2x00_rt(rt2x00dev, RT3071) ||
2445 2446
	    rt2x00_rt(rt2x00dev, RT3090) ||
	    rt2x00_rt(rt2x00dev, RT3390)) {
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
		rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
		rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
		rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
		rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
		rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

		rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
		rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
		rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);

		rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
		rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
		rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);

		rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
		rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
		rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
	}

	if (rt2x00_rt(rt2x00dev, RT3070) || rt2x00_rt(rt2x00dev, RT3071)) {
2469
		rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
2470 2471
		if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
		    rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E))
2472 2473 2474 2475 2476 2477 2478 2479 2480
			rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
		else
			rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
		rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
		rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
		rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
		rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
	}

2481 2482 2483
	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_init_rfcsr);
2484

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);

	return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
}
EXPORT_SYMBOL_GPL(rt2800_efuse_detect);

static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
{
	u32 reg;

2499 2500 2501
	mutex_lock(&rt2x00dev->csr_mutex);

	rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, &reg);
2502 2503 2504
	rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
	rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
	rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
2505
	rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
2506 2507 2508 2509 2510

	/* Wait until the EEPROM has been loaded */
	rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);

	/* Apparently the data is read from end to start */
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
					(u32 *)&rt2x00dev->eeprom[i]);
	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
					(u32 *)&rt2x00dev->eeprom[i + 2]);
	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
					(u32 *)&rt2x00dev->eeprom[i + 4]);
	rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
					(u32 *)&rt2x00dev->eeprom[i + 6]);

	mutex_unlock(&rt2x00dev->csr_mutex);
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
}

void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;

	for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
		rt2800_efuse_read(rt2x00dev, i);
}
EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u16 word;
	u8 *mac;
	u8 default_lna_gain;

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2554
	} else if (rt2x00_rt(rt2x00dev, RT2860) ||
2555
		   rt2x00_rt(rt2x00dev, RT2872)) {
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
		/*
		 * There is a max of 2 RX streams for RT28x0 series
		 */
		if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
			rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
2576 2577
		rt2x00_set_field16(&word, EEPROM_NIC_ANT_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DAC_TEST, 0);
2578 2579 2580 2581 2582 2583 2584
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
	if ((word & 0x00ff) == 0x00ff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2585 2586 2587 2588
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
	}
	if ((word & 0xff00) == 0xff00) {
2589 2590 2591 2592 2593 2594 2595
		rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
				   LED_MODE_TXRX_ACTIVITY);
		rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
2596
		EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	}

	/*
	 * During the LNA validation we are going to use
	 * lna0 as correct value. Note that EEPROM_LNA
	 * is never validated.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
	default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
	if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
	    rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
				   default_lna_gain);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
	if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
	    rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
		rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
				   default_lna_gain);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);

int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));

	if (!rt2x00_rt(rt2x00dev, RT2860) &&
	    !rt2x00_rt(rt2x00dev, RT2872) &&
	    !rt2x00_rt(rt2x00dev, RT2883) &&
	    !rt2x00_rt(rt2x00dev, RT3070) &&
	    !rt2x00_rt(rt2x00dev, RT3071) &&
	    !rt2x00_rt(rt2x00dev, RT3090) &&
	    !rt2x00_rt(rt2x00dev, RT3390) &&
	    !rt2x00_rt(rt2x00dev, RT3572)) {
		ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
		return -ENODEV;
2673
	}
2674

2675 2676 2677 2678 2679 2680 2681
	if (!rt2x00_rf(rt2x00dev, RF2820) &&
	    !rt2x00_rf(rt2x00dev, RF2850) &&
	    !rt2x00_rf(rt2x00dev, RF2720) &&
	    !rt2x00_rf(rt2x00dev, RF2750) &&
	    !rt2x00_rf(rt2x00dev, RF3020) &&
	    !rt2x00_rf(rt2x00dev, RF2020) &&
	    !rt2x00_rf(rt2x00dev, RF3021) &&
2682 2683
	    !rt2x00_rf(rt2x00dev, RF3022) &&
	    !rt2x00_rf(rt2x00dev, RF3052)) {
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
	rt2x00dev->default_ant.tx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
	rt2x00dev->default_ant.rx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);

	/*
	 * Store led settings, for correct led behaviour.
	 */
#ifdef CONFIG_RT2X00_LIB_LEDS
	rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
#endif /* CONFIG_RT2X00_LIB_LEDS */

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_init_eeprom);

2733
/*
2734
 * RF value list for rt28xx
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
 */
static const struct rf_channel rf_vals[] = {
	{ 1,  0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
	{ 2,  0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
	{ 3,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
	{ 4,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
	{ 5,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
	{ 6,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
	{ 7,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
	{ 8,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
	{ 9,  0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
	{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
	{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
	{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
	{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
	{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
	{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
	{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
	{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
	{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
	{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
	{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
	{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
	{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
	{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
	{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
	{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },

	/* 802.11 HyperLan 2 */
	{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
	{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
	{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
	{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
	{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
	{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
	{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
	{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
	{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
	{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
	{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
	{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
	{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
	{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
	{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
	{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },

	/* 802.11 UNII */
	{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
	{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
	{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
	{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
	{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
	{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
	{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
	{ 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
	{ 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
	{ 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
	{ 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },

	/* 802.11 Japan */
	{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
	{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
	{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
	{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
	{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
	{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
	{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
};

/*
2809 2810
 * RF value list for rt3xxx
 * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
2811
 */
2812
static const struct rf_channel rf_vals_3x[] = {
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	{1,  241, 2, 2 },
	{2,  241, 2, 7 },
	{3,  242, 2, 2 },
	{4,  242, 2, 7 },
	{5,  243, 2, 2 },
	{6,  243, 2, 7 },
	{7,  244, 2, 2 },
	{8,  244, 2, 7 },
	{9,  245, 2, 2 },
	{10, 245, 2, 7 },
	{11, 246, 2, 2 },
	{12, 246, 2, 7 },
	{13, 247, 2, 2 },
	{14, 248, 2, 4 },
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

	/* 802.11 UNI / HyperLan 2 */
	{36, 0x56, 0, 4},
	{38, 0x56, 0, 6},
	{40, 0x56, 0, 8},
	{44, 0x57, 0, 0},
	{46, 0x57, 0, 2},
	{48, 0x57, 0, 4},
	{52, 0x57, 0, 8},
	{54, 0x57, 0, 10},
	{56, 0x58, 0, 0},
	{60, 0x58, 0, 4},
	{62, 0x58, 0, 6},
	{64, 0x58, 0, 8},

	/* 802.11 HyperLan 2 */
	{100, 0x5b, 0, 8},
	{102, 0x5b, 0, 10},
	{104, 0x5c, 0, 0},
	{108, 0x5c, 0, 4},
	{110, 0x5c, 0, 6},
	{112, 0x5c, 0, 8},
	{116, 0x5d, 0, 0},
	{118, 0x5d, 0, 2},
	{120, 0x5d, 0, 4},
	{124, 0x5d, 0, 8},
	{126, 0x5d, 0, 10},
	{128, 0x5e, 0, 0},
	{132, 0x5e, 0, 4},
	{134, 0x5e, 0, 6},
	{136, 0x5e, 0, 8},
	{140, 0x5f, 0, 0},

	/* 802.11 UNII */
	{149, 0x5f, 0, 9},
	{151, 0x5f, 0, 11},
	{153, 0x60, 0, 1},
	{157, 0x60, 0, 5},
	{159, 0x60, 0, 7},
	{161, 0x60, 0, 9},
	{165, 0x61, 0, 1},
	{167, 0x61, 0, 3},
	{169, 0x61, 0, 5},
	{171, 0x61, 0, 7},
	{173, 0x61, 0, 9},
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
};

int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	struct channel_info *info;
	char *tx_power1;
	char *tx_power2;
	unsigned int i;
	u16 eeprom;

2883 2884 2885
	/*
	 * Disable powersaving as default on PCI devices.
	 */
2886
	if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
2887 2888
		rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

2889 2890 2891 2892 2893 2894 2895
	/*
	 * Initialize all hw fields.
	 */
	rt2x00dev->hw->flags =
	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
	    IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_SUPPORTS_PS |
2896 2897
	    IEEE80211_HW_PS_NULLFUNC_STACK |
	    IEEE80211_HW_AMPDU_AGGREGATION;
2898 2899 2900 2901 2902 2903

	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	/*
	 * As rt2800 has a global fallback table we cannot specify
	 * more then one tx rate per frame but since the hw will
	 * try several rates (based on the fallback table) we should
	 * still initialize max_rates to the maximum number of rates
	 * we are going to try. Otherwise mac80211 will truncate our
	 * reported tx rates and the rc algortihm will end up with
	 * incorrect data.
	 */
	rt2x00dev->hw->max_rates = 7;
	rt2x00dev->hw->max_rate_tries = 1;

2916 2917 2918 2919 2920 2921 2922 2923
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Initialize hw_mode information.
	 */
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;

2924
	if (rt2x00_rf(rt2x00dev, RF2820) ||
2925
	    rt2x00_rf(rt2x00dev, RF2720)) {
2926 2927
		spec->num_channels = 14;
		spec->channels = rf_vals;
2928 2929
	} else if (rt2x00_rf(rt2x00dev, RF2850) ||
		   rt2x00_rf(rt2x00dev, RF2750)) {
2930 2931 2932
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
		spec->num_channels = ARRAY_SIZE(rf_vals);
		spec->channels = rf_vals;
2933 2934 2935 2936
	} else if (rt2x00_rf(rt2x00dev, RF3020) ||
		   rt2x00_rf(rt2x00dev, RF2020) ||
		   rt2x00_rf(rt2x00dev, RF3021) ||
		   rt2x00_rf(rt2x00dev, RF3022)) {
2937 2938 2939 2940 2941 2942
		spec->num_channels = 14;
		spec->channels = rf_vals_3x;
	} else if (rt2x00_rf(rt2x00dev, RF3052)) {
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
		spec->num_channels = ARRAY_SIZE(rf_vals_3x);
		spec->channels = rf_vals_3x;
2943 2944 2945 2946 2947
	}

	/*
	 * Initialize HT information.
	 */
2948
	if (!rt2x00_rf(rt2x00dev, RF2020))
2949 2950 2951 2952
		spec->ht.ht_supported = true;
	else
		spec->ht.ht_supported = false;

2953
	spec->ht.cap =
2954
	    IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
2955 2956
	    IEEE80211_HT_CAP_GRN_FLD |
	    IEEE80211_HT_CAP_SGI_20 |
2957
	    IEEE80211_HT_CAP_SGI_40;
2958 2959 2960 2961

	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) >= 2)
		spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;

2962 2963 2964 2965
	spec->ht.cap |=
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) <<
		IEEE80211_HT_CAP_RX_STBC_SHIFT;

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	spec->ht.ampdu_factor = 3;
	spec->ht.ampdu_density = 4;
	spec->ht.mcs.tx_params =
	    IEEE80211_HT_MCS_TX_DEFINED |
	    IEEE80211_HT_MCS_TX_RX_DIFF |
	    ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
		IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);

	switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
	case 3:
		spec->ht.mcs.rx_mask[2] = 0xff;
	case 2:
		spec->ht.mcs.rx_mask[1] = 0xff;
	case 1:
		spec->ht.mcs.rx_mask[0] = 0xff;
		spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
		break;
	}

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
	tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);

	for (i = 0; i < 14; i++) {
		info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
		info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
	}

	if (spec->num_channels > 14) {
		tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
		tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);

		for (i = 14; i < spec->num_channels; i++) {
			info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
			info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);

3016 3017 3018
/*
 * IEEE80211 stack callback functions.
 */
3019 3020
void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
			 u16 *iv16)
3021 3022 3023 3024 3025 3026 3027 3028 3029
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct mac_iveiv_entry iveiv_entry;
	u32 offset;

	offset = MAC_IVEIV_ENTRY(hw_key_idx);
	rt2800_register_multiread(rt2x00dev, offset,
				      &iveiv_entry, sizeof(iveiv_entry));

3030 3031
	memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
	memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
3032
}
3033
EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
3034

3035
int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;
	bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);

	rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);

	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);

	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);

	return 0;
}
3071
EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
3072

3073 3074
int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
		   const struct ieee80211_tx_queue_params *params)
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct data_queue *queue;
	struct rt2x00_field32 field;
	int retval;
	u32 reg;
	u32 offset;

	/*
	 * First pass the configuration through rt2x00lib, that will
	 * update the queue settings and validate the input. After that
	 * we are free to update the registers based on the value
	 * in the queue parameter.
	 */
	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
	if (retval)
		return retval;

	/*
	 * We only need to perform additional register initialization
	 * for WMM queues/
	 */
	if (queue_idx >= 4)
		return 0;

	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);

	/* Update WMM TXOP register */
	offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
	field.bit_offset = (queue_idx & 1) * 16;
	field.bit_mask = 0xffff << field.bit_offset;

	rt2800_register_read(rt2x00dev, offset, &reg);
	rt2x00_set_field32(&reg, field, queue->txop);
	rt2800_register_write(rt2x00dev, offset, reg);

	/* Update WMM registers */
	field.bit_offset = queue_idx * 4;
	field.bit_mask = 0xf << field.bit_offset;

	rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
	rt2x00_set_field32(&reg, field, queue->aifs);
	rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);

	rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_min);
	rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);

	rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_max);
	rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);

	/* Update EDCA registers */
	offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);

	rt2800_register_read(rt2x00dev, offset, &reg);
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
	rt2800_register_write(rt2x00dev, offset, reg);

	return 0;
}
3139
EXPORT_SYMBOL_GPL(rt2800_conf_tx);
3140

3141
u64 rt2800_get_tsf(struct ieee80211_hw *hw)
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
	tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
	rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
	tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);

	return tsf;
}
3154
EXPORT_SYMBOL_GPL(rt2800_get_tsf);
3155

3156 3157 3158
int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			enum ieee80211_ampdu_mlme_action action,
			struct ieee80211_sta *sta, u16 tid, u16 *ssn)
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
{
	int ret = 0;

	switch (action) {
	case IEEE80211_AMPDU_RX_START:
	case IEEE80211_AMPDU_RX_STOP:
		/* we don't support RX aggregation yet */
		ret = -ENOTSUPP;
		break;
	case IEEE80211_AMPDU_TX_START:
		ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
		break;
	case IEEE80211_AMPDU_TX_STOP:
		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
		break;
	case IEEE80211_AMPDU_TX_OPERATIONAL:
		break;
	default:
3177
		WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
3178 3179 3180 3181
	}

	return ret;
}
3182
EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
I
Ivo van Doorn 已提交
3183 3184 3185 3186 3187

MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 library");
MODULE_LICENSE("GPL");