radeon_kfd.c 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/module.h>
#include <linux/fdtable.h>
#include <linux/uaccess.h>
#include <drm/drmP.h>
#include "radeon.h"
#include "cikd.h"
#include "cik_reg.h"
#include "radeon_kfd.h"
31 32
#include "radeon_ucode.h"
#include <linux/firmware.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

#define CIK_PIPE_PER_MEC	(4)

struct kgd_mem {
	struct radeon_sa_bo *sa_bo;
	uint64_t gpu_addr;
	void *ptr;
};

static int init_sa_manager(struct kgd_dev *kgd, unsigned int size);
static void fini_sa_manager(struct kgd_dev *kgd);

static int allocate_mem(struct kgd_dev *kgd, size_t size, size_t alignment,
		enum kgd_memory_pool pool, struct kgd_mem **mem);

static void free_mem(struct kgd_dev *kgd, struct kgd_mem *mem);

static uint64_t get_vmem_size(struct kgd_dev *kgd);
static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);

static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
54
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

/*
 * Register access functions
 */

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid);

static int kgd_init_memory(struct kgd_dev *kgd);

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr);

static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
			uint32_t queue_id, uint32_t __user *wptr);
74
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
75 76 77 78 79 80
static bool kgd_hqd_is_occupies(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id);

static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
				unsigned int timeout, uint32_t pipe_id,
				uint32_t queue_id);
81 82 83
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
				unsigned int timeout);
84 85 86 87 88 89 90 91 92 93 94 95 96 97

static const struct kfd2kgd_calls kfd2kgd = {
	.init_sa_manager = init_sa_manager,
	.fini_sa_manager = fini_sa_manager,
	.allocate_mem = allocate_mem,
	.free_mem = free_mem,
	.get_vmem_size = get_vmem_size,
	.get_gpu_clock_counter = get_gpu_clock_counter,
	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
	.program_sh_mem_settings = kgd_program_sh_mem_settings,
	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
	.init_memory = kgd_init_memory,
	.init_pipeline = kgd_init_pipeline,
	.hqd_load = kgd_hqd_load,
98
	.hqd_sdma_load = kgd_hqd_sdma_load,
99
	.hqd_is_occupies = kgd_hqd_is_occupies,
100
	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
101
	.hqd_destroy = kgd_hqd_destroy,
102
	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
103
	.get_fw_version = get_fw_version
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
};

static const struct kgd2kfd_calls *kgd2kfd;

bool radeon_kfd_init(void)
{
	bool (*kgd2kfd_init_p)(unsigned, const struct kfd2kgd_calls*,
				const struct kgd2kfd_calls**);

	kgd2kfd_init_p = symbol_request(kgd2kfd_init);

	if (kgd2kfd_init_p == NULL)
		return false;

	if (!kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kfd2kgd, &kgd2kfd)) {
		symbol_put(kgd2kfd_init);
		kgd2kfd = NULL;

		return false;
	}

	return true;
}

void radeon_kfd_fini(void)
{
	if (kgd2kfd) {
		kgd2kfd->exit();
		symbol_put(kgd2kfd_init);
	}
}

void radeon_kfd_device_probe(struct radeon_device *rdev)
{
	if (kgd2kfd)
		rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev, rdev->pdev);
}

void radeon_kfd_device_init(struct radeon_device *rdev)
{
	if (rdev->kfd) {
		struct kgd2kfd_shared_resources gpu_resources = {
			.compute_vmid_bitmap = 0xFF00,

			.first_compute_pipe = 1,
			.compute_pipe_count = 8 - 1,
		};

		radeon_doorbell_get_kfd_info(rdev,
				&gpu_resources.doorbell_physical_address,
				&gpu_resources.doorbell_aperture_size,
				&gpu_resources.doorbell_start_offset);

		kgd2kfd->device_init(rdev->kfd, &gpu_resources);
	}
}

void radeon_kfd_device_fini(struct radeon_device *rdev)
{
	if (rdev->kfd) {
		kgd2kfd->device_exit(rdev->kfd);
		rdev->kfd = NULL;
	}
}

void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
{
	if (rdev->kfd)
		kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
}

void radeon_kfd_suspend(struct radeon_device *rdev)
{
	if (rdev->kfd)
		kgd2kfd->suspend(rdev->kfd);
}

int radeon_kfd_resume(struct radeon_device *rdev)
{
	int r = 0;

	if (rdev->kfd)
		r = kgd2kfd->resume(rdev->kfd);

	return r;
}

static u32 pool_to_domain(enum kgd_memory_pool p)
{
	switch (p) {
	case KGD_POOL_FRAMEBUFFER: return RADEON_GEM_DOMAIN_VRAM;
	default: return RADEON_GEM_DOMAIN_GTT;
	}
}

static int init_sa_manager(struct kgd_dev *kgd, unsigned int size)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;
	int r;

	BUG_ON(kgd == NULL);

	r = radeon_sa_bo_manager_init(rdev, &rdev->kfd_bo,
				      size,
				      RADEON_GPU_PAGE_SIZE,
				      RADEON_GEM_DOMAIN_GTT,
				      RADEON_GEM_GTT_WC);

	if (r)
		return r;

	r = radeon_sa_bo_manager_start(rdev, &rdev->kfd_bo);
	if (r)
		radeon_sa_bo_manager_fini(rdev, &rdev->kfd_bo);

	return r;
}

static void fini_sa_manager(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	BUG_ON(kgd == NULL);

	radeon_sa_bo_manager_suspend(rdev, &rdev->kfd_bo);
	radeon_sa_bo_manager_fini(rdev, &rdev->kfd_bo);
}

static int allocate_mem(struct kgd_dev *kgd, size_t size, size_t alignment,
		enum kgd_memory_pool pool, struct kgd_mem **mem)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;
	u32 domain;
	int r;

	BUG_ON(kgd == NULL);

	domain = pool_to_domain(pool);
	if (domain != RADEON_GEM_DOMAIN_GTT) {
		dev_err(rdev->dev,
			"Only allowed to allocate gart memory for kfd\n");
		return -EINVAL;
	}

	*mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
	if ((*mem) == NULL)
		return -ENOMEM;

	r = radeon_sa_bo_new(rdev, &rdev->kfd_bo, &(*mem)->sa_bo, size,
				alignment);
	if (r) {
		dev_err(rdev->dev, "failed to get memory for kfd (%d)\n", r);
		return r;
	}

	(*mem)->ptr = radeon_sa_bo_cpu_addr((*mem)->sa_bo);
	(*mem)->gpu_addr = radeon_sa_bo_gpu_addr((*mem)->sa_bo);

	return 0;
}

static void free_mem(struct kgd_dev *kgd, struct kgd_mem *mem)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	BUG_ON(kgd == NULL);

	radeon_sa_bo_free(rdev, &mem->sa_bo, NULL);
	kfree(mem);
}

static uint64_t get_vmem_size(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	BUG_ON(kgd == NULL);

	return rdev->mc.real_vram_size;
}

static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	return rdev->asic->get_gpu_clock_counter(rdev);
}

static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	/* The sclk is in quantas of 10kHz */
	return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
}

static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
{
	return (struct radeon_device *)kgd;
}

static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
{
	struct radeon_device *rdev = get_radeon_device(kgd);

	writel(value, (void __iomem *)(rdev->rmmio + offset));
}

static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
{
	struct radeon_device *rdev = get_radeon_device(kgd);

	return readl((void __iomem *)(rdev->rmmio + offset));
}

static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
			uint32_t queue, uint32_t vmid)
{
	struct radeon_device *rdev = get_radeon_device(kgd);
	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);

	mutex_lock(&rdev->srbm_mutex);
	write_register(kgd, SRBM_GFX_CNTL, value);
}

static void unlock_srbm(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = get_radeon_device(kgd);

	write_register(kgd, SRBM_GFX_CNTL, 0);
	mutex_unlock(&rdev->srbm_mutex);
}

static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t queue_id)
{
	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, queue_id, 0);
}

static void release_queue(struct kgd_dev *kgd)
{
	unlock_srbm(kgd);
}

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
					uint32_t sh_mem_config,
					uint32_t sh_mem_ape1_base,
					uint32_t sh_mem_ape1_limit,
					uint32_t sh_mem_bases)
{
	lock_srbm(kgd, 0, 0, 0, vmid);

	write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
	write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
	write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
	write_register(kgd, SH_MEM_BASES, sh_mem_bases);

	unlock_srbm(kgd);
}

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid)
{
	/*
	 * We have to assume that there is no outstanding mapping.
	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
	 * because a mapping is in progress or because a mapping finished and
	 * the SW cleared it.
	 * So the protocol is to always wait & clear.
	 */
	uint32_t pasid_mapping = (pasid == 0) ? 0 :
				(uint32_t)pasid | ATC_VMID_PASID_MAPPING_VALID;

	write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
			pasid_mapping);

	while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
								(1U << vmid)))
		cpu_relax();
	write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);

	return 0;
}

static int kgd_init_memory(struct kgd_dev *kgd)
{
	/*
	 * Configure apertures:
	 * LDS:         0x60000000'00000000 - 0x60000001'00000000 (4GB)
	 * Scratch:     0x60000001'00000000 - 0x60000002'00000000 (4GB)
	 * GPUVM:       0x60010000'00000000 - 0x60020000'00000000 (1TB)
	 */
	int i;
	uint32_t sh_mem_bases = PRIVATE_BASE(0x6000) | SHARED_BASE(0x6000);

	for (i = 8; i < 16; i++) {
		uint32_t sh_mem_config;

		lock_srbm(kgd, 0, 0, 0, i);

		sh_mem_config = ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED);
		sh_mem_config |= DEFAULT_MTYPE(MTYPE_NONCACHED);

		write_register(kgd, SH_MEM_CONFIG, sh_mem_config);

		write_register(kgd, SH_MEM_BASES, sh_mem_bases);

		/* Scratch aperture is not supported for now. */
		write_register(kgd, SH_STATIC_MEM_CONFIG, 0);

		/* APE1 disabled for now. */
		write_register(kgd, SH_MEM_APE1_BASE, 1);
		write_register(kgd, SH_MEM_APE1_LIMIT, 0);

		unlock_srbm(kgd);
	}

	return 0;
}

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr)
{
	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, 0, 0);
	write_register(kgd, CP_HPD_EOP_BASE_ADDR,
			lower_32_bits(hpd_gpu_addr >> 8));
	write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI,
			upper_32_bits(hpd_gpu_addr >> 8));
	write_register(kgd, CP_HPD_EOP_VMID, 0);
	write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size);
	unlock_srbm(kgd);

	return 0;
}

444 445 446 447 448 449 450 451 452 453 454 455
static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
{
	uint32_t retval;

	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;

	pr_debug("kfd: sdma base address: 0x%x\n", retval);

	return retval;
}

456 457 458 459 460
static inline struct cik_mqd *get_mqd(void *mqd)
{
	return (struct cik_mqd *)mqd;
}

461 462 463 464 465
static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
{
	return (struct cik_sdma_rlc_registers *)mqd;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
			uint32_t queue_id, uint32_t __user *wptr)
{
	uint32_t wptr_shadow, is_wptr_shadow_valid;
	struct cik_mqd *m;

	m = get_mqd(mqd);

	is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);

	acquire_queue(kgd, pipe_id, queue_id);
	write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
	write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
	write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);

	write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
	write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
	write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);

	write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
	write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
	write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);

	write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);

	write_register(kgd, CP_HQD_PERSISTENT_STATE,
			m->cp_hqd_persistent_state);
	write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
	write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);

	write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
			m->cp_hqd_atomic0_preop_lo);

	write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
			m->cp_hqd_atomic0_preop_hi);

	write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
			m->cp_hqd_atomic1_preop_lo);

	write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
			m->cp_hqd_atomic1_preop_hi);

	write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
			m->cp_hqd_pq_rptr_report_addr_lo);

	write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
			m->cp_hqd_pq_rptr_report_addr_hi);

	write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);

	write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
			m->cp_hqd_pq_wptr_poll_addr_lo);

	write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
			m->cp_hqd_pq_wptr_poll_addr_hi);

	write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
			m->cp_hqd_pq_doorbell_control);

	write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);

	write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);

	write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
	write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);

	write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);

	if (is_wptr_shadow_valid)
		write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);

	write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
	release_queue(kgd);

	return 0;
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
{
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_VIRTUAL_ADDR,
			m->sdma_rlc_virtual_addr);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_BASE,
			m->sdma_rlc_rb_base);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_BASE_HI,
			m->sdma_rlc_rb_base_hi);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_LO,
			m->sdma_rlc_rb_rptr_addr_lo);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_HI,
			m->sdma_rlc_rb_rptr_addr_hi);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_DOORBELL,
			m->sdma_rlc_doorbell);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_CNTL,
			m->sdma_rlc_rb_cntl);

	return 0;
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
static bool kgd_hqd_is_occupies(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id)
{
	uint32_t act;
	bool retval = false;
	uint32_t low, high;

	acquire_queue(kgd, pipe_id, queue_id);
	act = read_register(kgd, CP_HQD_ACTIVE);
	if (act) {
		low = lower_32_bits(queue_address >> 8);
		high = upper_32_bits(queue_address >> 8);

		if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
				high == read_register(kgd, CP_HQD_PQ_BASE_HI))
			retval = true;
	}
	release_queue(kgd);
	return retval;
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t sdma_rlc_rb_cntl;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	sdma_rlc_rb_cntl = read_register(kgd,
					sdma_base_addr + SDMA0_RLC0_RB_CNTL);

	if (sdma_rlc_rb_cntl & SDMA_RB_ENABLE)
		return true;

	return false;
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
				unsigned int timeout, uint32_t pipe_id,
				uint32_t queue_id)
{
	uint32_t temp;

	acquire_queue(kgd, pipe_id, queue_id);
	write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);

	write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);

	while (true) {
		temp = read_register(kgd, CP_HQD_ACTIVE);
		if (temp & 0x1)
			break;
		if (timeout == 0) {
			pr_err("kfd: cp queue preemption time out (%dms)\n",
				temp);
			return -ETIME;
		}
		msleep(20);
		timeout -= 20;
	}

	release_queue(kgd);
	return 0;
}
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
				unsigned int timeout)
{
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t temp;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL);
	temp = temp & ~SDMA_RB_ENABLE;
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, temp);

	while (true) {
		temp = read_register(kgd, sdma_base_addr +
						SDMA0_RLC0_CONTEXT_STATUS);
		if (temp & SDMA_RLC_IDLE)
			break;
		if (timeout == 0)
			return -ETIME;
		msleep(20);
		timeout -= 20;
	}

	write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, 0);
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR, 0);
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_WPTR, 0);
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, 0);

	return 0;
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
{
	struct radeon_device *rdev = (struct radeon_device *) kgd;
	const union radeon_firmware_header *hdr;

	BUG_ON(kgd == NULL || rdev->mec_fw == NULL);

	switch (type) {
	case KGD_ENGINE_PFP:
		hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
		break;

	case KGD_ENGINE_ME:
		hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
		break;

	case KGD_ENGINE_CE:
		hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
		break;

	case KGD_ENGINE_MEC1:
		hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
		break;

	case KGD_ENGINE_MEC2:
		hdr = (const union radeon_firmware_header *)
							rdev->mec2_fw->data;
		break;

	case KGD_ENGINE_RLC:
		hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
		break;

	case KGD_ENGINE_SDMA:
		hdr = (const union radeon_firmware_header *)
							rdev->sdma_fw->data;
		break;

	default:
		return 0;
	}

	if (hdr == NULL)
		return 0;

	/* Only 12 bit in use*/
	return hdr->common.ucode_version;
}