dwmac-intel.c 19.0 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020, Intel Corporation
 */

#include <linux/clk-provider.h>
#include <linux/pci.h>
#include <linux/dmi.h>
8
#include "dwmac-intel.h"
9 10
#include "stmmac.h"

11 12 13 14
struct intel_priv_data {
	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
};

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/* This struct is used to associate PCI Function of MAC controller on a board,
 * discovered via DMI, with the address of PHY connected to the MAC. The
 * negative value of the address means that MAC controller is not connected
 * with PHY.
 */
struct stmmac_pci_func_data {
	unsigned int func;
	int phy_addr;
};

struct stmmac_pci_dmi_data {
	const struct stmmac_pci_func_data *func;
	size_t nfuncs;
};

struct stmmac_pci_info {
	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
};

static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
				    const struct dmi_system_id *dmi_list)
{
	const struct stmmac_pci_func_data *func_data;
	const struct stmmac_pci_dmi_data *dmi_data;
	const struct dmi_system_id *dmi_id;
	int func = PCI_FUNC(pdev->devfn);
	size_t n;

	dmi_id = dmi_first_match(dmi_list);
	if (!dmi_id)
		return -ENODEV;

	dmi_data = dmi_id->driver_data;
	func_data = dmi_data->func;

	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
		if (func_data->func == func)
			return func_data->phy_addr;

	return -ENODEV;
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
			      int phyreg, u32 mask, u32 val)
{
	unsigned int retries = 10;
	int val_rd;

	do {
		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
		if ((val_rd & mask) == (val & mask))
			return 0;
		udelay(POLL_DELAY_US);
	} while (--retries);

	return -ETIMEDOUT;
}

static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
{
	struct intel_priv_data *intel_priv = priv_data;
	struct stmmac_priv *priv = netdev_priv(ndev);
	int serdes_phy_addr = 0;
	u32 data = 0;

	if (!intel_priv->mdio_adhoc_addr)
		return 0;

	serdes_phy_addr = intel_priv->mdio_adhoc_addr;

	/* assert clk_req */
86
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
87
	data |= SERDES_PLL_CLK;
88
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
89 90 91 92 93 94 95 96 97 98 99 100 101

	/* check for clk_ack assertion */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PLL_CLK,
				  SERDES_PLL_CLK);

	if (data) {
		dev_err(priv->device, "Serdes PLL clk request timeout\n");
		return data;
	}

	/* assert lane reset */
102
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
103
	data |= SERDES_RST;
104
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
105 106 107 108 109 110 111 112 113 114 115 116 117

	/* check for assert lane reset reflection */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_RST,
				  SERDES_RST);

	if (data) {
		dev_err(priv->device, "Serdes assert lane reset timeout\n");
		return data;
	}

	/*  move power state to P0 */
118
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
119 120 121 122

	data &= ~SERDES_PWR_ST_MASK;
	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;

123
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/* Check for P0 state */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PWR_ST_MASK,
				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);

	if (data) {
		dev_err(priv->device, "Serdes power state P0 timeout.\n");
		return data;
	}

	return 0;
}

static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
{
	struct intel_priv_data *intel_priv = intel_data;
	struct stmmac_priv *priv = netdev_priv(ndev);
	int serdes_phy_addr = 0;
	u32 data = 0;

	if (!intel_priv->mdio_adhoc_addr)
		return;

	serdes_phy_addr = intel_priv->mdio_adhoc_addr;

	/*  move power state to P3 */
152
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
153 154 155 156

	data &= ~SERDES_PWR_ST_MASK;
	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;

157
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
158 159 160 161 162 163 164 165 166 167 168 169 170

	/* Check for P3 state */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PWR_ST_MASK,
				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);

	if (data) {
		dev_err(priv->device, "Serdes power state P3 timeout\n");
		return;
	}

	/* de-assert clk_req */
171
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
172
	data &= ~SERDES_PLL_CLK;
173
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
174 175 176 177 178 179 180 181 182 183 184 185 186

	/* check for clk_ack de-assert */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_PLL_CLK,
				  (u32)~SERDES_PLL_CLK);

	if (data) {
		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
		return;
	}

	/* de-assert lane reset */
187
	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
188
	data &= ~SERDES_RST;
189
	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
190 191 192 193 194 195 196 197 198 199 200 201 202

	/* check for de-assert lane reset reflection */
	data = serdes_status_poll(priv, serdes_phy_addr,
				  SERDES_GSR0,
				  SERDES_RST,
				  (u32)~SERDES_RST);

	if (data) {
		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
		return;
	}
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void common_default_data(struct plat_stmmacenet_data *plat)
{
	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
	plat->has_gmac = 1;
	plat->force_sf_dma_mode = 1;

	plat->mdio_bus_data->needs_reset = true;

	/* Set default value for multicast hash bins */
	plat->multicast_filter_bins = HASH_TABLE_SIZE;

	/* Set default value for unicast filter entries */
	plat->unicast_filter_entries = 1;

	/* Set the maxmtu to a default of JUMBO_LEN */
	plat->maxmtu = JUMBO_LEN;

	/* Set default number of RX and TX queues to use */
	plat->tx_queues_to_use = 1;
	plat->rx_queues_to_use = 1;

	/* Disable Priority config by default */
	plat->tx_queues_cfg[0].use_prio = false;
	plat->rx_queues_cfg[0].use_prio = false;

	/* Disable RX queues routing by default */
	plat->rx_queues_cfg[0].pkt_route = 0x0;
}

static int intel_mgbe_common_data(struct pci_dev *pdev,
				  struct plat_stmmacenet_data *plat)
{
235
	int ret;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	int i;

	plat->clk_csr = 5;
	plat->has_gmac = 0;
	plat->has_gmac4 = 1;
	plat->force_sf_dma_mode = 0;
	plat->tso_en = 1;

	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;

	for (i = 0; i < plat->rx_queues_to_use; i++) {
		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
		plat->rx_queues_cfg[i].chan = i;

		/* Disable Priority config by default */
		plat->rx_queues_cfg[i].use_prio = false;

		/* Disable RX queues routing by default */
		plat->rx_queues_cfg[i].pkt_route = 0x0;
	}

	for (i = 0; i < plat->tx_queues_to_use; i++) {
		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;

		/* Disable Priority config by default */
		plat->tx_queues_cfg[i].use_prio = false;
	}

	/* FIFO size is 4096 bytes for 1 tx/rx queue */
	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;

	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
	plat->tx_queues_cfg[0].weight = 0x09;
	plat->tx_queues_cfg[1].weight = 0x0A;
	plat->tx_queues_cfg[2].weight = 0x0B;
	plat->tx_queues_cfg[3].weight = 0x0C;
	plat->tx_queues_cfg[4].weight = 0x0D;
	plat->tx_queues_cfg[5].weight = 0x0E;
	plat->tx_queues_cfg[6].weight = 0x0F;
	plat->tx_queues_cfg[7].weight = 0x10;

	plat->dma_cfg->pbl = 32;
	plat->dma_cfg->pblx8 = true;
	plat->dma_cfg->fixed_burst = 0;
	plat->dma_cfg->mixed_burst = 0;
	plat->dma_cfg->aal = 0;

	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
				 GFP_KERNEL);
	if (!plat->axi)
		return -ENOMEM;

	plat->axi->axi_lpi_en = 0;
	plat->axi->axi_xit_frm = 0;
	plat->axi->axi_wr_osr_lmt = 1;
	plat->axi->axi_rd_osr_lmt = 1;
	plat->axi->axi_blen[0] = 4;
	plat->axi->axi_blen[1] = 8;
	plat->axi->axi_blen[2] = 16;

	plat->ptp_max_adj = plat->clk_ptp_rate;

	/* Set system clock */
	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
						   "stmmac-clk", NULL, 0,
						   plat->clk_ptp_rate);

	if (IS_ERR(plat->stmmac_clk)) {
		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
		plat->stmmac_clk = NULL;
	}
308 309 310 311 312 313

	ret = clk_prepare_enable(plat->stmmac_clk);
	if (ret) {
		clk_unregister_fixed_rate(plat->stmmac_clk);
		return ret;
	}
314 315 316 317 318 319 320 321 322 323

	/* Set default value for multicast hash bins */
	plat->multicast_filter_bins = HASH_TABLE_SIZE;

	/* Set default value for unicast filter entries */
	plat->unicast_filter_entries = 1;

	/* Set the maxmtu to a default of JUMBO_LEN */
	plat->maxmtu = JUMBO_LEN;

324 325 326 327 328
	plat->vlan_fail_q_en = true;

	/* Use the last Rx queue */
	plat->vlan_fail_q = plat->rx_queues_to_use - 1;

329 330 331 332 333 334 335 336 337 338
	return 0;
}

static int ehl_common_data(struct pci_dev *pdev,
			   struct plat_stmmacenet_data *plat)
{
	plat->rx_queues_to_use = 8;
	plat->tx_queues_to_use = 8;
	plat->clk_ptp_rate = 200000000;

339
	return intel_mgbe_common_data(pdev, plat);
340 341 342 343 344 345 346 347 348
}

static int ehl_sgmii_data(struct pci_dev *pdev,
			  struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 1;
	plat->phy_addr = 0;
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;

349 350 351
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;

352 353 354
	return ehl_common_data(pdev, plat);
}

355
static struct stmmac_pci_info ehl_sgmii1g_info = {
356 357 358 359 360 361 362 363 364 365 366 367 368
	.setup = ehl_sgmii_data,
};

static int ehl_rgmii_data(struct pci_dev *pdev,
			  struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 1;
	plat->phy_addr = 0;
	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;

	return ehl_common_data(pdev, plat);
}

369
static struct stmmac_pci_info ehl_rgmii1g_info = {
370 371 372
	.setup = ehl_rgmii_data,
};

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static int ehl_pse0_common_data(struct pci_dev *pdev,
				struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 2;
	plat->phy_addr = 1;
	return ehl_common_data(pdev, plat);
}

static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
	return ehl_pse0_common_data(pdev, plat);
}

388
static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
389 390 391 392 393 394 395
	.setup = ehl_pse0_rgmii1g_data,
};

static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
396 397
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;
398 399 400
	return ehl_pse0_common_data(pdev, plat);
}

401
static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	.setup = ehl_pse0_sgmii1g_data,
};

static int ehl_pse1_common_data(struct pci_dev *pdev,
				struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 3;
	plat->phy_addr = 1;
	return ehl_common_data(pdev, plat);
}

static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
	return ehl_pse1_common_data(pdev, plat);
}

420
static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
421 422 423 424 425 426 427
	.setup = ehl_pse1_rgmii1g_data,
};

static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
				 struct plat_stmmacenet_data *plat)
{
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
428 429
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;
430 431 432
	return ehl_pse1_common_data(pdev, plat);
}

433
static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
434 435 436
	.setup = ehl_pse1_sgmii1g_data,
};

437 438 439 440 441 442 443
static int tgl_common_data(struct pci_dev *pdev,
			   struct plat_stmmacenet_data *plat)
{
	plat->rx_queues_to_use = 6;
	plat->tx_queues_to_use = 4;
	plat->clk_ptp_rate = 200000000;

444
	return intel_mgbe_common_data(pdev, plat);
445 446 447 448 449 450 451 452
}

static int tgl_sgmii_data(struct pci_dev *pdev,
			  struct plat_stmmacenet_data *plat)
{
	plat->bus_id = 1;
	plat->phy_addr = 0;
	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
453 454
	plat->serdes_powerup = intel_serdes_powerup;
	plat->serdes_powerdown = intel_serdes_powerdown;
455 456 457
	return tgl_common_data(pdev, plat);
}

458
static struct stmmac_pci_info tgl_sgmii1g_info = {
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	.setup = tgl_sgmii_data,
};

static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
	{
		.func = 6,
		.phy_addr = 1,
	},
};

static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
	.func = galileo_stmmac_func_data,
	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
};

static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
	{
		.func = 6,
		.phy_addr = 1,
	},
	{
		.func = 7,
		.phy_addr = 1,
	},
};

static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
	.func = iot2040_stmmac_func_data,
	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
};

static const struct dmi_system_id quark_pci_dmi[] = {
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
		},
		.driver_data = (void *)&galileo_stmmac_dmi_data,
	},
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
		},
		.driver_data = (void *)&galileo_stmmac_dmi_data,
	},
	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
	 * has only one pci network device while other asset tags are
	 * for IOT2040 which has two.
	 */
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
					"6ES7647-0AA00-0YA2"),
		},
		.driver_data = (void *)&galileo_stmmac_dmi_data,
	},
	{
		.matches = {
			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
		},
		.driver_data = (void *)&iot2040_stmmac_dmi_data,
	},
	{}
};

static int quark_default_data(struct pci_dev *pdev,
			      struct plat_stmmacenet_data *plat)
{
	int ret;

	/* Set common default data first */
	common_default_data(plat);

	/* Refuse to load the driver and register net device if MAC controller
	 * does not connect to any PHY interface.
	 */
	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
	if (ret < 0) {
		/* Return error to the caller on DMI enabled boards. */
		if (dmi_get_system_info(DMI_BOARD_NAME))
			return ret;

		/* Galileo boards with old firmware don't support DMI. We always
		 * use 1 here as PHY address, so at least the first found MAC
		 * controller would be probed.
		 */
		ret = 1;
	}

	plat->bus_id = pci_dev_id(pdev);
	plat->phy_addr = ret;
	plat->phy_interface = PHY_INTERFACE_MODE_RMII;

	plat->dma_cfg->pbl = 16;
	plat->dma_cfg->pblx8 = true;
	plat->dma_cfg->fixed_burst = 1;
	/* AXI (TODO) */

	return 0;
}

561
static const struct stmmac_pci_info quark_info = {
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	.setup = quark_default_data,
};

/**
 * intel_eth_pci_probe
 *
 * @pdev: pci device pointer
 * @id: pointer to table of device id/id's.
 *
 * Description: This probing function gets called for all PCI devices which
 * match the ID table and are not "owned" by other driver yet. This function
 * gets passed a "struct pci_dev *" for each device whose entry in the ID table
 * matches the device. The probe functions returns zero when the driver choose
 * to take "ownership" of the device or an error code(-ve no) otherwise.
 */
static int intel_eth_pci_probe(struct pci_dev *pdev,
			       const struct pci_device_id *id)
{
	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
581
	struct intel_priv_data *intel_priv;
582 583 584 585
	struct plat_stmmacenet_data *plat;
	struct stmmac_resources res;
	int ret;

586
	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
587 588 589
	if (!intel_priv)
		return -ENOMEM;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
	if (!plat)
		return -ENOMEM;

	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
					   sizeof(*plat->mdio_bus_data),
					   GFP_KERNEL);
	if (!plat->mdio_bus_data)
		return -ENOMEM;

	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
				     GFP_KERNEL);
	if (!plat->dma_cfg)
		return -ENOMEM;

	/* Enable pci device */
	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
			__func__);
		return ret;
	}

613 614 615
	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
	if (ret)
		return ret;
616 617 618

	pci_set_master(pdev);

619 620 621
	plat->bsp_priv = intel_priv;
	intel_priv->mdio_adhoc_addr = 0x15;

622 623 624 625
	ret = info->setup(pdev, plat);
	if (ret)
		return ret;

626 627 628
	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
	if (ret < 0)
		return ret;
629 630

	memset(&res, 0, sizeof(res));
631
	res.addr = pcim_iomap_table(pdev)[0];
632 633
	res.wol_irq = pci_irq_vector(pdev, 0);
	res.irq = pci_irq_vector(pdev, 0);
634

635 636
	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
	if (ret) {
637
		pci_free_irq_vectors(pdev);
638 639 640 641 642
		clk_disable_unprepare(plat->stmmac_clk);
		clk_unregister_fixed_rate(plat->stmmac_clk);
	}

	return ret;
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
}

/**
 * intel_eth_pci_remove
 *
 * @pdev: platform device pointer
 * Description: this function calls the main to free the net resources
 * and releases the PCI resources.
 */
static void intel_eth_pci_remove(struct pci_dev *pdev)
{
	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
	struct stmmac_priv *priv = netdev_priv(ndev);

	stmmac_dvr_remove(&pdev->dev);

659 660
	pci_free_irq_vectors(pdev);

661 662
	clk_disable_unprepare(priv->plat->stmmac_clk);
	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
663

664
	pcim_iounmap_regions(pdev, BIT(0));
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	pci_disable_device(pdev);
}

static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int ret;

	ret = stmmac_suspend(dev);
	if (ret)
		return ret;

	ret = pci_save_state(pdev);
	if (ret)
		return ret;

	pci_disable_device(pdev);
	pci_wake_from_d3(pdev, true);
	return 0;
}

static int __maybe_unused intel_eth_pci_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int ret;

	pci_restore_state(pdev);
	pci_set_power_state(pdev, PCI_D0);

	ret = pci_enable_device(pdev);
	if (ret)
		return ret;

	pci_set_master(pdev);

	return stmmac_resume(dev);
}

static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
			 intel_eth_pci_resume);

707 708 709 710
#define PCI_DEVICE_ID_INTEL_QUARK_ID			0x0937
#define PCI_DEVICE_ID_INTEL_EHL_RGMII1G_ID		0x4b30
#define PCI_DEVICE_ID_INTEL_EHL_SGMII1G_ID		0x4b31
#define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5_ID		0x4b32
711 712 713
/* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
 * which are named PSE0 and PSE1
 */
714 715 716 717 718 719 720
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G_ID		0x4ba0
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G_ID		0x4ba1
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5_ID	0x4ba2
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G_ID		0x4bb0
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G_ID		0x4bb1
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5_ID	0x4bb2
#define PCI_DEVICE_ID_INTEL_TGL_SGMII1G_ID		0xa0ac
721 722

static const struct pci_device_id intel_eth_pci_id_table[] = {
723 724 725 726 727 728 729 730 731 732 733
	{ PCI_DEVICE_DATA(INTEL, QUARK_ID, &quark_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G_ID, &ehl_rgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G_ID, &ehl_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5_ID, &ehl_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G_ID, &ehl_pse0_rgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G_ID, &ehl_pse0_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5_ID, &ehl_pse0_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G_ID, &ehl_pse1_rgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G_ID, &ehl_pse1_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5_ID, &ehl_pse1_sgmii1g_info) },
	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G_ID, &tgl_sgmii1g_info) },
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	{}
};
MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);

static struct pci_driver intel_eth_pci_driver = {
	.name = "intel-eth-pci",
	.id_table = intel_eth_pci_id_table,
	.probe = intel_eth_pci_probe,
	.remove = intel_eth_pci_remove,
	.driver         = {
		.pm     = &intel_eth_pm_ops,
	},
};

module_pci_driver(intel_eth_pci_driver);

MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
MODULE_LICENSE("GPL v2");