dcscb.c 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block
 *
 * Created by:	Nicolas Pitre, May 2012
 * Copyright:	(C) 2012-2013  Linaro Limited
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/of_address.h>
#include <linux/vexpress.h>
19
#include <linux/arm-cci.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

#include <asm/mcpm.h>
#include <asm/proc-fns.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/cp15.h>


#define RST_HOLD0	0x0
#define RST_HOLD1	0x4
#define SYS_SWRESET	0x8
#define RST_STAT0	0xc
#define RST_STAT1	0x10
#define EAG_CFG_R	0x20
#define EAG_CFG_W	0x24
#define KFC_CFG_R	0x28
#define KFC_CFG_W	0x2c
#define DCS_CFG_R	0x30

/*
 * We can't use regular spinlocks. In the switcher case, it is possible
 * for an outbound CPU to call power_down() while its inbound counterpart
 * is already live using the same logical CPU number which trips lockdep
 * debugging.
 */
static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED;

static void __iomem *dcscb_base;
48
static int dcscb_use_count[4][2];
49
static int dcscb_allcpus_mask[2];
50 51 52 53

static int dcscb_power_up(unsigned int cpu, unsigned int cluster)
{
	unsigned int rst_hold, cpumask = (1 << cpu);
54
	unsigned int all_mask = dcscb_allcpus_mask[cluster];
55 56 57 58 59 60 61 62 63 64 65 66

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	if (cpu >= 4 || cluster >= 2)
		return -EINVAL;

	/*
	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
	 * variant exists, we need to disable IRQs manually here.
	 */
	local_irq_disable();
	arch_spin_lock(&dcscb_lock);

67 68 69 70 71 72
	dcscb_use_count[cpu][cluster]++;
	if (dcscb_use_count[cpu][cluster] == 1) {
		rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
		if (rst_hold & (1 << 8)) {
			/* remove cluster reset and add individual CPU's reset */
			rst_hold &= ~(1 << 8);
73
			rst_hold |= all_mask;
74 75 76 77 78 79 80 81 82 83 84 85 86
		}
		rst_hold &= ~(cpumask | (cpumask << 4));
		writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
	} else if (dcscb_use_count[cpu][cluster] != 2) {
		/*
		 * The only possible values are:
		 * 0 = CPU down
		 * 1 = CPU (still) up
		 * 2 = CPU requested to be up before it had a chance
		 *     to actually make itself down.
		 * Any other value is a bug.
		 */
		BUG();
87 88 89 90 91 92 93 94 95 96
	}

	arch_spin_unlock(&dcscb_lock);
	local_irq_enable();

	return 0;
}

static void dcscb_power_down(void)
{
97
	unsigned int mpidr, cpu, cluster, rst_hold, cpumask, all_mask;
98
	bool last_man = false, skip_wfi = false;
99 100 101 102 103

	mpidr = read_cpuid_mpidr();
	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
	cpumask = (1 << cpu);
104
	all_mask = dcscb_allcpus_mask[cluster];
105 106 107 108

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	BUG_ON(cpu >= 4 || cluster >= 2);

109 110
	__mcpm_cpu_going_down(cpu, cluster);

111
	arch_spin_lock(&dcscb_lock);
112
	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
113 114 115 116
	dcscb_use_count[cpu][cluster]--;
	if (dcscb_use_count[cpu][cluster] == 0) {
		rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
		rst_hold |= cpumask;
117
		if (((rst_hold | (rst_hold >> 4)) & all_mask) == all_mask) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131
			rst_hold |= (1 << 8);
			last_man = true;
		}
		writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
	} else if (dcscb_use_count[cpu][cluster] == 1) {
		/*
		 * A power_up request went ahead of us.
		 * Even if we do not want to shut this CPU down,
		 * the caller expects a certain state as if the WFI
		 * was aborted.  So let's continue with cache cleaning.
		 */
		skip_wfi = true;
	} else
		BUG();
132

133 134
	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
		arch_spin_unlock(&dcscb_lock);
135

136 137 138
		/*
		 * Flush all cache levels for this cluster.
		 *
139 140 141 142 143 144 145 146
		 * To do so we do:
		 * - Clear the SCTLR.C bit to prevent further cache allocations
		 * - Flush the whole cache
		 * - Clear the ACTLR "SMP" bit to disable local coherency
		 *
		 * Let's do it in the safest possible way i.e. with
		 * no memory access within the following sequence
		 * including to the stack.
147
		 */
148 149 150 151 152 153 154 155 156 157 158 159 160 161
		asm volatile(
		"mrc	p15, 0, r0, c1, c0, 0	@ get CR \n\t"
		"bic	r0, r0, #"__stringify(CR_C)" \n\t"
		"mcr	p15, 0, r0, c1, c0, 0	@ set CR \n\t"
		"isb	\n\t"
		"bl	v7_flush_dcache_all \n\t"
		"clrex	\n\t"
		"mrc	p15, 0, r0, c1, c0, 1	@ get AUXCR \n\t"
		"bic	r0, r0, #(1 << 6)	@ disable local coherency \n\t"
		"mcr	p15, 0, r0, c1, c0, 1	@ set AUXCR \n\t"
		"isb	\n\t"
		"dsb	"
		: : : "r0","r1","r2","r3","r4","r5","r6","r7",
		      "r9","r10","r11","lr","memory");
162 163 164 165 166 167

		/*
		 * This is a harmless no-op.  On platforms with a real
		 * outer cache this might either be needed or not,
		 * depending on where the outer cache sits.
		 */
168
		outer_flush_all();
169 170 171 172 173 174 175 176 177 178 179 180 181

		/*
		 * Disable cluster-level coherency by masking
		 * incoming snoops and DVM messages:
		 */
		cci_disable_port_by_cpu(mpidr);

		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
	} else {
		arch_spin_unlock(&dcscb_lock);

		/*
		 * Flush the local CPU cache.
182
		 * Let's do it in the safest possible way as above.
183
		 */
184 185 186 187 188 189 190 191 192 193 194 195 196 197
		asm volatile(
		"mrc	p15, 0, r0, c1, c0, 0	@ get CR \n\t"
		"bic	r0, r0, #"__stringify(CR_C)" \n\t"
		"mcr	p15, 0, r0, c1, c0, 0	@ set CR \n\t"
		"isb	\n\t"
		"bl	v7_flush_dcache_louis \n\t"
		"clrex	\n\t"
		"mrc	p15, 0, r0, c1, c0, 1	@ get AUXCR \n\t"
		"bic	r0, r0, #(1 << 6)	@ disable local coherency \n\t"
		"mcr	p15, 0, r0, c1, c0, 1	@ set AUXCR \n\t"
		"isb	\n\t"
		"dsb	"
		: : : "r0","r1","r2","r3","r4","r5","r6","r7",
		      "r9","r10","r11","lr","memory");
198 199
	}

200
	__mcpm_cpu_down(cpu, cluster);
201 202 203

	/* Now we are prepared for power-down, do it: */
	dsb();
204 205
	if (!skip_wfi)
		wfi();
206 207 208 209 210 211 212 213 214

	/* Not dead at this point?  Let our caller cope. */
}

static const struct mcpm_platform_ops dcscb_power_ops = {
	.power_up	= dcscb_power_up,
	.power_down	= dcscb_power_down,
};

215 216 217 218 219 220 221 222 223 224 225 226 227
static void __init dcscb_usage_count_init(void)
{
	unsigned int mpidr, cpu, cluster;

	mpidr = read_cpuid_mpidr();
	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	BUG_ON(cpu >= 4 || cluster >= 2);
	dcscb_use_count[cpu][cluster] = 1;
}

228 229
extern void dcscb_power_up_setup(unsigned int affinity_level);

230 231 232
static int __init dcscb_init(void)
{
	struct device_node *node;
233
	unsigned int cfg;
234 235
	int ret;

236 237 238
	if (!cci_probed())
		return -ENODEV;

239 240 241 242 243 244
	node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb");
	if (!node)
		return -ENODEV;
	dcscb_base = of_iomap(node, 0);
	if (!dcscb_base)
		return -EADDRNOTAVAIL;
245 246 247
	cfg = readl_relaxed(dcscb_base + DCS_CFG_R);
	dcscb_allcpus_mask[0] = (1 << (((cfg >> 16) >> (0 << 2)) & 0xf)) - 1;
	dcscb_allcpus_mask[1] = (1 << (((cfg >> 16) >> (1 << 2)) & 0xf)) - 1;
248 249
	dcscb_usage_count_init();

250
	ret = mcpm_platform_register(&dcscb_power_ops);
251 252
	if (!ret)
		ret = mcpm_sync_init(dcscb_power_up_setup);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	if (ret) {
		iounmap(dcscb_base);
		return ret;
	}

	pr_info("VExpress DCSCB support installed\n");

	/*
	 * Future entries into the kernel can now go
	 * through the cluster entry vectors.
	 */
	vexpress_flags_set(virt_to_phys(mcpm_entry_point));

	return 0;
}

early_initcall(dcscb_init);