amd64_edac.c 77.3 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34
static const struct scrubrate {
35 36 37
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

102 103 104 105
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
106
 * K8: has a single DCT only and no address offsets >= 0x100
107 108 109 110 111
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
112
 * F16h: has only 1 DCT
113 114
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
115
 */
116 117
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
118
{
119 120 121 122 123
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
124

125 126 127 128 129 130 131 132 133
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
134

135 136 137
			offset += 0x100;
		}
		break;
138

139 140 141 142 143 144 145 146
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
147

148 149 150 151
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
152

153 154
	default:
		break;
155
	}
156
	return amd64_read_pci_cfg(pvt->F2, offset, val);
157 158
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
177
static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
178 179 180 181 182 183 184 185 186
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
187 188 189
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
190
	 */
191
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
192 193 194 195
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
196
		if (scrubrates[i].scrubval < min_rate)
197 198 199 200 201 202 203 204
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

205
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
206

207 208 209
	if (scrubval)
		return scrubrates[i].bandwidth;

210 211 212
	return 0;
}

213
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
214 215
{
	struct amd64_pvt *pvt = mci->pvt_info;
216
	u32 min_scrubrate = 0x5;
217

218
	if (pvt->fam == 0xf)
219 220
		min_scrubrate = 0x0;

221 222
	/* Erratum #505 */
	if (pvt->fam == 0x15 && pvt->model < 0x10)
223 224
		f15h_select_dct(pvt, 0);

225
	return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
226 227
}

228
static int get_scrub_rate(struct mem_ctl_info *mci)
229 230 231
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
232
	int i, retval = -EINVAL;
233

234 235
	/* Erratum #505 */
	if (pvt->fam == 0x15 && pvt->model < 0x10)
236 237
		f15h_select_dct(pvt, 0);

238
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
239 240 241

	scrubval = scrubval & 0x001F;

242
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
243
		if (scrubrates[i].scrubval == scrubval) {
244
			retval = scrubrates[i].bandwidth;
245 246 247
			break;
		}
	}
248
	return retval;
249 250
}

251
/*
252 253
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
254
 */
255
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
256
{
257
	u64 addr;
258 259 260 261 262 263 264 265 266

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

267 268
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
269 270 271 272 273 274 275 276 277 278 279 280
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
281
	u8 node_id;
282 283 284 285 286 287 288 289 290 291 292 293 294
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
295
	intlv_en = dram_intlv_en(pvt, 0);
296 297

	if (intlv_en == 0) {
298
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
299
			if (base_limit_match(pvt, sys_addr, node_id))
300
				goto found;
301
		}
302
		goto err_no_match;
303 304
	}

305 306 307
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
308
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
309 310 311 312 313 314
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
315
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
316 317
			break;	/* intlv_sel field matches */

318
		if (++node_id >= DRAM_RANGES)
319 320 321 322
			goto err_no_match;
	}

	/* sanity test for sys_addr */
323
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
324 325 326
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
327 328 329 330
		return NULL;
	}

found:
331
	return edac_mc_find((int)node_id);
332 333

err_no_match:
334 335
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
336 337 338

	return NULL;
}
339 340

/*
341 342
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
343
 */
344 345
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
346
{
347 348
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
349

350
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
351 352
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
353 354
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
355
		addr_shift	= 4;
356 357

	/*
358 359 360 361 362
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
363 364 365
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

366 367
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
368 369 370

		*mask = ~0ULL;
		/* poke holes for the csmask */
371 372
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
373

374 375
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
376 377

		return;
378 379 380 381
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
382

383
		if (pvt->fam == 0x15)
384 385
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
386
		else
387 388
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
389
	}
390

391
	*base  = (csbase & base_bits) << addr_shift;
392

393 394 395 396 397
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
398 399
}

400 401 402
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

403 404 405
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

406 407 408
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

409 410 411 412 413 414 415 416 417 418 419 420
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

421 422
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
423 424
			continue;

425 426 427
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
428 429

		if ((input_addr & mask) == (base & mask)) {
430 431 432
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
433 434 435 436

			return csrow;
		}
	}
437 438
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
465
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
466 467
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
468 469 470
		return 1;
	}

471
	/* valid for Fam10h and above */
472
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
473
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
474 475 476
		return 1;
	}

477
	if (!dhar_valid(pvt)) {
478 479
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

501 502
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
503

504 505
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
506

507 508 509
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
510 511 512 513 514

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
546
	struct amd64_pvt *pvt = mci->pvt_info;
547
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
548
	int ret;
549

550
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
551 552 553 554

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
555 556
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
557 558 559
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

560 561 562
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
563 564 565 566 567 568 569 570 571 572 573 574 575 576

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
577
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
578

579 580
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
612
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
613
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
614
		      (dram_addr & 0xfff);
615

616 617 618
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

634 635
	edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)input_addr);
636 637 638 639 640 641

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
642
						    struct err_info *err)
643
{
644 645
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
663 664
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
665 666
	return csrow;
}
667

668
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
669 670 671 672 673

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
674
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
675
{
676
	u8 bit;
677
	unsigned long edac_cap = EDAC_FLAG_NONE;
678

679
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
680 681 682
		? 19
		: 17;

683
	if (pvt->dclr0 & BIT(bit))
684 685 686 687 688
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

689
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
690

691
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
692
{
693
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
694

695 696 697 698 699 700 701 702 703 704 705 706 707
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

708

709 710
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
711

712
	if (pvt->fam == 0x10)
713 714
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
715

716 717 718 719 720
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
721 722
}

723
/* Display and decode various NB registers for debug purposes. */
724
static void dump_misc_regs(struct amd64_pvt *pvt)
725
{
726
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
727

728 729
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
730

731 732 733
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
734

735
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
736

737
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
738

739 740
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
741 742
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
743

744
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
745

746
	debug_display_dimm_sizes(pvt, 0);
747

748
	/* everything below this point is Fam10h and above */
749
	if (pvt->fam == 0xf)
750
		return;
751

752
	debug_display_dimm_sizes(pvt, 1);
753

754
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
755

756
	/* Only if NOT ganged does dclr1 have valid info */
757
	if (!dct_ganging_enabled(pvt))
758
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
759 760
}

761
/*
762
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
763
 */
764
static void prep_chip_selects(struct amd64_pvt *pvt)
765
{
766
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
767 768
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
769
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
770 771
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
772
	} else {
773 774
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
775 776 777 778
	}
}

/*
779
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
780
 */
781
static void read_dct_base_mask(struct amd64_pvt *pvt)
782
{
783
	int cs;
784

785
	prep_chip_selects(pvt);
786

787
	for_each_chip_select(cs, 0, pvt) {
788 789
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
790 791
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
792

793
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
794 795
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
796

797
		if (pvt->fam == 0xf)
798
			continue;
799

800
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
801
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
802 803
				 cs, *base1, (pvt->fam == 0x10) ? reg1
								: reg0);
804 805
	}

806
	for_each_chip_select_mask(cs, 0, pvt) {
807 808
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
809 810
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
811

812
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
813 814
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
815

816
		if (pvt->fam == 0xf)
817
			continue;
818

819
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
820
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
821 822
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
								: reg0);
823 824 825
	}
}

826
static void determine_memory_type(struct amd64_pvt *pvt)
827
{
828
	u32 dram_ctrl, dcsm;
829

830 831 832 833 834 835 836 837 838
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
839
		if (pvt->dchr0 & DDR3_MODE)
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
867
		else
868
			pvt->dram_type = MEM_RDDR3;
869

870 871 872 873 874 875 876 877 878 879
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
880

881 882
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
883 884
}

885
/* Get the number of DCT channels the memory controller is using. */
886 887
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
888
	int flag;
889

890
	if (pvt->ext_model >= K8_REV_F)
891
		/* RevF (NPT) and later */
892
		flag = pvt->dclr0 & WIDTH_128;
893
	else
894 895 896 897 898 899 900 901 902
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

903
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
904
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
905
{
906
	u64 addr;
907 908 909
	u8 start_bit = 1;
	u8 end_bit   = 47;

910
	if (pvt->fam == 0xf) {
911 912 913 914
		start_bit = 3;
		end_bit   = 39;
	}

915
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
916 917 918 919

	/*
	 * Erratum 637 workaround
	 */
920
	if (pvt->fam == 0x15) {
921 922 923
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
924 925
		u16 mce_nid;
		u8 intlv_en;
926

927
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
928 929 930 931 932 933 934 935 936
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
937
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
938 939 940 941 942 943 944 945

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
946
			return cc6_base | (addr & GENMASK_ULL(23, 0));
947 948 949 950

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
951
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
952 953

		/* OR DramIntlvSel into bits [14:12] */
954
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
955 956

		/* add remaining [11:0] bits from original MC4_ADDR */
957
		tmp_addr |= addr & GENMASK_ULL(11, 0);
958 959 960 961 962

		return cc6_base | tmp_addr;
	}

	return addr;
963 964
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

981
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
982
{
983
	struct amd_northbridge *nb;
984 985
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
986
	int off = range << 3;
987
	u32 llim;
988

989 990
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
991

992
	if (pvt->fam == 0xf)
993
		return;
994

995 996
	if (!dram_rw(pvt, range))
		return;
997

998 999
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1000

1001
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1002
	if (pvt->fam != 0x15)
1003
		return;
1004

1005 1006 1007
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1008

1009 1010 1011 1012 1013 1014
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1015 1016

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1017 1018
	if (WARN_ON(!f1))
		return;
1019

1020
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1021

1022
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1023

1024 1025
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1026

1027
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1028

1029 1030 1031 1032
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1033 1034
}

1035
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1036
				    struct err_info *err)
1037
{
1038
	struct amd64_pvt *pvt = mci->pvt_info;
1039

1040
	error_address_to_page_and_offset(sys_addr, err);
1041 1042 1043 1044 1045

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1046 1047
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1048 1049
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1050
		err->err_code = ERR_NODE;
1051 1052 1053 1054
		return;
	}

	/* Now map the sys_addr to a CSROW */
1055 1056 1057
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1058 1059 1060
		return;
	}

1061
	/* CHIPKILL enabled */
1062
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1063 1064
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1065 1066 1067 1068 1069
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1070
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1071
				      "possible error reporting race\n",
1072 1073
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1085
		err->channel = ((sys_addr & BIT(3)) != 0);
1086 1087 1088
	}
}

1089
static int ddr2_cs_size(unsigned i, bool dct_width)
1090
{
1091
	unsigned shift = 0;
1092

1093 1094 1095 1096
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1097
	else
1098
		shift = (i + 1) >> 1;
1099

1100 1101 1102 1103
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1104
				  unsigned cs_mode, int cs_mask_nr)
1105 1106 1107 1108 1109 1110 1111 1112
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1113
		unsigned diff;
1114 1115
		WARN_ON(cs_mode > 10);

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1143 1144 1145 1146 1147
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1158
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1159
{
1160
	int i, j, channels = 0;
1161

1162
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1163
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1164
		return 2;
1165 1166

	/*
1167 1168 1169
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1170 1171 1172 1173
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1174
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1175

1176 1177 1178 1179 1180
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1181 1182
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1183

1184 1185 1186 1187 1188 1189
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1190 1191
	}

1192 1193 1194
	if (channels > 2)
		channels = 2;

1195
	amd64_info("MCT channel count: %d\n", channels);
1196 1197 1198 1199

	return channels;
}

1200
static int ddr3_cs_size(unsigned i, bool dct_width)
1201
{
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1257
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1258
				   unsigned cs_mode, int cs_mask_nr)
1259 1260 1261 1262
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1263 1264

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1265
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1266
	else
1267 1268 1269 1270 1271 1272 1273
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1274
				   unsigned cs_mode, int cs_mask_nr)
1275 1276
{
	WARN_ON(cs_mode > 12);
1277

1278
	return ddr3_cs_size(cs_mode, false);
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1312
/*
1313
 * F16h and F15h model 30h have only limited cs_modes.
1314 1315
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1316
				unsigned cs_mode, int cs_mask_nr)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1327
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1328 1329
{

1330
	if (pvt->fam == 0xf)
1331 1332
		return;

1333
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1334 1335
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1336

1337 1338
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1339 1340

		if (!dct_ganging_enabled(pvt))
1341 1342
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1343

1344 1345 1346
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1347

1348 1349 1350 1351
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1352 1353
	}

1354
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1385 1386 1387
	return channel;
}

1388
/*
1389
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1390 1391
 * Interleaving Modes.
 */
1392
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1393
				bool hi_range_sel, u8 intlv_en)
1394
{
1395
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1396 1397

	if (dct_ganging_enabled(pvt))
1398
		return 0;
1399

1400 1401
	if (hi_range_sel)
		return dct_sel_high;
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1425 1426 1427 1428

	return 0;
}

1429
/* Convert the sys_addr to the normalized DCT address */
1430
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1431 1432
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1433 1434
{
	u64 chan_off;
1435 1436 1437
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1453
		    dhar_valid(pvt) &&
1454
		    (sys_addr >= BIT_64(32)))
1455
			chan_off = hole_off;
1456 1457 1458
		else
			chan_off = dct_sel_base_off;
	} else {
1459 1460 1461 1462 1463 1464 1465 1466 1467
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1468
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1469
			chan_off = hole_off;
1470
		else
1471
			chan_off = dram_base;
1472 1473
	}

1474
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1475 1476 1477 1478 1479 1480
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1481
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1482
{
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1506
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1507 1508 1509
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1510
	u64 cs_base, cs_mask;
1511 1512 1513
	int cs_found = -EINVAL;
	int csrow;

1514
	mci = mcis[nid];
1515 1516 1517 1518 1519
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1520
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1521

1522 1523
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1524 1525
			continue;

1526
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1527

1528 1529
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1530

1531
		cs_mask = ~cs_mask;
1532

1533 1534
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1535

1536
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1537 1538 1539 1540
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1541
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1542

1543
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1544 1545 1546 1547 1548 1549
			break;
		}
	}
	return cs_found;
}

1550 1551 1552 1553 1554
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1555
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1556 1557 1558
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1559
	if (pvt->fam == 0x10) {
1560
		/* only revC3 and revE have that feature */
1561
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1562 1563 1564
			return sys_addr;
	}

1565
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1584
/* For a given @dram_range, check if @sys_addr falls within it. */
1585
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1586
				  u64 sys_addr, int *chan_sel)
1587
{
1588
	int cs_found = -EINVAL;
1589
	u64 chan_addr;
1590
	u32 dct_sel_base;
1591
	u8 channel;
1592
	bool high_range = false;
1593

1594
	u8 node_id    = dram_dst_node(pvt, range);
1595
	u8 intlv_en   = dram_intlv_en(pvt, range);
1596
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1597

1598 1599
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1600

1601 1602 1603 1604 1605 1606 1607 1608
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1609
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1610 1611
		return -EINVAL;

1612
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1623
		high_range = true;
1624

1625
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1626

1627
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1628
					  high_range, dct_sel_base);
1629

1630 1631 1632 1633
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1634

1635
	/* remove channel interleave */
1636 1637 1638
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1653 1654
	}

1655
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1656

1657
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1658

1659
	if (cs_found >= 0)
1660
		*chan_sel = channel;
1661

1662 1663 1664
	return cs_found;
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1702 1703
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1704 1705

	if (!(dct_cont_base_reg & BIT(0)) &&
1706 1707
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

	channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
					     num_dcts_intlv, dct_sel);

	/* Verify we stay within the MAX number of channels allowed */
1720
	if (channel > 3)
1721 1722 1723 1724 1725 1726 1727 1728
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1729
		chan_offset = dct_base << 27;
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1759
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1787
{
1788 1789
	int cs_found = -EINVAL;
	unsigned range;
1790

1791 1792
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1793 1794
			continue;

1795 1796 1797 1798
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
1799

1800 1801
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
1802
			cs_found = f1x_match_to_this_node(pvt, range,
1803
							  sys_addr, chan_sel);
1804 1805 1806 1807 1808 1809 1810 1811
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1812 1813
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1814
 *
1815 1816
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1817
 */
1818
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1819
				     struct err_info *err)
1820 1821 1822
{
	struct amd64_pvt *pvt = mci->pvt_info;

1823
	error_address_to_page_and_offset(sys_addr, err);
1824

1825 1826 1827
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1828 1829 1830 1831 1832 1833 1834 1835
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1836
	if (dct_ganging_enabled(pvt))
1837
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1838 1839 1840
}

/*
1841
 * debug routine to display the memory sizes of all logical DIMMs and its
1842
 * CSROWs
1843
 */
1844
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1845
{
1846
	int dimm, size0, size1;
1847 1848
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1849

1850
	if (pvt->fam == 0xf) {
1851
		/* K8 families < revF not supported yet */
1852
	       if (pvt->ext_model < K8_REV_F)
1853 1854 1855 1856 1857
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
1868 1869
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1870

1871 1872
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1873 1874 1875 1876
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1877
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1878 1879 1880 1881 1882
			/* For f15m60h, need multiplier for LRDIMM cs_size
			 * calculation. We pass 'dimm' value to the dbam_to_cs
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
1883
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1884 1885
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1886 1887

		size1 = 0;
1888
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1889
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1890 1891
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1892

1893
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1894 1895
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
1896 1897 1898
	}
}

1899
static struct amd64_family_type family_types[] = {
1900
	[K8_CPUS] = {
1901
		.ctl_name = "K8",
1902 1903
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1904
		.ops = {
1905 1906 1907
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1908 1909 1910
		}
	},
	[F10_CPUS] = {
1911
		.ctl_name = "F10h",
1912 1913
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1914
		.ops = {
1915
			.early_channel_count	= f1x_early_channel_count,
1916
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1917
			.dbam_to_cs		= f10_dbam_to_chip_select,
1918 1919 1920 1921
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1922 1923
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1924
		.ops = {
1925
			.early_channel_count	= f1x_early_channel_count,
1926
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1927
			.dbam_to_cs		= f15_dbam_to_chip_select,
1928 1929
		}
	},
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1970 1971
};

1972
/*
1973 1974 1975
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1976
 *
1977
 * Algorithm courtesy of Ross LaFetra from AMD.
1978
 */
1979
static const u16 x4_vectors[] = {
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2016 2017
};

2018
static const u16 x8_vectors[] = {
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2040
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2041
			   unsigned v_dim)
2042
{
2043 2044 2045 2046
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2047 2048
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2061

2062 2063 2064
					if (!s)
						return err_sym;
				}
2065

2066 2067 2068 2069
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2070 2071
	}

2072
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2073 2074
	return -1;
}
2075

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2118 2119
	int err_sym = -1;

2120
	if (pvt->ecc_sym_sz == 8)
2121 2122
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2123 2124
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2125 2126
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2127
					  pvt->ecc_sym_sz);
2128
	else {
2129
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2130
		return err_sym;
2131
	}
2132

2133
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2134 2135
}

2136 2137
static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
			    u8 ecc_type)
2138
{
2139 2140
	enum hw_event_mc_err_type err_type;
	const char *string;
2141

2142 2143 2144 2145 2146 2147
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2148 2149 2150
		return;
	}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
2167
	}
2168 2169 2170 2171 2172

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2173 2174
}

2175
static inline void decode_bus_error(int node_id, struct mce *m)
2176
{
2177 2178
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2179
	u8 ecc_type = (m->status >> 45) & 0x3;
2180 2181
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2182 2183
	u64 sys_addr;
	struct err_info err;
2184

2185 2186 2187 2188 2189 2190
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2191
	/* Bail out early if this was an 'observed' error */
2192
	if (PP(ec) == NBSL_PP_OBS)
2193
		return;
2194

2195 2196
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2197 2198
		return;

2199 2200
	memset(&err, 0, sizeof(err));

2201
	sys_addr = get_error_address(pvt, m);
2202

2203
	if (ecc_type == 2)
2204 2205 2206 2207 2208
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

	__log_bus_error(mci, &err, ecc_type);
2209 2210
}

2211
/*
2212
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2213
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2214
 */
2215
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2216 2217
{
	/* Reserve the ADDRESS MAP Device */
2218 2219
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2220 2221 2222
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2223
		return -ENODEV;
2224 2225 2226
	}

	/* Reserve the MISC Device */
2227 2228 2229 2230
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2231

2232 2233 2234
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2235

2236
		return -ENODEV;
2237
	}
2238 2239 2240
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2241 2242 2243 2244

	return 0;
}

2245
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2246
{
2247 2248
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2249 2250 2251 2252 2253 2254
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2255
static void read_mc_regs(struct amd64_pvt *pvt)
2256
{
2257
	unsigned range;
2258
	u64 msr_val;
2259
	u32 tmp;
2260 2261 2262 2263 2264

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2265
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2266
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2267 2268 2269 2270

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2271
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2272
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2273
	} else
2274
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2275

2276
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2277

2278
	read_dram_ctl_register(pvt);
2279

2280 2281
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2282

2283 2284 2285 2286 2287 2288 2289
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2290 2291 2292 2293
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2294

2295 2296 2297 2298 2299 2300
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2301 2302
	}

2303
	read_dct_base_mask(pvt);
2304

2305
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2306
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2307

2308
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2309

2310 2311
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2312

2313
	if (!dct_ganging_enabled(pvt)) {
2314 2315
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2316
	}
2317

2318
	pvt->ecc_sym_sz = 4;
2319 2320
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2321

2322
	if (pvt->fam >= 0x10) {
2323
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2324
		/* F16h has only DCT0, so no need to read dbam1 */
2325
		if (pvt->fam != 0x16)
2326
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2327

2328
		/* F10h, revD and later can do x8 ECC too */
2329
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2330 2331
			pvt->ecc_sym_sz = 8;
	}
2332
	dump_misc_regs(pvt);
2333 2334 2335 2336 2337 2338
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2339
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2369
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2370
{
2371
	u32 cs_mode, nr_pages;
2372
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2373

2374

2375 2376 2377 2378 2379 2380 2381
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2382
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2383

2384 2385
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
							   << (20 - PAGE_SHIFT);
2386

2387 2388 2389
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2390 2391 2392 2393 2394 2395 2396 2397

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2398
static int init_csrows(struct mem_ctl_info *mci)
2399
{
2400
	struct amd64_pvt *pvt = mci->pvt_info;
2401
	struct csrow_info *csrow;
2402
	struct dimm_info *dimm;
2403
	enum edac_type edac_mode;
2404
	int i, j, empty = 1;
2405
	int nr_pages = 0;
2406
	u32 val;
2407

2408
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2409

2410
	pvt->nbcfg = val;
2411

2412 2413 2414
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2415

2416 2417 2418
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2419
	for_each_chip_select(i, 0, pvt) {
2420 2421
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2422

2423
		if (pvt->fam != 0xf)
2424 2425 2426
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2427 2428
			continue;

2429
		csrow = mci->csrows[i];
2430
		empty = 0;
2431 2432 2433 2434

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2435
		if (row_dct0) {
2436
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2437 2438
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2439

2440
		/* K8 has only one DCT */
2441
		if (pvt->fam != 0xf && row_dct1) {
2442
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2443 2444 2445 2446

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2447

2448
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2449 2450 2451 2452

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2453
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2454 2455
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2456
		else
2457 2458 2459
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2460
			dimm = csrow->channels[j]->dimm;
2461
			dimm->mtype = pvt->dram_type;
2462
			dimm->edac_mode = edac_mode;
2463
		}
2464 2465 2466 2467
	}

	return empty;
}
2468

2469
/* get all cores on this DCT */
2470
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2471 2472 2473 2474 2475 2476 2477 2478 2479
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2480
static bool nb_mce_bank_enabled_on_node(u16 nid)
2481 2482
{
	cpumask_var_t mask;
2483
	int cpu, nbe;
2484 2485 2486
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2487
		amd64_warn("%s: Error allocating mask\n", __func__);
2488 2489 2490 2491 2492 2493 2494 2495
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2496
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2497
		nbe = reg->l & MSR_MCGCTL_NBE;
2498

2499 2500 2501
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2513
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2514 2515
{
	cpumask_var_t cmask;
2516
	int cpu;
2517 2518

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2519
		amd64_warn("%s: error allocating mask\n", __func__);
2520 2521 2522
		return false;
	}

2523
	get_cpus_on_this_dct_cpumask(cmask, nid);
2524 2525 2526 2527 2528

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2529 2530
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2531
		if (on) {
2532
			if (reg->l & MSR_MCGCTL_NBE)
2533
				s->flags.nb_mce_enable = 1;
2534

2535
			reg->l |= MSR_MCGCTL_NBE;
2536 2537
		} else {
			/*
2538
			 * Turn off NB MCE reporting only when it was off before
2539
			 */
2540
			if (!s->flags.nb_mce_enable)
2541
				reg->l &= ~MSR_MCGCTL_NBE;
2542 2543 2544 2545 2546 2547 2548 2549 2550
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2551
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2552
				       struct pci_dev *F3)
2553
{
2554
	bool ret = true;
B
Borislav Petkov 已提交
2555
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2556

2557 2558 2559 2560 2561
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2562
	amd64_read_pci_cfg(F3, NBCTL, &value);
2563

2564 2565
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2566 2567

	value |= mask;
B
Borislav Petkov 已提交
2568
	amd64_write_pci_cfg(F3, NBCTL, value);
2569

2570
	amd64_read_pci_cfg(F3, NBCFG, &value);
2571

2572 2573
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2574

2575
	if (!(value & NBCFG_ECC_ENABLE)) {
2576
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2577

2578
		s->flags.nb_ecc_prev = 0;
2579

2580
		/* Attempt to turn on DRAM ECC Enable */
2581 2582
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2583

2584
		amd64_read_pci_cfg(F3, NBCFG, &value);
2585

2586
		if (!(value & NBCFG_ECC_ENABLE)) {
2587 2588
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2589
			ret = false;
2590
		} else {
2591
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2592
		}
2593
	} else {
2594
		s->flags.nb_ecc_prev = 1;
2595
	}
2596

2597 2598
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2599

2600
	return ret;
2601 2602
}

2603
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2604
					struct pci_dev *F3)
2605
{
B
Borislav Petkov 已提交
2606 2607
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2608

2609
	if (!s->nbctl_valid)
2610 2611
		return;

B
Borislav Petkov 已提交
2612
	amd64_read_pci_cfg(F3, NBCTL, &value);
2613
	value &= ~mask;
2614
	value |= s->old_nbctl;
2615

B
Borislav Petkov 已提交
2616
	amd64_write_pci_cfg(F3, NBCTL, value);
2617

2618 2619
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2620 2621 2622
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2623 2624 2625
	}

	/* restore the NB Enable MCGCTL bit */
2626
	if (toggle_ecc_err_reporting(s, nid, OFF))
2627
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2628 2629 2630
}

/*
2631 2632 2633 2634
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2635
 */
2636 2637 2638 2639 2640
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2641

2642
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2643 2644
{
	u32 value;
2645
	u8 ecc_en = 0;
2646
	bool nb_mce_en = false;
2647

2648
	amd64_read_pci_cfg(F3, NBCFG, &value);
2649

2650
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2651
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2652

2653
	nb_mce_en = nb_mce_bank_enabled_on_node(nid);
2654
	if (!nb_mce_en)
2655 2656 2657
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2658

2659 2660 2661 2662 2663
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2664 2665
}

2666 2667
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2668 2669 2670 2671 2672 2673
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2674
	if (pvt->nbcap & NBCAP_SECDED)
2675 2676
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2677
	if (pvt->nbcap & NBCAP_CHIPKILL)
2678 2679
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

2680
	mci->edac_cap		= determine_edac_cap(pvt);
2681 2682
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2683
	mci->ctl_name		= fam->ctl_name;
2684
	mci->dev_name		= pci_name(pvt->F2);
2685 2686 2687
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
2688 2689
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
2690 2691
}

2692 2693 2694
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
2695
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2696
{
2697 2698
	struct amd64_family_type *fam_type = NULL;

2699
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
2700
	pvt->stepping	= boot_cpu_data.x86_mask;
2701 2702 2703 2704
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
2705
	case 0xf:
2706 2707
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
2708
		break;
2709

2710
	case 0x10:
2711 2712
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
2713 2714 2715
		break;

	case 0x15:
2716
		if (pvt->model == 0x30) {
2717 2718
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
2719
			break;
2720 2721 2722 2723
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
2724 2725
		}

2726 2727
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
2728 2729
		break;

2730
	case 0x16:
2731 2732 2733 2734 2735
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
2736 2737
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
2738 2739
		break;

2740
	default:
2741
		amd64_err("Unsupported family!\n");
2742
		return NULL;
2743
	}
2744

2745
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2746
		     (pvt->fam == 0xf ?
2747 2748 2749
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2750
	return fam_type;
2751 2752
}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

2763
static int init_one_instance(struct pci_dev *F2)
2764 2765
{
	struct amd64_pvt *pvt = NULL;
2766
	struct amd64_family_type *fam_type = NULL;
2767
	struct mem_ctl_info *mci = NULL;
2768
	struct edac_mc_layer layers[2];
2769
	int err = 0, ret;
2770
	u16 nid = amd_get_node_id(F2);
2771 2772 2773 2774

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2775
		goto err_ret;
2776

2777
	pvt->mc_node_id	= nid;
2778
	pvt->F2 = F2;
2779

2780
	ret = -EINVAL;
2781
	fam_type = per_family_init(pvt);
2782
	if (!fam_type)
2783 2784
		goto err_free;

2785
	ret = -ENODEV;
2786
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2787 2788 2789
	if (err)
		goto err_free;

2790
	read_mc_regs(pvt);
2791 2792 2793 2794

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2795
	 * tables in the 'mci' structure.
2796
	 */
2797
	ret = -EINVAL;
2798 2799
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2800
		goto err_siblings;
2801 2802

	ret = -ENOMEM;
2803 2804 2805 2806
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
2807 2808 2809 2810 2811 2812 2813

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
2814
	layers[1].is_virt_csrow = false;
2815

2816
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2817
	if (!mci)
2818
		goto err_siblings;
2819 2820

	mci->pvt_info = pvt;
2821
	mci->pdev = &pvt->F2->dev;
2822

2823
	setup_mci_misc_attrs(mci, fam_type);
2824 2825

	if (init_csrows(mci))
2826 2827 2828
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
2829
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
2830
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2831 2832 2833
		goto err_add_mc;
	}

2834 2835 2836 2837
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

2838
	amd_register_ecc_decoder(decode_bus_error);
2839

2840 2841 2842 2843
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2844 2845 2846 2847 2848
	return 0;

err_add_mc:
	edac_mc_free(mci);

2849 2850
err_siblings:
	free_mc_sibling_devs(pvt);
2851

2852 2853
err_free:
	kfree(pvt);
2854

2855
err_ret:
2856 2857 2858
	return ret;
}

2859 2860
static int probe_one_instance(struct pci_dev *pdev,
			      const struct pci_device_id *mc_type)
2861
{
2862
	u16 nid = amd_get_node_id(pdev);
2863
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2864
	struct ecc_settings *s;
2865
	int ret = 0;
2866 2867

	ret = pci_enable_device(pdev);
2868
	if (ret < 0) {
2869
		edac_dbg(0, "ret=%d\n", ret);
2870 2871
		return -EIO;
	}
2872

2873 2874 2875
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2876
		goto err_out;
2877 2878 2879

	ecc_stngs[nid] = s;

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

2892
	ret = init_one_instance(pdev);
2893
	if (ret < 0) {
2894
		amd64_err("Error probing instance: %d\n", nid);
2895 2896
		restore_ecc_error_reporting(s, nid, F3);
	}
2897 2898

	return ret;
2899 2900 2901 2902 2903 2904 2905

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2906 2907
}

2908
static void remove_one_instance(struct pci_dev *pdev)
2909 2910 2911
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2912
	u16 nid = amd_get_node_id(pdev);
2913 2914
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2915

2916
	mci = find_mci_by_dev(&pdev->dev);
2917 2918
	WARN_ON(!mci);

2919 2920 2921 2922 2923 2924 2925
	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2926
	restore_ecc_error_reporting(s, nid, F3);
2927

2928
	free_mc_sibling_devs(pvt);
2929

2930 2931
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
2932
	amd_unregister_ecc_decoder(decode_bus_error);
2933

2934 2935
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2936

2937
	/* Free the EDAC CORE resources */
2938
	mci->pvt_info = NULL;
2939
	mcis[nid] = NULL;
2940 2941

	kfree(pvt);
2942 2943 2944 2945 2946 2947 2948 2949
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2950
static const struct pci_device_id amd64_pci_table[] = {
2951 2952 2953 2954 2955 2956 2957
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_DRAM) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2) },
2958 2959 2960 2961 2962 2963
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2964 2965
	.probe		= probe_one_instance,
	.remove		= remove_one_instance,
2966 2967 2968
	.id_table	= amd64_pci_table,
};

2969
static void setup_pci_device(void)
2970 2971 2972 2973
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

2974
	if (pci_ctl)
2975 2976
		return;

2977
	mci = mcis[0];
2978 2979
	if (!mci)
		return;
2980

2981 2982 2983 2984 2985
	pvt = mci->pvt_info;
	pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
2986 2987 2988 2989 2990
	}
}

static int __init amd64_edac_init(void)
{
2991
	int err = -ENODEV;
2992

2993
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2994 2995 2996

	opstate_init();

2997
	if (amd_cache_northbridges() < 0)
2998
		goto err_ret;
2999

3000
	err = -ENOMEM;
3001 3002
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3003
	if (!(mcis && ecc_stngs))
3004
		goto err_free;
3005

3006
	msrs = msrs_alloc();
3007
	if (!msrs)
3008
		goto err_free;
3009

3010 3011
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
3012
		goto err_pci;
3013

3014
	err = -ENODEV;
3015 3016
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
3017

3018
	setup_pci_device();
T
Tomasz Pala 已提交
3019 3020 3021 3022 3023

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3024
	return 0;
3025

3026
err_no_instances:
3027
	pci_unregister_driver(&amd64_pci_driver);
3028

3029 3030 3031
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3032

3033 3034 3035 3036 3037 3038 3039
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

3040
err_ret:
3041 3042 3043 3044 3045
	return err;
}

static void __exit amd64_edac_exit(void)
{
3046 3047
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3048 3049

	pci_unregister_driver(&amd64_pci_driver);
3050

3051 3052 3053
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3054 3055 3056
	kfree(mcis);
	mcis = NULL;

3057 3058
	msrs_free(msrs);
	msrs = NULL;
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");