tlb.c 13.1 KB
Newer Older
G
Glauber Costa 已提交
1 2 3 4 5 6
#include <linux/init.h>

#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
7
#include <linux/export.h>
8
#include <linux/cpu.h>
G
Glauber Costa 已提交
9 10 11

#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
12
#include <asm/cache.h>
T
Tejun Heo 已提交
13
#include <asm/apic.h>
T
Tejun Heo 已提交
14
#include <asm/uv/uv.h>
15
#include <linux/debugfs.h>
16

G
Glauber Costa 已提交
17 18 19 20 21 22 23 24 25 26 27
/*
 *	Smarter SMP flushing macros.
 *		c/o Linus Torvalds.
 *
 *	These mean you can really definitely utterly forget about
 *	writing to user space from interrupts. (Its not allowed anyway).
 *
 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 *
 *	More scalable flush, from Andi Kleen
 *
28
 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
G
Glauber Costa 已提交
29 30
 */

31 32
#ifdef CONFIG_SMP

33 34 35 36 37
struct flush_tlb_info {
	struct mm_struct *flush_mm;
	unsigned long flush_start;
	unsigned long flush_end;
};
38

G
Glauber Costa 已提交
39 40 41 42 43 44
/*
 * We cannot call mmdrop() because we are in interrupt context,
 * instead update mm->cpu_vm_mask.
 */
void leave_mm(int cpu)
{
45
	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46
	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
G
Glauber Costa 已提交
47
		BUG();
48 49 50
	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
		load_cr3(swapper_pg_dir);
51 52 53 54 55 56 57
		/*
		 * This gets called in the idle path where RCU
		 * functions differently.  Tracing normally
		 * uses RCU, so we have to call the tracepoint
		 * specially here.
		 */
		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
58
	}
G
Glauber Costa 已提交
59 60 61
}
EXPORT_SYMBOL_GPL(leave_mm);

62 63 64 65
#endif /* CONFIG_SMP */

void switch_mm(struct mm_struct *prev, struct mm_struct *next,
	       struct task_struct *tsk)
66 67 68 69 70 71 72 73 74 75
{
	unsigned long flags;

	local_irq_save(flags);
	switch_mm_irqs_off(prev, next, tsk);
	local_irq_restore(flags);
}

void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
			struct task_struct *tsk)
76 77 78 79
{
	unsigned cpu = smp_processor_id();

	if (likely(prev != next)) {
80 81 82 83 84 85 86 87 88 89 90 91 92 93
		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
			/*
			 * If our current stack is in vmalloc space and isn't
			 * mapped in the new pgd, we'll double-fault.  Forcibly
			 * map it.
			 */
			unsigned int stack_pgd_index = pgd_index(current_stack_pointer());

			pgd_t *pgd = next->pgd + stack_pgd_index;

			if (unlikely(pgd_none(*pgd)))
				set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
		}

94 95 96 97
#ifdef CONFIG_SMP
		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
		this_cpu_write(cpu_tlbstate.active_mm, next);
#endif
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
		cpumask_set_cpu(cpu, mm_cpumask(next));

		/*
		 * Re-load page tables.
		 *
		 * This logic has an ordering constraint:
		 *
		 *  CPU 0: Write to a PTE for 'next'
		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
		 *  CPU 1: set bit 1 in next's mm_cpumask
		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
		 *
		 * We need to prevent an outcome in which CPU 1 observes
		 * the new PTE value and CPU 0 observes bit 1 clear in
		 * mm_cpumask.  (If that occurs, then the IPI will never
		 * be sent, and CPU 0's TLB will contain a stale entry.)
		 *
		 * The bad outcome can occur if either CPU's load is
		 * reordered before that CPU's store, so both CPUs must
		 * execute full barriers to prevent this from happening.
		 *
		 * Thus, switch_mm needs a full barrier between the
		 * store to mm_cpumask and any operation that could load
		 * from next->pgd.  TLB fills are special and can happen
		 * due to instruction fetches or for no reason at all,
		 * and neither LOCK nor MFENCE orders them.
		 * Fortunately, load_cr3() is serializing and gives the
		 * ordering guarantee we need.
		 *
		 */
		load_cr3(next->pgd);

		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);

		/* Stop flush ipis for the previous mm */
		cpumask_clear_cpu(cpu, mm_cpumask(prev));

		/* Load per-mm CR4 state */
		load_mm_cr4(next);

#ifdef CONFIG_MODIFY_LDT_SYSCALL
		/*
		 * Load the LDT, if the LDT is different.
		 *
		 * It's possible that prev->context.ldt doesn't match
		 * the LDT register.  This can happen if leave_mm(prev)
		 * was called and then modify_ldt changed
		 * prev->context.ldt but suppressed an IPI to this CPU.
		 * In this case, prev->context.ldt != NULL, because we
		 * never set context.ldt to NULL while the mm still
		 * exists.  That means that next->context.ldt !=
		 * prev->context.ldt, because mms never share an LDT.
		 */
		if (unlikely(prev->context.ldt != next->context.ldt))
			load_mm_ldt(next);
#endif
	}
#ifdef CONFIG_SMP
	  else {
		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);

		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
			/*
			 * On established mms, the mm_cpumask is only changed
			 * from irq context, from ptep_clear_flush() while in
			 * lazy tlb mode, and here. Irqs are blocked during
			 * schedule, protecting us from simultaneous changes.
			 */
			cpumask_set_cpu(cpu, mm_cpumask(next));

			/*
			 * We were in lazy tlb mode and leave_mm disabled
			 * tlb flush IPI delivery. We must reload CR3
			 * to make sure to use no freed page tables.
			 *
			 * As above, load_cr3() is serializing and orders TLB
			 * fills with respect to the mm_cpumask write.
			 */
			load_cr3(next->pgd);
			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
			load_mm_cr4(next);
			load_mm_ldt(next);
		}
	}
#endif
}

#ifdef CONFIG_SMP

G
Glauber Costa 已提交
189 190 191 192 193
/*
 * The flush IPI assumes that a thread switch happens in this order:
 * [cpu0: the cpu that switches]
 * 1) switch_mm() either 1a) or 1b)
 * 1a) thread switch to a different mm
194 195 196 197
 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 *	if cpu0 was in lazy tlb mode.
 * 1a2) update cpu active_mm
G
Glauber Costa 已提交
198
 *	Now cpu0 accepts tlb flushes for the new mm.
199
 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
G
Glauber Costa 已提交
200 201
 *	Now the other cpus will send tlb flush ipis.
 * 1a4) change cr3.
202 203 204 205
 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 *	Stop ipi delivery for the old mm. This is not synchronized with
 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 *	mm, and in the worst case we perform a superfluous tlb flush.
G
Glauber Costa 已提交
206
 * 1b) thread switch without mm change
207 208
 *	cpu active_mm is correct, cpu0 already handles flush ipis.
 * 1b1) set cpu_tlbstate to TLBSTATE_OK
G
Glauber Costa 已提交
209 210 211 212 213 214 215 216 217 218 219 220
 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 *	Atomically set the bit [other cpus will start sending flush ipis],
 *	and test the bit.
 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 * 2) switch %%esp, ie current
 *
 * The interrupt must handle 2 special cases:
 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 *   runs in kernel space, the cpu could load tlb entries for user space
 *   pages.
 *
221
 * The good news is that cpu_tlbstate is local to each cpu, no
G
Glauber Costa 已提交
222 223 224 225
 * write/read ordering problems.
 */

/*
226
 * TLB flush funcation:
G
Glauber Costa 已提交
227 228
 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 * 2) Leave the mm if we are in the lazy tlb mode.
T
Tejun Heo 已提交
229
 */
230
static void flush_tlb_func(void *info)
G
Glauber Costa 已提交
231
{
232
	struct flush_tlb_info *f = info;
G
Glauber Costa 已提交
233

234 235
	inc_irq_stat(irq_tlb_count);

236
	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
237
		return;
G
Glauber Costa 已提交
238

239
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240
	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
241
		if (f->flush_end == TLB_FLUSH_ALL) {
242
			local_flush_tlb();
243 244
			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
		} else {
245
			unsigned long addr;
246
			unsigned long nr_pages =
247
				(f->flush_end - f->flush_start) / PAGE_SIZE;
248 249 250 251
			addr = f->flush_start;
			while (addr < f->flush_end) {
				__flush_tlb_single(addr);
				addr += PAGE_SIZE;
252
			}
253
			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
254 255 256
		}
	} else
		leave_mm(smp_processor_id());
G
Glauber Costa 已提交
257 258 259

}

260
void native_flush_tlb_others(const struct cpumask *cpumask,
261 262
				 struct mm_struct *mm, unsigned long start,
				 unsigned long end)
263
{
264
	struct flush_tlb_info info;
265 266 267

	if (end == 0)
		end = start + PAGE_SIZE;
268 269 270 271
	info.flush_mm = mm;
	info.flush_start = start;
	info.flush_end = end;

272
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
273 274 275 276 277 278
	if (end == TLB_FLUSH_ALL)
		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
	else
		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
				(end - start) >> PAGE_SHIFT);

279
	if (is_uv_system()) {
T
Tejun Heo 已提交
280
		unsigned int cpu;
281

282
		cpu = smp_processor_id();
283
		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
T
Tejun Heo 已提交
284
		if (cpumask)
285 286
			smp_call_function_many(cpumask, flush_tlb_func,
								&info, 1);
287
		return;
288
	}
289
	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
G
Glauber Costa 已提交
290 291 292 293 294 295 296 297
}

void flush_tlb_current_task(void)
{
	struct mm_struct *mm = current->mm;

	preempt_disable();

298
	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
299 300

	/* This is an implicit full barrier that synchronizes with switch_mm. */
G
Glauber Costa 已提交
301
	local_flush_tlb();
302

303
	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
304
	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
305
		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
G
Glauber Costa 已提交
306 307 308
	preempt_enable();
}

309 310 311 312 313 314 315 316 317 318
/*
 * See Documentation/x86/tlb.txt for details.  We choose 33
 * because it is large enough to cover the vast majority (at
 * least 95%) of allocations, and is small enough that we are
 * confident it will not cause too much overhead.  Each single
 * flush is about 100 ns, so this caps the maximum overhead at
 * _about_ 3,000 ns.
 *
 * This is in units of pages.
 */
319
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
320

321 322 323 324
void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
				unsigned long end, unsigned long vmflag)
{
	unsigned long addr;
325 326
	/* do a global flush by default */
	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
327 328

	preempt_disable();
329 330 331 332
	if (current->active_mm != mm) {
		/* Synchronize with switch_mm. */
		smp_mb();

333
		goto out;
334
	}
335

336 337
	if (!current->mm) {
		leave_mm(smp_processor_id());
338 339 340 341

		/* Synchronize with switch_mm. */
		smp_mb();

342
		goto out;
343
	}
G
Glauber Costa 已提交
344

345 346
	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
347

348 349 350 351
	/*
	 * Both branches below are implicit full barriers (MOV to CR or
	 * INVLPG) that synchronize with switch_mm.
	 */
352 353
	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
		base_pages_to_flush = TLB_FLUSH_ALL;
354
		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
355
		local_flush_tlb();
D
Dave Hansen 已提交
356
	} else {
357
		/* flush range by one by one 'invlpg' */
D
Dave Hansen 已提交
358
		for (addr = start; addr < end;	addr += PAGE_SIZE) {
359
			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
360
			__flush_tlb_single(addr);
D
Dave Hansen 已提交
361
		}
362
	}
363
	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
364
out:
365
	if (base_pages_to_flush == TLB_FLUSH_ALL) {
366 367 368
		start = 0UL;
		end = TLB_FLUSH_ALL;
	}
369
	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
370
		flush_tlb_others(mm_cpumask(mm), mm, start, end);
G
Glauber Costa 已提交
371 372 373
	preempt_enable();
}

374
void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
G
Glauber Costa 已提交
375 376 377 378 379 380
{
	struct mm_struct *mm = vma->vm_mm;

	preempt_disable();

	if (current->active_mm == mm) {
381 382 383 384 385
		if (current->mm) {
			/*
			 * Implicit full barrier (INVLPG) that synchronizes
			 * with switch_mm.
			 */
386
			__flush_tlb_one(start);
387
		} else {
G
Glauber Costa 已提交
388
			leave_mm(smp_processor_id());
389 390 391 392

			/* Synchronize with switch_mm. */
			smp_mb();
		}
G
Glauber Costa 已提交
393 394
	}

395
	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
396
		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
G
Glauber Costa 已提交
397 398 399 400 401 402

	preempt_enable();
}

static void do_flush_tlb_all(void *info)
{
403
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
G
Glauber Costa 已提交
404
	__flush_tlb_all();
405
	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
406
		leave_mm(smp_processor_id());
G
Glauber Costa 已提交
407 408 409 410
}

void flush_tlb_all(void)
{
411
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
412
	on_each_cpu(do_flush_tlb_all, NULL, 1);
G
Glauber Costa 已提交
413
}
414

415 416 417 418 419 420
static void do_kernel_range_flush(void *info)
{
	struct flush_tlb_info *f = info;
	unsigned long addr;

	/* flush range by one by one 'invlpg' */
421
	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
422 423 424 425 426 427 428
		__flush_tlb_single(addr);
}

void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{

	/* Balance as user space task's flush, a bit conservative */
429 430
	if (end == TLB_FLUSH_ALL ||
	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
431
		on_each_cpu(do_flush_tlb_all, NULL, 1);
432 433
	} else {
		struct flush_tlb_info info;
434 435 436 437 438
		info.flush_start = start;
		info.flush_end = end;
		on_each_cpu(do_kernel_range_flush, &info, 1);
	}
}
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
			     size_t count, loff_t *ppos)
{
	char buf[32];
	unsigned int len;

	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}

static ssize_t tlbflush_write_file(struct file *file,
		 const char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[32];
	ssize_t len;
	int ceiling;

	len = min(count, sizeof(buf) - 1);
	if (copy_from_user(buf, user_buf, len))
		return -EFAULT;

	buf[len] = '\0';
	if (kstrtoint(buf, 0, &ceiling))
		return -EINVAL;

	if (ceiling < 0)
		return -EINVAL;

	tlb_single_page_flush_ceiling = ceiling;
	return count;
}

static const struct file_operations fops_tlbflush = {
	.read = tlbflush_read_file,
	.write = tlbflush_write_file,
	.llseek = default_llseek,
};

static int __init create_tlb_single_page_flush_ceiling(void)
{
	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
			    arch_debugfs_dir, NULL, &fops_tlbflush);
	return 0;
}
late_initcall(create_tlb_single_page_flush_ceiling);
485 486

#endif /* CONFIG_SMP */