fscrypt.h 29.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
D
Dave Chinner 已提交
3 4
 * fscrypt.h: declarations for per-file encryption
 *
5 6
 * Filesystems that implement per-file encryption must include this header
 * file.
7 8 9 10 11 12
 *
 * Copyright (C) 2015, Google, Inc.
 *
 * Written by Michael Halcrow, 2015.
 * Modified by Jaegeuk Kim, 2015.
 */
D
Dave Chinner 已提交
13 14
#ifndef _LINUX_FSCRYPT_H
#define _LINUX_FSCRYPT_H
15 16

#include <linux/fs.h>
17 18
#include <linux/mm.h>
#include <linux/slab.h>
19
#include <uapi/linux/fscrypt.h>
20 21 22

#define FS_CRYPTO_BLOCK_SIZE		16

23
union fscrypt_policy;
24
struct fscrypt_info;
25
struct seq_file;
26 27 28 29 30 31 32 33 34 35 36 37

struct fscrypt_str {
	unsigned char *name;
	u32 len;
};

struct fscrypt_name {
	const struct qstr *usr_fname;
	struct fscrypt_str disk_name;
	u32 hash;
	u32 minor_hash;
	struct fscrypt_str crypto_buf;
38
	bool is_nokey_name;
39 40 41 42 43 44 45
};

#define FSTR_INIT(n, l)		{ .name = n, .len = l }
#define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
#define fname_name(p)		((p)->disk_name.name)
#define fname_len(p)		((p)->disk_name.len)

46
/* Maximum value for the third parameter of fscrypt_operations.set_context(). */
47
#define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
48

49
#ifdef CONFIG_FS_ENCRYPTION
50

51
/*
52 53 54
 * If set, the fscrypt bounce page pool won't be allocated (unless another
 * filesystem needs it).  Set this if the filesystem always uses its own bounce
 * pages for writes and therefore won't need the fscrypt bounce page pool.
55 56 57
 */
#define FS_CFLG_OWN_PAGES (1U << 1)

58
/* Crypto operations for filesystems */
59
struct fscrypt_operations {
60 61

	/* Set of optional flags; see above for allowed flags */
62
	unsigned int flags;
63 64 65 66 67 68 69

	/*
	 * If set, this is a filesystem-specific key description prefix that
	 * will be accepted for "logon" keys for v1 fscrypt policies, in
	 * addition to the generic prefix "fscrypt:".  This functionality is
	 * deprecated, so new filesystems shouldn't set this field.
	 */
70
	const char *key_prefix;
71 72 73 74 75 76 77 78 79 80 81 82 83

	/*
	 * Get the fscrypt context of the given inode.
	 *
	 * @inode: the inode whose context to get
	 * @ctx: the buffer into which to get the context
	 * @len: length of the @ctx buffer in bytes
	 *
	 * Return: On success, returns the length of the context in bytes; this
	 *	   may be less than @len.  On failure, returns -ENODATA if the
	 *	   inode doesn't have a context, -ERANGE if the context is
	 *	   longer than @len, or another -errno code.
	 */
84
	int (*get_context)(struct inode *inode, void *ctx, size_t len);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

	/*
	 * Set an fscrypt context on the given inode.
	 *
	 * @inode: the inode whose context to set.  The inode won't already have
	 *	   an fscrypt context.
	 * @ctx: the context to set
	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
	 * @fs_data: If called from fscrypt_set_context(), this will be the
	 *	     value the filesystem passed to fscrypt_set_context().
	 *	     Otherwise (i.e. when called from
	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
	 *
	 * i_rwsem will be held for write.
	 *
	 * Return: 0 on success, -errno on failure.
	 */
102 103
	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
			   void *fs_data);
104 105 106 107 108 109 110 111 112 113

	/*
	 * Get the dummy fscrypt policy in use on the filesystem (if any).
	 *
	 * Filesystems only need to implement this function if they support the
	 * test_dummy_encryption mount option.
	 *
	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
	 *	   mounted with test_dummy_encryption; otherwise NULL.
	 */
114
	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
115 116 117 118

	/*
	 * Check whether a directory is empty.  i_rwsem will be held for write.
	 */
119
	bool (*empty_dir)(struct inode *inode);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

	/*
	 * Check whether the filesystem's inode numbers and UUID are stable,
	 * meaning that they will never be changed even by offline operations
	 * such as filesystem shrinking and therefore can be used in the
	 * encryption without the possibility of files becoming unreadable.
	 *
	 * Filesystems only need to implement this function if they want to
	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
	 * flags are designed to work around the limitations of UFS and eMMC
	 * inline crypto hardware, and they shouldn't be used in scenarios where
	 * such hardware isn't being used.
	 *
	 * Leaving this NULL is equivalent to always returning false.
	 */
135
	bool (*has_stable_inodes)(struct super_block *sb);
136 137 138 139 140 141 142 143 144 145 146 147 148

	/*
	 * Get the number of bits that the filesystem uses to represent inode
	 * numbers and file logical block numbers.
	 *
	 * By default, both of these are assumed to be 64-bit.  This function
	 * can be implemented to declare that either or both of these numbers is
	 * shorter, which may allow the use of the
	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
	 * inline crypto hardware whose maximum DUN length is less than 64 bits
	 * (e.g., eMMC v5.2 spec compliant hardware).  This function only needs
	 * to be implemented if support for one of these features is needed.
	 */
149 150
	void (*get_ino_and_lblk_bits)(struct super_block *sb,
				      int *ino_bits_ret, int *lblk_bits_ret);
151 152 153 154 155 156 157 158 159 160

	/*
	 * Return the number of block devices to which the filesystem may write
	 * encrypted file contents.
	 *
	 * If the filesystem can use multiple block devices (other than block
	 * devices that aren't used for encrypted file contents, such as
	 * external journal devices), and wants to support inline encryption,
	 * then it must implement this function.  Otherwise it's not needed.
	 */
161
	int (*get_num_devices)(struct super_block *sb);
162 163 164 165 166 167 168

	/*
	 * If ->get_num_devices() returns a value greater than 1, then this
	 * function is called to get the array of request_queues that the
	 * filesystem is using -- one per block device.  (There may be duplicate
	 * entries in this array, as block devices can share a request_queue.)
	 */
169 170
	void (*get_devices)(struct super_block *sb,
			    struct request_queue **devs);
171 172
};

173
static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
174
{
175
	/*
176
	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
177 178 179 180 181
	 * I.e., another task may publish ->i_crypt_info concurrently, executing
	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
	 * ACQUIRE the memory the other task published.
	 */
	return smp_load_acquire(&inode->i_crypt_info);
182 183
}

184 185 186
/**
 * fscrypt_needs_contents_encryption() - check whether an inode needs
 *					 contents encryption
187
 * @inode: the inode to check
188 189 190 191 192 193 194 195 196 197 198 199
 *
 * Return: %true iff the inode is an encrypted regular file and the kernel was
 * built with fscrypt support.
 *
 * If you need to know whether the encrypt bit is set even when the kernel was
 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
 */
static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
{
	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
}

200
/*
201 202 203 204 205
 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
 * cleared.  Note that we don't have to support arbitrary moves of this flag
 * because fscrypt doesn't allow no-key names to be the source or target of a
 * rename().
206 207 208
 */
static inline void fscrypt_handle_d_move(struct dentry *dentry)
{
209
	dentry->d_flags &= ~DCACHE_NOKEY_NAME;
210 211
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/**
 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
 * @dentry: the dentry to check
 *
 * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
 * dentry that was created in an encrypted directory that hasn't had its
 * encryption key added yet.  Such dentries may be either positive or negative.
 *
 * When a filesystem is asked to create a new filename in an encrypted directory
 * and the new filename's dentry is a no-key dentry, it must fail the operation
 * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
 * ->rename(), and ->link().  (However, ->rename() and ->link() are already
 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
 *
 * This is necessary because creating a filename requires the directory's
 * encryption key, but just checking for the key on the directory inode during
 * the final filesystem operation doesn't guarantee that the key was available
 * during the preceding dentry lookup.  And the key must have already been
 * available during the dentry lookup in order for it to have been checked
 * whether the filename already exists in the directory and for the new file's
 * dentry not to be invalidated due to it incorrectly having the no-key flag.
 *
 * Return: %true if the dentry is a no-key name
 */
static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
{
	return dentry->d_flags & DCACHE_NOKEY_NAME;
}

241
/* crypto.c */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
void fscrypt_enqueue_decrypt_work(struct work_struct *);

struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
					      unsigned int len,
					      unsigned int offs,
					      gfp_t gfp_flags);
int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
				  unsigned int len, unsigned int offs,
				  u64 lblk_num, gfp_t gfp_flags);

int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
				     unsigned int offs);
int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
				  unsigned int len, unsigned int offs,
				  u64 lblk_num);
257

258
static inline bool fscrypt_is_bounce_page(struct page *page)
259
{
260
	return page->mapping == NULL;
261 262
}

263 264 265 266 267
static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
{
	return (struct page *)page_private(bounce_page);
}

268
void fscrypt_free_bounce_page(struct page *bounce_page);
269 270

/* policy.c */
271 272 273 274 275
int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
276
int fscrypt_set_context(struct inode *inode, void *fs_data);
277

278 279
struct fscrypt_dummy_policy {
	const union fscrypt_policy *policy;
280 281
};

282
int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
283
				struct fscrypt_dummy_policy *dummy_policy);
284 285 286
void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
					struct super_block *sb);
static inline void
287
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
288
{
289 290
	kfree(dummy_policy->policy);
	dummy_policy->policy = NULL;
291 292
}

293
/* keyring.c */
294 295 296 297 298
void fscrypt_sb_free(struct super_block *sb);
int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
299

300
/* keysetup.c */
301 302
int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
			      bool *encrypt_ret);
303 304 305
void fscrypt_put_encryption_info(struct inode *inode);
void fscrypt_free_inode(struct inode *inode);
int fscrypt_drop_inode(struct inode *inode);
306 307

/* fname.c */
308 309
int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
			   int lookup, struct fscrypt_name *fname);
310 311 312 313 314 315

static inline void fscrypt_free_filename(struct fscrypt_name *fname)
{
	kfree(fname->crypto_buf.name);
}

316
int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
317 318 319 320 321 322 323 324 325
			       struct fscrypt_str *crypto_str);
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
int fscrypt_fname_disk_to_usr(const struct inode *inode,
			      u32 hash, u32 minor_hash,
			      const struct fscrypt_str *iname,
			      struct fscrypt_str *oname);
bool fscrypt_match_name(const struct fscrypt_name *fname,
			const u8 *de_name, u32 de_name_len);
u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
326
int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
327

328
/* bio.c */
329 330 331
void fscrypt_decrypt_bio(struct bio *bio);
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
			  sector_t pblk, unsigned int len);
332 333

/* hooks.c */
334 335 336 337 338 339 340 341
int fscrypt_file_open(struct inode *inode, struct file *filp);
int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
			   struct dentry *dentry);
int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags);
int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
			     struct fscrypt_name *fname);
342
int __fscrypt_prepare_readdir(struct inode *dir);
343
int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
344 345
int fscrypt_prepare_setflags(struct inode *inode,
			     unsigned int oldflags, unsigned int flags);
346 347 348
int fscrypt_prepare_symlink(struct inode *dir, const char *target,
			    unsigned int len, unsigned int max_len,
			    struct fscrypt_str *disk_link);
349 350 351 352 353
int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
			      unsigned int len, struct fscrypt_str *disk_link);
const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
				unsigned int max_size,
				struct delayed_call *done);
354
int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
355 356 357 358 359
static inline void fscrypt_set_ops(struct super_block *sb,
				   const struct fscrypt_operations *s_cop)
{
	sb->s_cop = s_cop;
}
360 361
#else  /* !CONFIG_FS_ENCRYPTION */

362
static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
363
{
364
	return NULL;
365 366
}

367 368 369 370 371
static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
{
	return false;
}

372 373 374 375
static inline void fscrypt_handle_d_move(struct dentry *dentry)
{
}

376 377 378 379 380
static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
{
	return false;
}

381 382 383 384 385
/* crypto.c */
static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
{
}

386 387 388 389
static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
							    unsigned int len,
							    unsigned int offs,
							    gfp_t gfp_flags)
390 391 392 393
{
	return ERR_PTR(-EOPNOTSUPP);
}

394 395 396 397 398 399 400 401 402
static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
						struct page *page,
						unsigned int len,
						unsigned int offs, u64 lblk_num,
						gfp_t gfp_flags)
{
	return -EOPNOTSUPP;
}

403 404 405
static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
						   unsigned int len,
						   unsigned int offs)
406 407 408 409
{
	return -EOPNOTSUPP;
}

410 411 412 413 414 415 416 417
static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
						struct page *page,
						unsigned int len,
						unsigned int offs, u64 lblk_num)
{
	return -EOPNOTSUPP;
}

418 419 420 421 422 423
static inline bool fscrypt_is_bounce_page(struct page *page)
{
	return false;
}

static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
424 425 426 427 428
{
	WARN_ON_ONCE(1);
	return ERR_PTR(-EINVAL);
}

429
static inline void fscrypt_free_bounce_page(struct page *bounce_page)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
{
}

/* policy.c */
static inline int fscrypt_ioctl_set_policy(struct file *filp,
					   const void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
{
	return -EOPNOTSUPP;
}

445 446 447 448 449 450
static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
					      void __user *arg)
{
	return -EOPNOTSUPP;
}

451 452 453 454 455
static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
{
	return -EOPNOTSUPP;
}

456 457 458 459 460 461
static inline int fscrypt_has_permitted_context(struct inode *parent,
						struct inode *child)
{
	return 0;
}

462 463 464 465 466
static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
{
	return -EOPNOTSUPP;
}

467
struct fscrypt_dummy_policy {
468 469 470 471 472 473 474 475 476
};

static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
						      char sep,
						      struct super_block *sb)
{
}

static inline void
477
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
478 479 480
{
}

481 482 483 484 485 486 487 488 489 490
/* keyring.c */
static inline void fscrypt_sb_free(struct super_block *sb)
{
}

static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
{
	return -EOPNOTSUPP;
}

491
static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
492 493 494 495 496 497
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
						     void __user *arg)
498 499 500 501
{
	return -EOPNOTSUPP;
}

502 503 504 505 506 507
static inline int fscrypt_ioctl_get_key_status(struct file *filp,
					       void __user *arg)
{
	return -EOPNOTSUPP;
}

508
/* keysetup.c */
509

510 511 512 513 514 515 516 517 518
static inline int fscrypt_prepare_new_inode(struct inode *dir,
					    struct inode *inode,
					    bool *encrypt_ret)
{
	if (IS_ENCRYPTED(dir))
		return -EOPNOTSUPP;
	return 0;
}

519 520 521 522 523
static inline void fscrypt_put_encryption_info(struct inode *inode)
{
	return;
}

524 525 526 527
static inline void fscrypt_free_inode(struct inode *inode)
{
}

528 529 530 531 532
static inline int fscrypt_drop_inode(struct inode *inode)
{
	return 0;
}

533 534 535 536 537 538 539 540
 /* fname.c */
static inline int fscrypt_setup_filename(struct inode *dir,
					 const struct qstr *iname,
					 int lookup, struct fscrypt_name *fname)
{
	if (IS_ENCRYPTED(dir))
		return -EOPNOTSUPP;

541
	memset(fname, 0, sizeof(*fname));
542 543 544 545 546 547 548 549 550 551 552
	fname->usr_fname = iname;
	fname->disk_name.name = (unsigned char *)iname->name;
	fname->disk_name.len = iname->len;
	return 0;
}

static inline void fscrypt_free_filename(struct fscrypt_name *fname)
{
	return;
}

553
static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
554 555 556 557 558 559 560 561 562 563
					     struct fscrypt_str *crypto_str)
{
	return -EOPNOTSUPP;
}

static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
{
	return;
}

564
static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
					    u32 hash, u32 minor_hash,
					    const struct fscrypt_str *iname,
					    struct fscrypt_str *oname)
{
	return -EOPNOTSUPP;
}

static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
				      const u8 *de_name, u32 de_name_len)
{
	/* Encryption support disabled; use standard comparison */
	if (de_name_len != fname->disk_name.len)
		return false;
	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
}

581 582 583 584 585 586 587
static inline u64 fscrypt_fname_siphash(const struct inode *dir,
					const struct qstr *name)
{
	WARN_ON_ONCE(1);
	return 0;
}

588 589 590 591 592 593
static inline int fscrypt_d_revalidate(struct dentry *dentry,
				       unsigned int flags)
{
	return 1;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/* bio.c */
static inline void fscrypt_decrypt_bio(struct bio *bio)
{
}

static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
					sector_t pblk, unsigned int len)
{
	return -EOPNOTSUPP;
}

/* hooks.c */

static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
{
	if (IS_ENCRYPTED(inode))
		return -EOPNOTSUPP;
	return 0;
}

614 615
static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
					 struct dentry *dentry)
616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
	return -EOPNOTSUPP;
}

static inline int __fscrypt_prepare_rename(struct inode *old_dir,
					   struct dentry *old_dentry,
					   struct inode *new_dir,
					   struct dentry *new_dentry,
					   unsigned int flags)
{
	return -EOPNOTSUPP;
}

static inline int __fscrypt_prepare_lookup(struct inode *dir,
630 631
					   struct dentry *dentry,
					   struct fscrypt_name *fname)
632 633 634 635
{
	return -EOPNOTSUPP;
}

636 637 638 639 640
static inline int __fscrypt_prepare_readdir(struct inode *dir)
{
	return -EOPNOTSUPP;
}

641 642 643 644 645 646
static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
					    struct iattr *attr)
{
	return -EOPNOTSUPP;
}

647 648 649 650 651 652 653
static inline int fscrypt_prepare_setflags(struct inode *inode,
					   unsigned int oldflags,
					   unsigned int flags)
{
	return 0;
}

654 655 656 657 658
static inline int fscrypt_prepare_symlink(struct inode *dir,
					  const char *target,
					  unsigned int len,
					  unsigned int max_len,
					  struct fscrypt_str *disk_link)
659
{
660 661 662 663 664 665 666
	if (IS_ENCRYPTED(dir))
		return -EOPNOTSUPP;
	disk_link->name = (unsigned char *)target;
	disk_link->len = len + 1;
	if (disk_link->len > max_len)
		return -ENAMETOOLONG;
	return 0;
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
}

static inline int __fscrypt_encrypt_symlink(struct inode *inode,
					    const char *target,
					    unsigned int len,
					    struct fscrypt_str *disk_link)
{
	return -EOPNOTSUPP;
}

static inline const char *fscrypt_get_symlink(struct inode *inode,
					      const void *caddr,
					      unsigned int max_size,
					      struct delayed_call *done)
{
	return ERR_PTR(-EOPNOTSUPP);
}
684

685 686 687 688 689 690
static inline int fscrypt_symlink_getattr(const struct path *path,
					  struct kstat *stat)
{
	return -EOPNOTSUPP;
}

691 692 693 694 695
static inline void fscrypt_set_ops(struct super_block *sb,
				   const struct fscrypt_operations *s_cop)
{
}

696
#endif	/* !CONFIG_FS_ENCRYPTION */
D
Dave Chinner 已提交
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
/* inline_crypt.c */
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT

bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);

void fscrypt_set_bio_crypt_ctx(struct bio *bio,
			       const struct inode *inode, u64 first_lblk,
			       gfp_t gfp_mask);

void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
				  const struct buffer_head *first_bh,
				  gfp_t gfp_mask);

bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
			   u64 next_lblk);

bool fscrypt_mergeable_bio_bh(struct bio *bio,
			      const struct buffer_head *next_bh);

#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */

static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
	return false;
}

static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
					     const struct inode *inode,
					     u64 first_lblk, gfp_t gfp_mask) { }

static inline void fscrypt_set_bio_crypt_ctx_bh(
					 struct bio *bio,
					 const struct buffer_head *first_bh,
					 gfp_t gfp_mask) { }

static inline bool fscrypt_mergeable_bio(struct bio *bio,
					 const struct inode *inode,
					 u64 next_lblk)
{
	return true;
}

static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
					    const struct buffer_head *next_bh)
{
	return true;
}
#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */

/**
 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
 *					encryption
 * @inode: an inode. If encrypted, its key must be set up.
 *
 * Return: true if the inode requires file contents encryption and if the
 *	   encryption should be done in the block layer via blk-crypto rather
 *	   than in the filesystem layer.
 */
static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
	return fscrypt_needs_contents_encryption(inode) &&
	       __fscrypt_inode_uses_inline_crypto(inode);
}

/**
 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
 *					  encryption
 * @inode: an inode. If encrypted, its key must be set up.
 *
 * Return: true if the inode requires file contents encryption and if the
 *	   encryption should be done in the filesystem layer rather than in the
 *	   block layer via blk-crypto.
 */
static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
{
	return fscrypt_needs_contents_encryption(inode) &&
	       !__fscrypt_inode_uses_inline_crypto(inode);
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790
/**
 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
 * @inode: the inode to check
 *
 * Return: %true if the inode has had its encryption key set up, else %false.
 *
 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
 * set up the key first.
 */
static inline bool fscrypt_has_encryption_key(const struct inode *inode)
{
	return fscrypt_get_info(inode) != NULL;
}

791
/**
792 793
 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
 *			    directory
794 795 796 797 798 799
 * @old_dentry: an existing dentry for the inode being linked
 * @dir: the target directory
 * @dentry: negative dentry for the target filename
 *
 * A new link can only be added to an encrypted directory if the directory's
 * encryption key is available --- since otherwise we'd have no way to encrypt
800
 * the filename.
801 802 803 804 805
 *
 * We also verify that the link will not violate the constraint that all files
 * in an encrypted directory tree use the same encryption policy.
 *
 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
806
 * -EXDEV if the link would result in an inconsistent encryption policy, or
807 808 809 810 811 812 813
 * another -errno code.
 */
static inline int fscrypt_prepare_link(struct dentry *old_dentry,
				       struct inode *dir,
				       struct dentry *dentry)
{
	if (IS_ENCRYPTED(dir))
814
		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
815 816 817
	return 0;
}

818
/**
819 820
 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
 *			      directories
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
 * @old_dir: source directory
 * @old_dentry: dentry for source file
 * @new_dir: target directory
 * @new_dentry: dentry for target location (may be negative unless exchanging)
 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
 *
 * Prepare for ->rename() where the source and/or target directories may be
 * encrypted.  A new link can only be added to an encrypted directory if the
 * directory's encryption key is available --- since otherwise we'd have no way
 * to encrypt the filename.  A rename to an existing name, on the other hand,
 * *is* cryptographically possible without the key.  However, we take the more
 * conservative approach and just forbid all no-key renames.
 *
 * We also verify that the rename will not violate the constraint that all files
 * in an encrypted directory tree use the same encryption policy.
 *
837
 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
838 839 840 841 842 843 844 845 846 847 848 849 850 851
 * rename would cause inconsistent encryption policies, or another -errno code.
 */
static inline int fscrypt_prepare_rename(struct inode *old_dir,
					 struct dentry *old_dentry,
					 struct inode *new_dir,
					 struct dentry *new_dentry,
					 unsigned int flags)
{
	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
		return __fscrypt_prepare_rename(old_dir, old_dentry,
						new_dir, new_dentry, flags);
	return 0;
}

852
/**
853 854
 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
 *			      directory
855 856
 * @dir: directory being searched
 * @dentry: filename being looked up
857
 * @fname: (output) the name to use to search the on-disk directory
858
 *
859
 * Prepare for ->lookup() in a directory which may be encrypted by determining
860
 * the name that will actually be used to search the directory on-disk.  If the
861 862 863
 * directory's encryption policy is supported by this kernel and its encryption
 * key is available, then the lookup is assumed to be by plaintext name;
 * otherwise, it is assumed to be by no-key name.
864
 *
865 866 867 868 869
 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
 * name.  In this case the filesystem must assign the dentry a dentry_operations
 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
 * directory's encryption key is later added.
870
 *
871 872 873
 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
 * filename isn't a valid no-key name, so a negative dentry should be created;
 * or another -errno code.
874 875 876
 */
static inline int fscrypt_prepare_lookup(struct inode *dir,
					 struct dentry *dentry,
877
					 struct fscrypt_name *fname)
878 879
{
	if (IS_ENCRYPTED(dir))
880 881 882 883 884 885
		return __fscrypt_prepare_lookup(dir, dentry, fname);

	memset(fname, 0, sizeof(*fname));
	fname->usr_fname = &dentry->d_name;
	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
	fname->disk_name.len = dentry->d_name.len;
886 887 888
	return 0;
}

889 890 891 892 893 894 895 896 897
/**
 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
 * @dir: the directory inode
 *
 * If the directory is encrypted and it doesn't already have its encryption key
 * set up, try to set it up so that the filenames will be listed in plaintext
 * form rather than in no-key form.
 *
 * Return: 0 on success; -errno on error.  Note that the encryption key being
898 899 900
 *	   unavailable is not considered an error.  It is also not an error if
 *	   the encryption policy is unsupported by this kernel; that is treated
 *	   like the key being unavailable, so that files can still be deleted.
901 902 903 904 905 906 907 908
 */
static inline int fscrypt_prepare_readdir(struct inode *dir)
{
	if (IS_ENCRYPTED(dir))
		return __fscrypt_prepare_readdir(dir);
	return 0;
}

909
/**
910 911
 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
 *			       attributes
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
 * @dentry: dentry through which the inode is being changed
 * @attr: attributes to change
 *
 * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
 * most attribute changes are allowed even without the encryption key.  However,
 * without the encryption key we do have to forbid truncates.  This is needed
 * because the size being truncated to may not be a multiple of the filesystem
 * block size, and in that case we'd have to decrypt the final block, zero the
 * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
 * filesystem block boundary, but it's simpler to just forbid all truncates ---
 * and we already forbid all other contents modifications without the key.)
 *
 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 * if a problem occurred while setting up the encryption key.
 */
static inline int fscrypt_prepare_setattr(struct dentry *dentry,
					  struct iattr *attr)
{
930 931
	if (IS_ENCRYPTED(d_inode(dentry)))
		return __fscrypt_prepare_setattr(dentry, attr);
932 933 934
	return 0;
}

935
/**
936
 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
 * @inode: symlink inode
 * @target: plaintext symlink target
 * @len: length of @target excluding null terminator
 * @disk_link: (in/out) the on-disk symlink target being prepared
 *
 * If the symlink target needs to be encrypted, then this function encrypts it
 * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
 * previously to compute @disk_link->len.  If the filesystem did not allocate a
 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
 *
 * Return: 0 on success, -errno on failure
 */
static inline int fscrypt_encrypt_symlink(struct inode *inode,
					  const char *target,
					  unsigned int len,
					  struct fscrypt_str *disk_link)
{
	if (IS_ENCRYPTED(inode))
		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
	return 0;
}

960 961 962 963 964 965 966 967 968 969 970
/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
static inline void fscrypt_finalize_bounce_page(struct page **pagep)
{
	struct page *page = *pagep;

	if (fscrypt_is_bounce_page(page)) {
		*pagep = fscrypt_pagecache_page(page);
		fscrypt_free_bounce_page(page);
	}
}

D
Dave Chinner 已提交
971
#endif	/* _LINUX_FSCRYPT_H */