pmu-emul.c 25.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2015 Linaro Ltd.
 * Author: Shannon Zhao <shannon.zhao@linaro.org>
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/perf_event.h>
11
#include <linux/perf/arm_pmu.h>
12
#include <linux/uaccess.h>
13 14
#include <asm/kvm_emulate.h>
#include <kvm/arm_pmu.h>
15
#include <kvm/arm_vgic.h>
16

17
static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
18 19
static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx);
static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc);
20

21 22
#define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
static u32 kvm_pmu_event_mask(struct kvm *kvm)
{
	switch (kvm->arch.pmuver) {
	case 1:			/* ARMv8.0 */
		return GENMASK(9, 0);
	case 4:			/* ARMv8.1 */
	case 5:			/* ARMv8.4 */
	case 6:			/* ARMv8.5 */
		return GENMASK(15, 0);
	default:		/* Shouldn't be here, just for sanity */
		WARN_ONCE(1, "Unknown PMU version %d\n", kvm->arch.pmuver);
		return 0;
	}
}

38 39 40 41 42 43 44 45 46 47 48
/**
 * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 */
static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
{
	return (select_idx == ARMV8_PMU_CYCLE_IDX &&
		__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
}

49 50 51 52 53 54 55 56 57 58 59
static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
{
	struct kvm_pmu *pmu;
	struct kvm_vcpu_arch *vcpu_arch;

	pmc -= pmc->idx;
	pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
	vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
	return container_of(vcpu_arch, struct kvm_vcpu, arch);
}

60
/**
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
 * kvm_pmu_pmc_is_chained - determine if the pmc is chained
 * @pmc: The PMU counter pointer
 */
static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
{
	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);

	return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
}

/**
 * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
 * @select_idx: The counter index
 */
static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
{
	return select_idx & 0x1;
}

/**
 * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
 * @pmc: The PMU counter pointer
 *
 * When a pair of PMCs are chained together we use the low counter (canonical)
 * to hold the underlying perf event.
 */
static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
{
	if (kvm_pmu_pmc_is_chained(pmc) &&
	    kvm_pmu_idx_is_high_counter(pmc->idx))
		return pmc - 1;

	return pmc;
}
95 96 97 98 99 100 101
static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc)
{
	if (kvm_pmu_idx_is_high_counter(pmc->idx))
		return pmc - 1;
	else
		return pmc + 1;
}
102 103 104

/**
 * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
105 106 107
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 */
108
static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
109
{
110
	u64 eventsel, reg;
111

112 113 114 115 116 117
	select_idx |= 0x1;

	if (select_idx == ARMV8_PMU_CYCLE_IDX)
		return false;

	reg = PMEVTYPER0_EL0 + select_idx;
118
	eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm);
119 120 121 122 123 124 125 126 127 128 129 130 131

	return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
}

/**
 * kvm_pmu_get_pair_counter_value - get PMU counter value
 * @vcpu: The vcpu pointer
 * @pmc: The PMU counter pointer
 */
static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
					  struct kvm_pmc *pmc)
{
	u64 counter, counter_high, reg, enabled, running;
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	if (kvm_pmu_pmc_is_chained(pmc)) {
		pmc = kvm_pmu_get_canonical_pmc(pmc);
		reg = PMEVCNTR0_EL0 + pmc->idx;

		counter = __vcpu_sys_reg(vcpu, reg);
		counter_high = __vcpu_sys_reg(vcpu, reg + 1);

		counter = lower_32_bits(counter) | (counter_high << 32);
	} else {
		reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
		      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
		counter = __vcpu_sys_reg(vcpu, reg);
	}

	/*
	 * The real counter value is equal to the value of counter register plus
149 150 151 152 153 154
	 * the value perf event counts.
	 */
	if (pmc->perf_event)
		counter += perf_event_read_value(pmc->perf_event, &enabled,
						 &running);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	return counter;
}

/**
 * kvm_pmu_get_counter_value - get PMU counter value
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 */
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
{
	u64 counter;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc = &pmu->pmc[select_idx];

	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);

	if (kvm_pmu_pmc_is_chained(pmc) &&
	    kvm_pmu_idx_is_high_counter(select_idx))
		counter = upper_32_bits(counter);
174
	else if (select_idx != ARMV8_PMU_CYCLE_IDX)
175 176 177
		counter = lower_32_bits(counter);

	return counter;
178 179 180 181 182 183 184 185 186 187 188 189 190 191
}

/**
 * kvm_pmu_set_counter_value - set PMU counter value
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 * @val: The counter value
 */
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
{
	u64 reg;

	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
	      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
192
	__vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
193 194 195

	/* Recreate the perf event to reflect the updated sample_period */
	kvm_pmu_create_perf_event(vcpu, select_idx);
196
}
197

198 199 200 201 202 203
/**
 * kvm_pmu_release_perf_event - remove the perf event
 * @pmc: The PMU counter pointer
 */
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
{
204
	pmc = kvm_pmu_get_canonical_pmc(pmc);
205 206 207 208 209 210 211
	if (pmc->perf_event) {
		perf_event_disable(pmc->perf_event);
		perf_event_release_kernel(pmc->perf_event);
		pmc->perf_event = NULL;
	}
}

212 213 214 215 216 217 218 219
/**
 * kvm_pmu_stop_counter - stop PMU counter
 * @pmc: The PMU counter pointer
 *
 * If this counter has been configured to monitor some event, release it here.
 */
static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
{
220
	u64 counter, reg, val;
221

222 223 224 225 226 227
	pmc = kvm_pmu_get_canonical_pmc(pmc);
	if (!pmc->perf_event)
		return;

	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);

228 229 230
	if (pmc->idx == ARMV8_PMU_CYCLE_IDX) {
		reg = PMCCNTR_EL0;
		val = counter;
231
	} else {
232 233
		reg = PMEVCNTR0_EL0 + pmc->idx;
		val = lower_32_bits(counter);
234
	}
235

236 237 238 239 240
	__vcpu_sys_reg(vcpu, reg) = val;

	if (kvm_pmu_pmc_is_chained(pmc))
		__vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);

241
	kvm_pmu_release_perf_event(pmc);
242 243
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257
/**
 * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
 * @vcpu: The vcpu pointer
 *
 */
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;

	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
		pmu->pmc[i].idx = i;
}

258 259 260 261 262 263 264
/**
 * kvm_pmu_vcpu_reset - reset pmu state for cpu
 * @vcpu: The vcpu pointer
 *
 */
void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
{
265
	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
266
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
267
	int i;
268

269
	for_each_set_bit(i, &mask, 32)
270
		kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
271 272

	bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
273 274
}

275 276 277 278 279 280 281 282 283 284
/**
 * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
 * @vcpu: The vcpu pointer
 *
 */
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;

285 286
	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
		kvm_pmu_release_perf_event(&pmu->pmc[i]);
287
	irq_work_sync(&vcpu->arch.pmu.overflow_work);
288 289
}

290 291
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
{
292
	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
293 294 295 296 297 298 299 300 301

	val &= ARMV8_PMU_PMCR_N_MASK;
	if (val == 0)
		return BIT(ARMV8_PMU_CYCLE_IDX);
	else
		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
}

/**
302
 * kvm_pmu_enable_counter_mask - enable selected PMU counters
303 304 305 306 307
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMCNTENSET register
 *
 * Call perf_event_enable to start counting the perf event
 */
308
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
309 310 311 312 313
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc;

314
	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
315 316 317 318 319 320 321
		return;

	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
		if (!(val & BIT(i)))
			continue;

		pmc = &pmu->pmc[i];
322

323 324 325
		/* A change in the enable state may affect the chain state */
		kvm_pmu_update_pmc_chained(vcpu, i);
		kvm_pmu_create_perf_event(vcpu, i);
326 327

		/* At this point, pmc must be the canonical */
328 329 330 331 332 333 334 335 336
		if (pmc->perf_event) {
			perf_event_enable(pmc->perf_event);
			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
				kvm_debug("fail to enable perf event\n");
		}
	}
}

/**
337
 * kvm_pmu_disable_counter_mask - disable selected PMU counters
338 339 340 341 342
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMCNTENCLR register
 *
 * Call perf_event_disable to stop counting the perf event
 */
343
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
344 345 346 347 348 349 350 351 352 353 354 355 356
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc;

	if (!val)
		return;

	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
		if (!(val & BIT(i)))
			continue;

		pmc = &pmu->pmc[i];
357

358 359 360
		/* A change in the enable state may affect the chain state */
		kvm_pmu_update_pmc_chained(vcpu, i);
		kvm_pmu_create_perf_event(vcpu, i);
361 362

		/* At this point, pmc must be the canonical */
363 364 365 366
		if (pmc->perf_event)
			perf_event_disable(pmc->perf_event);
	}
}
367

368 369 370 371
static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
{
	u64 reg = 0;

372 373 374 375
	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
376
		reg &= kvm_pmu_valid_counter_mask(vcpu);
377
	}
378 379 380 381

	return reg;
}

382
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
383 384
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
385 386
	bool overflow;

387
	if (!kvm_vcpu_has_pmu(vcpu))
388
		return;
389

390
	overflow = !!kvm_pmu_overflow_status(vcpu);
391 392 393 394 395 396 397
	if (pmu->irq_level == overflow)
		return;

	pmu->irq_level = overflow;

	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
398
					      pmu->irq_num, overflow, pmu);
399 400 401 402
		WARN_ON(ret);
	}
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	return pmu->irq_level != run_level;
}

/*
 * Reflect the PMU overflow interrupt output level into the kvm_run structure
 */
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
{
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the timer bitmap for user space */
	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
	if (vcpu->arch.pmu.irq_level)
		regs->device_irq_level |= KVM_ARM_DEV_PMU;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/**
 * kvm_pmu_flush_hwstate - flush pmu state to cpu
 * @vcpu: The vcpu pointer
 *
 * Check if the PMU has overflowed while we were running in the host, and inject
 * an interrupt if that was the case.
 */
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
{
	kvm_pmu_update_state(vcpu);
}

/**
 * kvm_pmu_sync_hwstate - sync pmu state from cpu
 * @vcpu: The vcpu pointer
 *
 * Check if the PMU has overflowed while we were running in the guest, and
 * inject an interrupt if that was the case.
 */
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
{
	kvm_pmu_update_state(vcpu);
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/**
 * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
 * to the event.
 * This is why we need a callback to do it once outside of the NMI context.
 */
static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
{
	struct kvm_vcpu *vcpu;
	struct kvm_pmu *pmu;

	pmu = container_of(work, struct kvm_pmu, overflow_work);
	vcpu = kvm_pmc_to_vcpu(pmu->pmc);

	kvm_vcpu_kick(vcpu);
}

468
/**
469
 * When the perf event overflows, set the overflow status and inform the vcpu.
470 471 472 473 474 475
 */
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
				  struct perf_sample_data *data,
				  struct pt_regs *regs)
{
	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
476
	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
477 478
	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
	int idx = pmc->idx;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	u64 period;

	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);

	/*
	 * Reset the sample period to the architectural limit,
	 * i.e. the point where the counter overflows.
	 */
	period = -(local64_read(&perf_event->count));

	if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
		period &= GENMASK(31, 0);

	local64_set(&perf_event->hw.period_left, 0);
	perf_event->attr.sample_period = period;
	perf_event->hw.sample_period = period;
495

496
	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
497 498 499

	if (kvm_pmu_overflow_status(vcpu)) {
		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
500 501 502 503 504

		if (!in_nmi())
			kvm_vcpu_kick(vcpu);
		else
			irq_work_queue(&vcpu->arch.pmu.overflow_work);
505
	}
506 507

	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
508 509
}

510 511 512 513 514 515 516
/**
 * kvm_pmu_software_increment - do software increment
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMSWINC register
 */
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
{
517
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
518 519
	int i;

520 521 522
	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
		return;

523 524 525
	/* Weed out disabled counters */
	val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);

526
	for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
527 528
		u64 type, reg;

529 530
		if (!(val & BIT(i)))
			continue;
531 532 533

		/* PMSWINC only applies to ... SW_INC! */
		type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i);
534
		type &= kvm_pmu_event_mask(vcpu->kvm);
535 536 537 538 539 540 541 542 543 544 545 546 547 548
		if (type != ARMV8_PMUV3_PERFCTR_SW_INCR)
			continue;

		/* increment this even SW_INC counter */
		reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
		reg = lower_32_bits(reg);
		__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;

		if (reg) /* no overflow on the low part */
			continue;

		if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) {
			/* increment the high counter */
			reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1;
549
			reg = lower_32_bits(reg);
550 551 552 553 554 555
			__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg;
			if (!reg) /* mark overflow on the high counter */
				__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1);
		} else {
			/* mark overflow on low counter */
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
556 557 558 559
		}
	}
}

560 561 562 563 564 565 566
/**
 * kvm_pmu_handle_pmcr - handle PMCR register
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMCR register
 */
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
{
567
	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
568 569 570
	int i;

	if (val & ARMV8_PMU_PMCR_E) {
571
		kvm_pmu_enable_counter_mask(vcpu,
572
		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask);
573
	} else {
574
		kvm_pmu_disable_counter_mask(vcpu, mask);
575 576 577 578 579 580
	}

	if (val & ARMV8_PMU_PMCR_C)
		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);

	if (val & ARMV8_PMU_PMCR_P) {
581
		for_each_set_bit(i, &mask, 32)
582 583 584 585
			kvm_pmu_set_counter_value(vcpu, i, 0);
	}
}

586 587
static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
{
588 589
	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
590 591 592
}

/**
593
 * kvm_pmu_create_perf_event - create a perf event for a counter
594 595 596
 * @vcpu: The vcpu pointer
 * @select_idx: The number of selected counter
 */
597
static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
598 599
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
600
	struct kvm_pmc *pmc;
601 602
	struct perf_event *event;
	struct perf_event_attr attr;
603 604
	u64 eventsel, counter, reg, data;

605 606 607 608 609 610 611 612 613
	/*
	 * For chained counters the event type and filtering attributes are
	 * obtained from the low/even counter. We also use this counter to
	 * determine if the event is enabled/disabled.
	 */
	pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);

	reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
614
	data = __vcpu_sys_reg(vcpu, reg);
615 616

	kvm_pmu_stop_counter(vcpu, pmc);
617 618 619 620 621 622 623 624
	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
	else
		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);

	/* Software increment event doesn't need to be backed by a perf event */
	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR)
		return;
625

626 627 628 629 630 631
	/*
	 * If we have a filter in place and that the event isn't allowed, do
	 * not install a perf event either.
	 */
	if (vcpu->kvm->arch.pmu_filter &&
	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
632 633
		return;

634 635 636 637
	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.type = PERF_TYPE_RAW;
	attr.size = sizeof(attr);
	attr.pinned = 1;
638
	attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
639 640 641 642
	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
	attr.exclude_hv = 1; /* Don't count EL2 events */
	attr.exclude_host = 1; /* Don't count host events */
643
	attr.config = eventsel;
644

645 646
	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);

647
	if (kvm_pmu_pmc_is_chained(pmc)) {
648 649 650 651 652
		/**
		 * The initial sample period (overflow count) of an event. For
		 * chained counters we only support overflow interrupts on the
		 * high counter.
		 */
653
		attr.sample_period = (-counter) & GENMASK(63, 0);
654
		attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
655

656 657 658 659 660 661 662 663 664
		event = perf_event_create_kernel_counter(&attr, -1, current,
							 kvm_pmu_perf_overflow,
							 pmc + 1);
	} else {
		/* The initial sample period (overflow count) of an event. */
		if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
			attr.sample_period = (-counter) & GENMASK(63, 0);
		else
			attr.sample_period = (-counter) & GENMASK(31, 0);
665

666
		event = perf_event_create_kernel_counter(&attr, -1, current,
667
						 kvm_pmu_perf_overflow, pmc);
668 669
	}

670 671 672 673 674 675 676 677
	if (IS_ERR(event)) {
		pr_err_once("kvm: pmu event creation failed %ld\n",
			    PTR_ERR(event));
		return;
	}

	pmc->perf_event = event;
}
678

679 680 681 682 683 684
/**
 * kvm_pmu_update_pmc_chained - update chained bitmap
 * @vcpu: The vcpu pointer
 * @select_idx: The number of selected counter
 *
 * Update the chained bitmap based on the event type written in the
685
 * typer register and the enable state of the odd register.
686 687 688 689
 */
static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
690 691 692 693 694 695
	struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc;
	bool new_state, old_state;

	old_state = kvm_pmu_pmc_is_chained(pmc);
	new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) &&
		    kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1);
696

697 698 699 700 701 702
	if (old_state == new_state)
		return;

	canonical_pmc = kvm_pmu_get_canonical_pmc(pmc);
	kvm_pmu_stop_counter(vcpu, canonical_pmc);
	if (new_state) {
703 704 705 706
		/*
		 * During promotion from !chained to chained we must ensure
		 * the adjacent counter is stopped and its event destroyed
		 */
707
		kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc));
708
		set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
709
		return;
710
	}
711
	clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
712 713
}

714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
 * @vcpu: The vcpu pointer
 * @data: The data guest writes to PMXEVTYPER_EL0
 * @select_idx: The number of selected counter
 *
 * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
 * event with given hardware event number. Here we call perf_event API to
 * emulate this action and create a kernel perf event for it.
 */
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
				    u64 select_idx)
{
727 728 729 730 731
	u64 reg, mask;

	mask  =  ARMV8_PMU_EVTYPE_MASK;
	mask &= ~ARMV8_PMU_EVTYPE_EVENT;
	mask |= kvm_pmu_event_mask(vcpu->kvm);
732 733 734 735

	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;

736
	__vcpu_sys_reg(vcpu, reg) = data & mask;
737 738

	kvm_pmu_update_pmc_chained(vcpu, select_idx);
739 740 741
	kvm_pmu_create_perf_event(vcpu, select_idx);
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static int kvm_pmu_probe_pmuver(void)
{
	struct perf_event_attr attr = { };
	struct perf_event *event;
	struct arm_pmu *pmu;
	int pmuver = 0xf;

	/*
	 * Create a dummy event that only counts user cycles. As we'll never
	 * leave this function with the event being live, it will never
	 * count anything. But it allows us to probe some of the PMU
	 * details. Yes, this is terrible.
	 */
	attr.type = PERF_TYPE_RAW;
	attr.size = sizeof(attr);
	attr.pinned = 1;
	attr.disabled = 0;
	attr.exclude_user = 0;
	attr.exclude_kernel = 1;
	attr.exclude_hv = 1;
	attr.exclude_host = 1;
	attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
	attr.sample_period = GENMASK(63, 0);

	event = perf_event_create_kernel_counter(&attr, -1, current,
						 kvm_pmu_perf_overflow, &attr);

	if (IS_ERR(event)) {
		pr_err_once("kvm: pmu event creation failed %ld\n",
			    PTR_ERR(event));
		return 0xf;
	}

	if (event->pmu) {
		pmu = to_arm_pmu(event->pmu);
		if (pmu->pmuver)
			pmuver = pmu->pmuver;
	}

	perf_event_disable(event);
	perf_event_release_kernel(event);

	return pmuver;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
{
	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
	u64 val, mask = 0;
	int base, i;

	if (!pmceid1) {
		val = read_sysreg(pmceid0_el0);
		base = 0;
	} else {
		val = read_sysreg(pmceid1_el0);
		base = 32;
	}

	if (!bmap)
		return val;

	for (i = 0; i < 32; i += 8) {
		u64 byte;

		byte = bitmap_get_value8(bmap, base + i);
		mask |= byte << i;
		byte = bitmap_get_value8(bmap, 0x4000 + base + i);
		mask |= byte << (32 + i);
	}

	return val & mask;
}

816 817 818 819 820 821 822 823 824
bool kvm_arm_support_pmu_v3(void)
{
	/*
	 * Check if HW_PERF_EVENTS are supported by checking the number of
	 * hardware performance counters. This could ensure the presence of
	 * a physical PMU and CONFIG_PERF_EVENT is selected.
	 */
	return (perf_num_counters() > 0);
}
825

826
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
827
{
828
	if (!kvm_vcpu_has_pmu(vcpu))
829
		return 0;
830

831 832 833
	if (!vcpu->arch.pmu.created)
		return -EINVAL;

834
	/*
835 836
	 * A valid interrupt configuration for the PMU is either to have a
	 * properly configured interrupt number and using an in-kernel
837
	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
838
	 */
839 840 841 842 843 844 845 846 847 848 849 850 851
	if (irqchip_in_kernel(vcpu->kvm)) {
		int irq = vcpu->arch.pmu.irq_num;
		/*
		 * If we are using an in-kernel vgic, at this point we know
		 * the vgic will be initialized, so we can check the PMU irq
		 * number against the dimensions of the vgic and make sure
		 * it's valid.
		 */
		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
			return -EINVAL;
	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
		   return -EINVAL;
	}
852 853 854 855 856 857 858

	return 0;
}

static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm)) {
859 860
		int ret;

861 862 863 864 865 866 867 868 869 870
		/*
		 * If using the PMU with an in-kernel virtual GIC
		 * implementation, we require the GIC to be already
		 * initialized when initializing the PMU.
		 */
		if (!vgic_initialized(vcpu->kvm))
			return -ENODEV;

		if (!kvm_arm_pmu_irq_initialized(vcpu))
			return -ENXIO;
871 872 873 874 875

		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
					 &vcpu->arch.pmu);
		if (ret)
			return ret;
876
	}
877

878 879 880
	init_irq_work(&vcpu->arch.pmu.overflow_work,
		      kvm_pmu_perf_overflow_notify_vcpu);

881
	vcpu->arch.pmu.created = true;
882 883 884
	return 0;
}

885 886 887 888 889 890
/*
 * For one VM the interrupt type must be same for each vcpu.
 * As a PPI, the interrupt number is the same for all vcpus,
 * while as an SPI it must be a separate number per vcpu.
 */
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
891 892 893 894 895 896 897 898
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!kvm_arm_pmu_irq_initialized(vcpu))
			continue;

899
		if (irq_is_ppi(irq)) {
900 901 902 903 904 905 906 907 908 909 910 911 912
			if (vcpu->arch.pmu.irq_num != irq)
				return false;
		} else {
			if (vcpu->arch.pmu.irq_num == irq)
				return false;
		}
	}

	return true;
}

int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
913
	if (!kvm_vcpu_has_pmu(vcpu))
914 915 916 917 918
		return -ENODEV;

	if (vcpu->arch.pmu.created)
		return -EBUSY;

919 920 921 922 923 924
	if (!vcpu->kvm->arch.pmuver)
		vcpu->kvm->arch.pmuver = kvm_pmu_probe_pmuver();

	if (vcpu->kvm->arch.pmuver == 0xf)
		return -ENODEV;

925 926 927 928 929
	switch (attr->attr) {
	case KVM_ARM_VCPU_PMU_V3_IRQ: {
		int __user *uaddr = (int __user *)(long)attr->addr;
		int irq;

930 931 932
		if (!irqchip_in_kernel(vcpu->kvm))
			return -EINVAL;

933 934 935
		if (get_user(irq, uaddr))
			return -EFAULT;

936
		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
937
		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
938 939 940
			return -EINVAL;

		if (!pmu_irq_is_valid(vcpu->kvm, irq))
941 942 943 944 945 946 947 948 949
			return -EINVAL;

		if (kvm_arm_pmu_irq_initialized(vcpu))
			return -EBUSY;

		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
		vcpu->arch.pmu.irq_num = irq;
		return 0;
	}
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	case KVM_ARM_VCPU_PMU_V3_FILTER: {
		struct kvm_pmu_event_filter __user *uaddr;
		struct kvm_pmu_event_filter filter;
		int nr_events;

		nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;

		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;

		if (copy_from_user(&filter, uaddr, sizeof(filter)))
			return -EFAULT;

		if (((u32)filter.base_event + filter.nevents) > nr_events ||
		    (filter.action != KVM_PMU_EVENT_ALLOW &&
		     filter.action != KVM_PMU_EVENT_DENY))
			return -EINVAL;

		mutex_lock(&vcpu->kvm->lock);

		if (!vcpu->kvm->arch.pmu_filter) {
			vcpu->kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL);
			if (!vcpu->kvm->arch.pmu_filter) {
				mutex_unlock(&vcpu->kvm->lock);
				return -ENOMEM;
			}

			/*
			 * The default depends on the first applied filter.
			 * If it allows events, the default is to deny.
			 * Conversely, if the first filter denies a set of
			 * events, the default is to allow.
			 */
			if (filter.action == KVM_PMU_EVENT_ALLOW)
				bitmap_zero(vcpu->kvm->arch.pmu_filter, nr_events);
			else
				bitmap_fill(vcpu->kvm->arch.pmu_filter, nr_events);
		}

		if (filter.action == KVM_PMU_EVENT_ALLOW)
			bitmap_set(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);
		else
			bitmap_clear(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);

		mutex_unlock(&vcpu->kvm->lock);

		return 0;
	}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	case KVM_ARM_VCPU_PMU_V3_INIT:
		return kvm_arm_pmu_v3_init(vcpu);
	}

	return -ENXIO;
}

int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_PMU_V3_IRQ: {
		int __user *uaddr = (int __user *)(long)attr->addr;
		int irq;

1011 1012 1013
		if (!irqchip_in_kernel(vcpu->kvm))
			return -EINVAL;

1014
		if (!kvm_vcpu_has_pmu(vcpu))
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			return -ENODEV;

		if (!kvm_arm_pmu_irq_initialized(vcpu))
			return -ENXIO;

		irq = vcpu->arch.pmu.irq_num;
		return put_user(irq, uaddr);
	}
	}

	return -ENXIO;
}

int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_PMU_V3_IRQ:
	case KVM_ARM_VCPU_PMU_V3_INIT:
1033
	case KVM_ARM_VCPU_PMU_V3_FILTER:
1034
		if (kvm_vcpu_has_pmu(vcpu))
1035 1036 1037 1038 1039
			return 0;
	}

	return -ENXIO;
}