percpu.h 24.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
#ifndef __LINUX_PERCPU_H
#define __LINUX_PERCPU_H
3

4
#include <linux/preempt.h>
L
Linus Torvalds 已提交
5
#include <linux/smp.h>
6
#include <linux/cpumask.h>
T
Tejun Heo 已提交
7
#include <linux/pfn.h>
8
#include <linux/init.h>
9

L
Linus Torvalds 已提交
10 11
#include <asm/percpu.h>

T
Tejun Heo 已提交
12
/* enough to cover all DEFINE_PER_CPUs in modules */
13
#ifdef CONFIG_MODULES
T
Tejun Heo 已提交
14
#define PERCPU_MODULE_RESERVE		(8 << 10)
15
#else
T
Tejun Heo 已提交
16
#define PERCPU_MODULE_RESERVE		0
L
Linus Torvalds 已提交
17 18
#endif

T
Tejun Heo 已提交
19
#ifndef PERCPU_ENOUGH_ROOM
20
#define PERCPU_ENOUGH_ROOM						\
T
Tejun Heo 已提交
21 22 23
	(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +	\
	 PERCPU_MODULE_RESERVE)
#endif
24

25 26 27 28 29 30 31
/*
 * Must be an lvalue. Since @var must be a simple identifier,
 * we force a syntax error here if it isn't.
 */
#define get_cpu_var(var) (*({				\
	preempt_disable();				\
	&__get_cpu_var(var); }))
T
Tejun Heo 已提交
32

R
Rusty Russell 已提交
33 34 35 36
/*
 * The weird & is necessary because sparse considers (void)(var) to be
 * a direct dereference of percpu variable (var).
 */
T
Tejun Heo 已提交
37
#define put_cpu_var(var) do {				\
R
Rusty Russell 已提交
38
	(void)&(var);					\
T
Tejun Heo 已提交
39 40
	preempt_enable();				\
} while (0)
L
Linus Torvalds 已提交
41

P
Peter Zijlstra 已提交
42 43 44 45 46 47 48 49 50
#define get_cpu_ptr(var) ({				\
	preempt_disable();				\
	this_cpu_ptr(var); })

#define put_cpu_ptr(var) do {				\
	(void)(var);					\
	preempt_enable();				\
} while (0)

51
/* minimum unit size, also is the maximum supported allocation size */
52
#define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10)
53

54 55 56 57 58 59 60 61 62 63
/*
 * Percpu allocator can serve percpu allocations before slab is
 * initialized which allows slab to depend on the percpu allocator.
 * The following two parameters decide how much resource to
 * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
 */
#define PERCPU_DYNAMIC_EARLY_SLOTS	128
#define PERCPU_DYNAMIC_EARLY_SIZE	(12 << 10)

64 65
/*
 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66 67 68
 * back on the first chunk for dynamic percpu allocation if arch is
 * manually allocating and mapping it for faster access (as a part of
 * large page mapping for example).
69
 *
70 71 72 73
 * The following values give between one and two pages of free space
 * after typical minimal boot (2-way SMP, single disk and NIC) with
 * both defconfig and a distro config on x86_64 and 32.  More
 * intelligent way to determine this would be nice.
74
 */
75 76 77 78 79
#if BITS_PER_LONG > 32
#define PERCPU_DYNAMIC_RESERVE		(20 << 10)
#else
#define PERCPU_DYNAMIC_RESERVE		(12 << 10)
#endif
80

81
extern void *pcpu_base_addr;
T
Tejun Heo 已提交
82
extern const unsigned long *pcpu_unit_offsets;
L
Linus Torvalds 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
struct pcpu_group_info {
	int			nr_units;	/* aligned # of units */
	unsigned long		base_offset;	/* base address offset */
	unsigned int		*cpu_map;	/* unit->cpu map, empty
						 * entries contain NR_CPUS */
};

struct pcpu_alloc_info {
	size_t			static_size;
	size_t			reserved_size;
	size_t			dyn_size;
	size_t			unit_size;
	size_t			atom_size;
	size_t			alloc_size;
	size_t			__ai_size;	/* internal, don't use */
	int			nr_groups;	/* 0 if grouping unnecessary */
	struct pcpu_group_info	groups[];
};

103 104 105 106 107 108 109
enum pcpu_fc {
	PCPU_FC_AUTO,
	PCPU_FC_EMBED,
	PCPU_FC_PAGE,

	PCPU_FC_NR,
};
110
extern const char * const pcpu_fc_names[PCPU_FC_NR];
111 112 113

extern enum pcpu_fc pcpu_chosen_fc;

114 115
typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
				     size_t align);
116 117
typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118
typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
119

120 121 122 123
extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
							     int nr_units);
extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);

T
Tejun Heo 已提交
124 125
extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
					 void *base_addr);
126

127
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128
extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129 130 131 132
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				pcpu_fc_alloc_fn_t alloc_fn,
				pcpu_fc_free_fn_t free_fn);
133
#endif
134

135
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
T
Tejun Heo 已提交
136
extern int __init pcpu_page_first_chunk(size_t reserved_size,
137 138 139
				pcpu_fc_alloc_fn_t alloc_fn,
				pcpu_fc_free_fn_t free_fn,
				pcpu_fc_populate_pte_fn_t populate_pte_fn);
140
#endif
141

142 143 144 145 146
/*
 * Use this to get to a cpu's version of the per-cpu object
 * dynamically allocated. Non-atomic access to the current CPU's
 * version should probably be combined with get_cpu()/put_cpu().
 */
147
#ifdef CONFIG_SMP
148
#define per_cpu_ptr(ptr, cpu)	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149 150 151
#else
#define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
#endif
152

R
Rusty Russell 已提交
153
extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154
extern bool is_kernel_percpu_address(unsigned long addr);
L
Linus Torvalds 已提交
155

156
#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 158
extern void __init setup_per_cpu_areas(void);
#endif
159
extern void __init percpu_init_late(void);
160

161 162 163 164
extern void __percpu *__alloc_percpu(size_t size, size_t align);
extern void free_percpu(void __percpu *__pdata);
extern phys_addr_t per_cpu_ptr_to_phys(void *addr);

165
#define alloc_percpu(type)	\
R
Rusty Russell 已提交
166
	(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
L
Linus Torvalds 已提交
167

168 169 170 171 172 173 174
/*
 * Branching function to split up a function into a set of functions that
 * are called for different scalar sizes of the objects handled.
 */

extern void __bad_size_call_parameter(void);

T
Tejun Heo 已提交
175 176
#define __pcpu_size_call_return(stem, variable)				\
({	typeof(variable) pscr_ret__;					\
177
	__verify_pcpu_ptr(&(variable));					\
178
	switch(sizeof(variable)) {					\
T
Tejun Heo 已提交
179 180 181 182
	case 1: pscr_ret__ = stem##1(variable);break;			\
	case 2: pscr_ret__ = stem##2(variable);break;			\
	case 4: pscr_ret__ = stem##4(variable);break;			\
	case 8: pscr_ret__ = stem##8(variable);break;			\
183 184 185
	default:							\
		__bad_size_call_parameter();break;			\
	}								\
T
Tejun Heo 已提交
186
	pscr_ret__;							\
187 188
})

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#define __pcpu_size_call_return2(stem, variable, ...)			\
({									\
	typeof(variable) pscr2_ret__;					\
	__verify_pcpu_ptr(&(variable));					\
	switch(sizeof(variable)) {					\
	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
	default:							\
		__bad_size_call_parameter(); break;			\
	}								\
	pscr2_ret__;							\
})

204 205 206 207
/*
 * Special handling for cmpxchg_double.  cmpxchg_double is passed two
 * percpu variables.  The first has to be aligned to a double word
 * boundary and the second has to follow directly thereafter.
208 209 210
 * We enforce this on all architectures even if they don't support
 * a double cmpxchg instruction, since it's a cheap requirement, and it
 * avoids breaking the requirement for architectures with the instruction.
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
 */
#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
({									\
	bool pdcrb_ret__;						\
	__verify_pcpu_ptr(&pcp1);					\
	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
	VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1)));		\
	VM_BUG_ON((unsigned long)(&pcp2) !=				\
		  (unsigned long)(&pcp1) + sizeof(pcp1));		\
	switch(sizeof(pcp1)) {						\
	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
	default:							\
		__bad_size_call_parameter(); break;			\
	}								\
	pdcrb_ret__;							\
})

T
Tejun Heo 已提交
231
#define __pcpu_size_call(stem, variable, ...)				\
232
do {									\
233
	__verify_pcpu_ptr(&(variable));					\
234 235 236 237 238 239 240 241 242 243 244 245
	switch(sizeof(variable)) {					\
		case 1: stem##1(variable, __VA_ARGS__);break;		\
		case 2: stem##2(variable, __VA_ARGS__);break;		\
		case 4: stem##4(variable, __VA_ARGS__);break;		\
		case 8: stem##8(variable, __VA_ARGS__);break;		\
		default: 						\
			__bad_size_call_parameter();break;		\
	}								\
} while (0)

/*
 * Optimized manipulation for memory allocated through the per cpu
R
Rusty Russell 已提交
246
 * allocator or for addresses of per cpu variables.
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
 *
 * These operation guarantee exclusivity of access for other operations
 * on the *same* processor. The assumption is that per cpu data is only
 * accessed by a single processor instance (the current one).
 *
 * The first group is used for accesses that must be done in a
 * preemption safe way since we know that the context is not preempt
 * safe. Interrupts may occur. If the interrupt modifies the variable
 * too then RMW actions will not be reliable.
 *
 * The arch code can provide optimized functions in two ways:
 *
 * 1. Override the function completely. F.e. define this_cpu_add().
 *    The arch must then ensure that the various scalar format passed
 *    are handled correctly.
 *
 * 2. Provide functions for certain scalar sizes. F.e. provide
 *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
 *    sized RMW actions. If arch code does not provide operations for
 *    a scalar size then the fallback in the generic code will be
 *    used.
 */

#define _this_cpu_generic_read(pcp)					\
({	typeof(pcp) ret__;						\
	preempt_disable();						\
	ret__ = *this_cpu_ptr(&(pcp));					\
	preempt_enable();						\
	ret__;								\
})

#ifndef this_cpu_read
# ifndef this_cpu_read_1
#  define this_cpu_read_1(pcp)	_this_cpu_generic_read(pcp)
# endif
# ifndef this_cpu_read_2
#  define this_cpu_read_2(pcp)	_this_cpu_generic_read(pcp)
# endif
# ifndef this_cpu_read_4
#  define this_cpu_read_4(pcp)	_this_cpu_generic_read(pcp)
# endif
# ifndef this_cpu_read_8
#  define this_cpu_read_8(pcp)	_this_cpu_generic_read(pcp)
# endif
T
Tejun Heo 已提交
291
# define this_cpu_read(pcp)	__pcpu_size_call_return(this_cpu_read_, (pcp))
292 293 294 295
#endif

#define _this_cpu_generic_to_op(pcp, val, op)				\
do {									\
296
	unsigned long flags;						\
297
	raw_local_irq_save(flags);					\
T
Tejun Heo 已提交
298
	*__this_cpu_ptr(&(pcp)) op val;					\
299
	raw_local_irq_restore(flags);					\
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
} while (0)

#ifndef this_cpu_write
# ifndef this_cpu_write_1
#  define this_cpu_write_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef this_cpu_write_2
#  define this_cpu_write_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef this_cpu_write_4
#  define this_cpu_write_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef this_cpu_write_8
#  define this_cpu_write_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
# endif
T
Tejun Heo 已提交
315
# define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, (pcp), (val))
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
#endif

#ifndef this_cpu_add
# ifndef this_cpu_add_1
#  define this_cpu_add_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef this_cpu_add_2
#  define this_cpu_add_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef this_cpu_add_4
#  define this_cpu_add_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef this_cpu_add_8
#  define this_cpu_add_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
# endif
T
Tejun Heo 已提交
331
# define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, (pcp), (val))
332 333 334
#endif

#ifndef this_cpu_sub
335
# define this_cpu_sub(pcp, val)		this_cpu_add((pcp), -(typeof(pcp))(val))
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
#endif

#ifndef this_cpu_inc
# define this_cpu_inc(pcp)		this_cpu_add((pcp), 1)
#endif

#ifndef this_cpu_dec
# define this_cpu_dec(pcp)		this_cpu_sub((pcp), 1)
#endif

#ifndef this_cpu_and
# ifndef this_cpu_and_1
#  define this_cpu_and_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef this_cpu_and_2
#  define this_cpu_and_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef this_cpu_and_4
#  define this_cpu_and_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef this_cpu_and_8
#  define this_cpu_and_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
# endif
T
Tejun Heo 已提交
359
# define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, (pcp), (val))
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
#endif

#ifndef this_cpu_or
# ifndef this_cpu_or_1
#  define this_cpu_or_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef this_cpu_or_2
#  define this_cpu_or_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef this_cpu_or_4
#  define this_cpu_or_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef this_cpu_or_8
#  define this_cpu_or_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
# endif
T
Tejun Heo 已提交
375
# define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
376 377
#endif

378 379 380
#define _this_cpu_generic_add_return(pcp, val)				\
({									\
	typeof(pcp) ret__;						\
381
	unsigned long flags;						\
382
	raw_local_irq_save(flags);					\
383 384
	__this_cpu_add(pcp, val);					\
	ret__ = __this_cpu_read(pcp);					\
385
	raw_local_irq_restore(flags);					\
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	ret__;								\
})

#ifndef this_cpu_add_return
# ifndef this_cpu_add_return_1
#  define this_cpu_add_return_1(pcp, val)	_this_cpu_generic_add_return(pcp, val)
# endif
# ifndef this_cpu_add_return_2
#  define this_cpu_add_return_2(pcp, val)	_this_cpu_generic_add_return(pcp, val)
# endif
# ifndef this_cpu_add_return_4
#  define this_cpu_add_return_4(pcp, val)	_this_cpu_generic_add_return(pcp, val)
# endif
# ifndef this_cpu_add_return_8
#  define this_cpu_add_return_8(pcp, val)	_this_cpu_generic_add_return(pcp, val)
# endif
# define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
#endif

405
#define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
406 407 408
#define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
#define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)

409 410
#define _this_cpu_generic_xchg(pcp, nval)				\
({	typeof(pcp) ret__;						\
411
	unsigned long flags;						\
412
	raw_local_irq_save(flags);					\
413 414
	ret__ = __this_cpu_read(pcp);					\
	__this_cpu_write(pcp, nval);					\
415
	raw_local_irq_restore(flags);					\
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	ret__;								\
})

#ifndef this_cpu_xchg
# ifndef this_cpu_xchg_1
#  define this_cpu_xchg_1(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
# endif
# ifndef this_cpu_xchg_2
#  define this_cpu_xchg_2(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
# endif
# ifndef this_cpu_xchg_4
#  define this_cpu_xchg_4(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
# endif
# ifndef this_cpu_xchg_8
#  define this_cpu_xchg_8(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
# endif
# define this_cpu_xchg(pcp, nval)	\
	__pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
#endif

#define _this_cpu_generic_cmpxchg(pcp, oval, nval)			\
437 438 439
({									\
	typeof(pcp) ret__;						\
	unsigned long flags;						\
440
	raw_local_irq_save(flags);					\
441 442 443
	ret__ = __this_cpu_read(pcp);					\
	if (ret__ == (oval))						\
		__this_cpu_write(pcp, nval);				\
444
	raw_local_irq_restore(flags);					\
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	ret__;								\
})

#ifndef this_cpu_cmpxchg
# ifndef this_cpu_cmpxchg_1
#  define this_cpu_cmpxchg_1(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# ifndef this_cpu_cmpxchg_2
#  define this_cpu_cmpxchg_2(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# ifndef this_cpu_cmpxchg_4
#  define this_cpu_cmpxchg_4(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# ifndef this_cpu_cmpxchg_8
#  define this_cpu_cmpxchg_8(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# define this_cpu_cmpxchg(pcp, oval, nval)	\
	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
#endif

465 466 467 468 469 470 471 472 473 474 475
/*
 * cmpxchg_double replaces two adjacent scalars at once.  The first
 * two parameters are per cpu variables which have to be of the same
 * size.  A truth value is returned to indicate success or failure
 * (since a double register result is difficult to handle).  There is
 * very limited hardware support for these operations, so only certain
 * sizes may work.
 */
#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
({									\
	int ret__;							\
476
	unsigned long flags;						\
477
	raw_local_irq_save(flags);					\
478 479
	ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2,		\
			oval1, oval2, nval1, nval2);			\
480
	raw_local_irq_restore(flags);					\
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	ret__;								\
})

#ifndef this_cpu_cmpxchg_double
# ifndef this_cpu_cmpxchg_double_1
#  define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# ifndef this_cpu_cmpxchg_double_2
#  define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# ifndef this_cpu_cmpxchg_double_4
#  define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# ifndef this_cpu_cmpxchg_double_8
#  define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
#endif

505
/*
506
 * Generic percpu operations for context that are safe from preemption/interrupts.
507
 * Either we do not care about races or the caller has the
508
 * responsibility of handling preemption/interrupt issues. Arch code can still
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
 * override these instructions since the arch per cpu code may be more
 * efficient and may actually get race freeness for free (that is the
 * case for x86 for example).
 *
 * If there is no other protection through preempt disable and/or
 * disabling interupts then one of these RMW operations can show unexpected
 * behavior because the execution thread was rescheduled on another processor
 * or an interrupt occurred and the same percpu variable was modified from
 * the interrupt context.
 */
#ifndef __this_cpu_read
# ifndef __this_cpu_read_1
#  define __this_cpu_read_1(pcp)	(*__this_cpu_ptr(&(pcp)))
# endif
# ifndef __this_cpu_read_2
#  define __this_cpu_read_2(pcp)	(*__this_cpu_ptr(&(pcp)))
# endif
# ifndef __this_cpu_read_4
#  define __this_cpu_read_4(pcp)	(*__this_cpu_ptr(&(pcp)))
# endif
# ifndef __this_cpu_read_8
#  define __this_cpu_read_8(pcp)	(*__this_cpu_ptr(&(pcp)))
# endif
T
Tejun Heo 已提交
532
# define __this_cpu_read(pcp)	__pcpu_size_call_return(__this_cpu_read_, (pcp))
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
#endif

#define __this_cpu_generic_to_op(pcp, val, op)				\
do {									\
	*__this_cpu_ptr(&(pcp)) op val;					\
} while (0)

#ifndef __this_cpu_write
# ifndef __this_cpu_write_1
#  define __this_cpu_write_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef __this_cpu_write_2
#  define __this_cpu_write_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef __this_cpu_write_4
#  define __this_cpu_write_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
# endif
# ifndef __this_cpu_write_8
#  define __this_cpu_write_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
# endif
T
Tejun Heo 已提交
553
# define __this_cpu_write(pcp, val)	__pcpu_size_call(__this_cpu_write_, (pcp), (val))
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
#endif

#ifndef __this_cpu_add
# ifndef __this_cpu_add_1
#  define __this_cpu_add_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef __this_cpu_add_2
#  define __this_cpu_add_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef __this_cpu_add_4
#  define __this_cpu_add_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
# endif
# ifndef __this_cpu_add_8
#  define __this_cpu_add_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
# endif
T
Tejun Heo 已提交
569
# define __this_cpu_add(pcp, val)	__pcpu_size_call(__this_cpu_add_, (pcp), (val))
570 571 572
#endif

#ifndef __this_cpu_sub
573
# define __this_cpu_sub(pcp, val)	__this_cpu_add((pcp), -(typeof(pcp))(val))
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
#endif

#ifndef __this_cpu_inc
# define __this_cpu_inc(pcp)		__this_cpu_add((pcp), 1)
#endif

#ifndef __this_cpu_dec
# define __this_cpu_dec(pcp)		__this_cpu_sub((pcp), 1)
#endif

#ifndef __this_cpu_and
# ifndef __this_cpu_and_1
#  define __this_cpu_and_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef __this_cpu_and_2
#  define __this_cpu_and_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef __this_cpu_and_4
#  define __this_cpu_and_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
# endif
# ifndef __this_cpu_and_8
#  define __this_cpu_and_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
# endif
T
Tejun Heo 已提交
597
# define __this_cpu_and(pcp, val)	__pcpu_size_call(__this_cpu_and_, (pcp), (val))
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
#endif

#ifndef __this_cpu_or
# ifndef __this_cpu_or_1
#  define __this_cpu_or_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef __this_cpu_or_2
#  define __this_cpu_or_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef __this_cpu_or_4
#  define __this_cpu_or_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
# endif
# ifndef __this_cpu_or_8
#  define __this_cpu_or_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
# endif
T
Tejun Heo 已提交
613
# define __this_cpu_or(pcp, val)	__pcpu_size_call(__this_cpu_or_, (pcp), (val))
614 615
#endif

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
#define __this_cpu_generic_add_return(pcp, val)				\
({									\
	__this_cpu_add(pcp, val);					\
	__this_cpu_read(pcp);						\
})

#ifndef __this_cpu_add_return
# ifndef __this_cpu_add_return_1
#  define __this_cpu_add_return_1(pcp, val)	__this_cpu_generic_add_return(pcp, val)
# endif
# ifndef __this_cpu_add_return_2
#  define __this_cpu_add_return_2(pcp, val)	__this_cpu_generic_add_return(pcp, val)
# endif
# ifndef __this_cpu_add_return_4
#  define __this_cpu_add_return_4(pcp, val)	__this_cpu_generic_add_return(pcp, val)
# endif
# ifndef __this_cpu_add_return_8
#  define __this_cpu_add_return_8(pcp, val)	__this_cpu_generic_add_return(pcp, val)
# endif
635 636
# define __this_cpu_add_return(pcp, val)	\
	__pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
637 638
#endif

639
#define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
640 641
#define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
#define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
642

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
#define __this_cpu_generic_xchg(pcp, nval)				\
({	typeof(pcp) ret__;						\
	ret__ = __this_cpu_read(pcp);					\
	__this_cpu_write(pcp, nval);					\
	ret__;								\
})

#ifndef __this_cpu_xchg
# ifndef __this_cpu_xchg_1
#  define __this_cpu_xchg_1(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
# endif
# ifndef __this_cpu_xchg_2
#  define __this_cpu_xchg_2(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
# endif
# ifndef __this_cpu_xchg_4
#  define __this_cpu_xchg_4(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
# endif
# ifndef __this_cpu_xchg_8
#  define __this_cpu_xchg_8(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
# endif
# define __this_cpu_xchg(pcp, nval)	\
	__pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
#endif

#define __this_cpu_generic_cmpxchg(pcp, oval, nval)			\
({									\
	typeof(pcp) ret__;						\
	ret__ = __this_cpu_read(pcp);					\
	if (ret__ == (oval))						\
		__this_cpu_write(pcp, nval);				\
	ret__;								\
})

#ifndef __this_cpu_cmpxchg
# ifndef __this_cpu_cmpxchg_1
#  define __this_cpu_cmpxchg_1(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# ifndef __this_cpu_cmpxchg_2
#  define __this_cpu_cmpxchg_2(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# ifndef __this_cpu_cmpxchg_4
#  define __this_cpu_cmpxchg_4(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# ifndef __this_cpu_cmpxchg_8
#  define __this_cpu_cmpxchg_8(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
# endif
# define __this_cpu_cmpxchg(pcp, oval, nval)	\
	__pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
#endif

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
({									\
	int __ret = 0;							\
	if (__this_cpu_read(pcp1) == (oval1) &&				\
			 __this_cpu_read(pcp2)  == (oval2)) {		\
		__this_cpu_write(pcp1, (nval1));			\
		__this_cpu_write(pcp2, (nval2));			\
		__ret = 1;						\
	}								\
	(__ret);							\
})

#ifndef __this_cpu_cmpxchg_double
# ifndef __this_cpu_cmpxchg_double_1
#  define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# ifndef __this_cpu_cmpxchg_double_2
#  define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# ifndef __this_cpu_cmpxchg_double_4
#  define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# ifndef __this_cpu_cmpxchg_double_8
#  define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
# endif
# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
	__pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
#endif

L
Linus Torvalds 已提交
726
#endif /* __LINUX_PERCPU_H */