intel_hdmi_audio.c 60.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 *   intel_hdmi_audio.c - Intel HDMI audio driver
 *
 *  Copyright (C) 2016 Intel Corp
 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
 *		Ramesh Babu K V	<ramesh.babu@intel.com>
 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
 *		Jerome Anand <jerome.anand@intel.com>
 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * ALSA driver for Intel HDMI audio
 */

#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
28
#include <linux/interrupt.h>
29 30 31 32 33 34 35 36
#include <linux/acpi.h>
#include <asm/cacheflush.h>
#include <sound/pcm.h>
#include <sound/core.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/initval.h>
37
#include <drm/intel_lpe_audio.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#include "intel_hdmi_audio.h"

/*standard module options for ALSA. This module supports only one card*/
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;

module_param_named(index, hdmi_card_index, int, 0444);
MODULE_PARM_DESC(index,
		"Index value for INTEL Intel HDMI Audio controller.");
module_param_named(id, hdmi_card_id, charp, 0444);
MODULE_PARM_DESC(id,
		"ID string for INTEL Intel HDMI Audio controller.");

/*
 * ELD SA bits in the CEA Speaker Allocation data block
 */
static int eld_speaker_allocation_bits[] = {
	[0] = FL | FR,
	[1] = LFE,
	[2] = FC,
	[3] = RL | RR,
	[4] = RC,
	[5] = FLC | FRC,
	[6] = RLC | RRC,
	/* the following are not defined in ELD yet */
	[7] = 0,
};

/*
 * This is an ordered list!
 *
 * The preceding ones have better chances to be selected by
 * hdmi_channel_allocation().
 */
static struct cea_channel_speaker_allocation channel_allocations[] = {
/*                        channel:   7     6    5    4    3     2    1    0  */
{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
				/* 2.1 */
{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
				/* Dolby Surround */
{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
				/* surround40 */
{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
				/* surround41 */
{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
				/* surround50 */
{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
				/* surround51 */
{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
				/* 6.1 */
{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
				/* surround71 */
{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },

{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
};

static struct channel_map_table map_tables[] = {
	{ SNDRV_CHMAP_FL,       0x00,   FL },
	{ SNDRV_CHMAP_FR,       0x01,   FR },
	{ SNDRV_CHMAP_RL,       0x04,   RL },
	{ SNDRV_CHMAP_RR,       0x05,   RR },
	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
	{ SNDRV_CHMAP_FC,       0x03,   FC },
	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
	{} /* terminator */
};

/* hardware capability structure */
static const struct snd_pcm_hardware snd_intel_hadstream = {
	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
		SNDRV_PCM_INFO_DOUBLE |
		SNDRV_PCM_INFO_MMAP|
		SNDRV_PCM_INFO_MMAP_VALID |
		SNDRV_PCM_INFO_BATCH),
	.formats = (SNDRV_PCM_FMTBIT_S24 |
		SNDRV_PCM_FMTBIT_U24),
	.rates = SNDRV_PCM_RATE_32000 |
		SNDRV_PCM_RATE_44100 |
		SNDRV_PCM_RATE_48000 |
		SNDRV_PCM_RATE_88200 |
		SNDRV_PCM_RATE_96000 |
		SNDRV_PCM_RATE_176400 |
		SNDRV_PCM_RATE_192000,
	.rate_min = HAD_MIN_RATE,
	.rate_max = HAD_MAX_RATE,
	.channels_min = HAD_MIN_CHANNEL,
	.channels_max = HAD_MAX_CHANNEL,
	.buffer_bytes_max = HAD_MAX_BUFFER,
	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
	.periods_min = HAD_MIN_PERIODS,
	.periods_max = HAD_MAX_PERIODS,
	.fifo_size = HAD_FIFO_SIZE,
};

/* Register access functions */
158
static int had_get_hwstate(struct snd_intelhad *intelhaddata)
159 160
{
	/* Check for device presence -SW state */
161
	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
162 163 164 165 166
		return -ENODEV;

	return 0;
}

167 168
static inline void
mid_hdmi_audio_read(struct snd_intelhad *ctx, u32 reg, u32 *val)
169
{
170
	*val = ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
171 172
}

173 174
static inline void
mid_hdmi_audio_write(struct snd_intelhad *ctx, u32 reg, u32 val)
175
{
176
	iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
177 178
}

179 180
static int had_read_register(struct snd_intelhad *intelhaddata,
			     u32 offset, u32 *data)
181 182 183 184
{
	int retval;

	retval = had_get_hwstate(intelhaddata);
185 186
	if (retval)
		return retval;
187

188 189 190 191 192 193 194 195 196 197 198
	mid_hdmi_audio_read(intelhaddata, offset, data);
	return 0;
}

static void fixup_dp_config(struct snd_intelhad *intelhaddata,
			    u32 offset, u32 *data)
{
	if (intelhaddata->dp_output) {
		if (offset == AUD_CONFIG && (*data & AUD_CONFIG_VALID_BIT))
			*data |= AUD_CONFIG_DP_MODE | AUD_CONFIG_BLOCK_BIT;
	}
199 200
}

201 202
static int had_write_register(struct snd_intelhad *intelhaddata,
			      u32 offset, u32 data)
203 204 205 206
{
	int retval;

	retval = had_get_hwstate(intelhaddata);
207 208
	if (retval)
		return retval;
209

210 211 212
	fixup_dp_config(intelhaddata, offset, &data);
	mid_hdmi_audio_write(intelhaddata, offset, data);
	return 0;
213 214
}

215 216
static int had_read_modify(struct snd_intelhad *intelhaddata, u32 offset,
			   u32 data, u32 mask)
217
{
218
	u32 val_tmp;
219 220 221
	int retval;

	retval = had_get_hwstate(intelhaddata);
222 223
	if (retval)
		return retval;
224

225 226 227 228 229 230 231
	mid_hdmi_audio_read(intelhaddata, offset, &val_tmp);
	val_tmp &= ~mask;
	val_tmp |= (data & mask);

	fixup_dp_config(intelhaddata, offset, &val_tmp);
	mid_hdmi_audio_write(intelhaddata, offset, val_tmp);
	return 0;
232
}
233 234 235 236 237

/*
 * function to read-modify AUD_CONFIG register on VLV2.
 * The had_read_modify() function should not directly be used on VLV2 for
 * updating AUD_CONFIG register.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
 * This is because:
 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 * register. This field should be 1xy binary for configuration with 6 or
 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 * causes the "channels" field to be updated as 0xy binary resulting in
 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 * appropriate value when doing read-modify of AUD_CONFIG register.
 *
 * @substream: the current substream or NULL if no active substream
 * @data : data to be written
 * @mask : mask
 *
 */
253
static int had_read_modify_aud_config_v2(struct snd_intelhad *intelhaddata,
254 255
					u32 data, u32 mask)
{
256
	struct snd_pcm_substream *substream;
257 258 259 260 261 262 263
	union aud_cfg cfg_val = {.cfg_regval = 0};
	u8 channels;

	/*
	 * If substream is NULL, there is no active stream.
	 * In this case just set channels to 2
	 */
264 265
	substream = intelhaddata->stream_info.had_substream;
	if (substream && substream->runtime)
266 267 268 269 270 271 272 273
		channels = substream->runtime->channels;
	else
		channels = 2;
	cfg_val.cfg_regx_v2.num_ch = channels - 2;

	data = data | cfg_val.cfg_regval;
	mask = mask | AUD_CONFIG_CH_MASK_V2;

274 275
	dev_dbg(intelhaddata->dev, "%s : data = %x, mask =%x\n",
		__func__, data, mask);
276

277
	return had_read_modify(intelhaddata, AUD_CONFIG, data, mask);
278 279
}

280
static void snd_intelhad_enable_audio_int(struct snd_intelhad *ctx, bool enable)
281 282 283 284 285 286 287 288 289 290 291
{
	u32 status_reg;

	if (enable) {
		mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS_v2, &status_reg);
		status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
		mid_hdmi_audio_write(ctx, AUD_HDMI_STATUS_v2, status_reg);
		mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS_v2, &status_reg);
	}
}

292 293
static void snd_intelhad_enable_audio(struct snd_intelhad *intelhaddata,
				      bool enable)
294
{
295 296
	had_read_modify_aud_config_v2(intelhaddata, enable ? BIT(0) : 0,
				      BIT(0));
297 298
}

299 300
static void snd_intelhad_reset_audio(struct snd_intelhad *intelhaddata,
				     u8 reset)
301
{
302
	had_write_register(intelhaddata, AUD_HDMI_STATUS_v2, reset);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

/**
 * initialize audio channel status registers
 * This function is called in the prepare callback
 */
static int had_prog_status_reg(struct snd_pcm_substream *substream,
			struct snd_intelhad *intelhaddata)
{
	union aud_cfg cfg_val = {.cfg_regval = 0};
	union aud_ch_status_0 ch_stat0 = {.status_0_regval = 0};
	union aud_ch_status_1 ch_stat1 = {.status_1_regval = 0};
	int format;

	ch_stat0.status_0_regx.lpcm_id = (intelhaddata->aes_bits &
						IEC958_AES0_NONAUDIO)>>1;
	ch_stat0.status_0_regx.clk_acc = (intelhaddata->aes_bits &
						IEC958_AES3_CON_CLOCK)>>4;
321
	cfg_val.cfg_regx_v2.val_bit = ch_stat0.status_0_regx.lpcm_id;
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

	switch (substream->runtime->rate) {
	case AUD_SAMPLE_RATE_32:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_32KHZ;
		break;

	case AUD_SAMPLE_RATE_44_1:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_44KHZ;
		break;
	case AUD_SAMPLE_RATE_48:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_48KHZ;
		break;
	case AUD_SAMPLE_RATE_88_2:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_88KHZ;
		break;
	case AUD_SAMPLE_RATE_96:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_96KHZ;
		break;
	case AUD_SAMPLE_RATE_176_4:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_176KHZ;
		break;
	case AUD_SAMPLE_RATE_192:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_192KHZ;
		break;

	default:
		/* control should never come here */
		return -EINVAL;
	break;

	}
353 354
	had_write_register(intelhaddata,
			   AUD_CH_STATUS_0, ch_stat0.status_0_regval);
355 356 357 358 359 360 361 362 363 364 365 366 367

	format = substream->runtime->format;

	if (format == SNDRV_PCM_FORMAT_S16_LE) {
		ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_20;
		ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_16BITS;
	} else if (format == SNDRV_PCM_FORMAT_S24_LE) {
		ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_24;
		ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_24BITS;
	} else {
		ch_stat1.status_1_regx.max_wrd_len = 0;
		ch_stat1.status_1_regx.wrd_len = 0;
	}
368 369
	had_write_register(intelhaddata,
			   AUD_CH_STATUS_1, ch_stat1.status_1_regval);
370 371 372
	return 0;
}

373
/*
374 375 376 377
 * function to initialize audio
 * registers and buffer confgiuration registers
 * This function is called in the prepare callback
 */
378 379
static int snd_intelhad_audio_ctrl(struct snd_pcm_substream *substream,
				   struct snd_intelhad *intelhaddata)
380 381 382 383 384 385 386 387 388 389
{
	union aud_cfg cfg_val = {.cfg_regval = 0};
	union aud_buf_config buf_cfg = {.buf_cfgval = 0};
	u8 channels;

	had_prog_status_reg(substream, intelhaddata);

	buf_cfg.buf_cfg_regx_v2.audio_fifo_watermark = FIFO_THRESHOLD;
	buf_cfg.buf_cfg_regx_v2.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
	buf_cfg.buf_cfg_regx_v2.aud_delay = 0;
390
	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.buf_cfgval);
391 392 393 394 395 396 397 398

	channels = substream->runtime->channels;
	cfg_val.cfg_regx_v2.num_ch = channels - 2;
	if (channels <= 2)
		cfg_val.cfg_regx_v2.layout = LAYOUT0;
	else
		cfg_val.cfg_regx_v2.layout = LAYOUT1;

399
	cfg_val.cfg_regx_v2.val_bit = 1;
400
	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.cfg_regval);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	return 0;
}

/*
 * Compute derived values in channel_allocations[].
 */
static void init_channel_allocations(void)
{
	int i, j;
	struct cea_channel_speaker_allocation *p;

	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
		p = channel_allocations + i;
		p->channels = 0;
		p->spk_mask = 0;
		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
			if (p->speakers[j]) {
				p->channels++;
				p->spk_mask |= p->speakers[j];
			}
	}
}

/*
 * The transformation takes two steps:
 *
 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 *            spk_mask => (channel_allocations[])         => ai->CA
 *
 * TODO: it could select the wrong CA from multiple candidates.
 */
static int snd_intelhad_channel_allocation(struct snd_intelhad *intelhaddata,
					int channels)
{
	int i;
	int ca = 0;
	int spk_mask = 0;

	/*
	 * CA defaults to 0 for basic stereo audio
	 */
	if (channels <= 2)
		return 0;

	/*
	 * expand ELD's speaker allocation mask
	 *
	 * ELD tells the speaker mask in a compact(paired) form,
	 * expand ELD's notions to match the ones used by Audio InfoFrame.
	 */

	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
453
		if (intelhaddata->eld.speaker_allocation_block & (1 << i))
454 455 456 457 458 459 460 461 462 463 464 465 466
			spk_mask |= eld_speaker_allocation_bits[i];
	}

	/* search for the first working match in the CA table */
	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
		if (channels == channel_allocations[i].channels &&
		(spk_mask & channel_allocations[i].spk_mask) ==
				channel_allocations[i].spk_mask) {
			ca = channel_allocations[i].ca_index;
			break;
		}
	}

467
	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

	return ca;
}

/* from speaker bit mask to ALSA API channel position */
static int spk_to_chmap(int spk)
{
	struct channel_map_table *t = map_tables;

	for (; t->map; t++) {
		if (t->spk_mask == spk)
			return t->map;
	}
	return 0;
}

484
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
485 486 487 488 489 490 491 492 493 494 495 496 497
{
	int i = 0, c = 0;
	int spk_mask = 0;
	struct snd_pcm_chmap_elem *chmap;
	u8 eld_high, eld_high_mask = 0xF0;
	u8 high_msb;

	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
	if (chmap == NULL) {
		intelhaddata->chmap->chmap = NULL;
		return;
	}

498
	dev_dbg(intelhaddata->dev, "eld.speaker_allocation_block = %x\n",
499
			intelhaddata->eld.speaker_allocation_block);
500 501 502 503 504 505 506 507 508 509

	/* WA: Fix the max channel supported to 8 */

	/*
	 * Sink may support more than 8 channels, if eld_high has more than
	 * one bit set. SOC supports max 8 channels.
	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
	 */

	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
510
	eld_high = intelhaddata->eld.speaker_allocation_block & eld_high_mask;
511 512 513 514 515 516
	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
		/* eld_high & (eld_high-1): if more than 1 bit set */
		/* 0x1F: 7 channels */
		for (i = 1; i < 4; i++) {
			high_msb = eld_high & (0x80 >> i);
			if (high_msb) {
517
				intelhaddata->eld.speaker_allocation_block &=
518 519 520 521 522 523 524
					high_msb | 0xF;
				break;
			}
		}
	}

	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
525
		if (intelhaddata->eld.speaker_allocation_block & (1 << i))
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
			spk_mask |= eld_speaker_allocation_bits[i];
	}

	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
		if (spk_mask == channel_allocations[i].spk_mask) {
			for (c = 0; c < channel_allocations[i].channels; c++) {
				chmap->map[c] = spk_to_chmap(
					channel_allocations[i].speakers[
						(MAX_SPEAKERS - 1)-c]);
			}
			chmap->channels = channel_allocations[i].channels;
			intelhaddata->chmap->chmap = chmap;
			break;
		}
	}
	if (i >= ARRAY_SIZE(channel_allocations)) {
		intelhaddata->chmap->chmap = NULL;
		kfree(chmap);
	}
}

/*
 * ALSA API channel-map control callbacks
 */
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
	struct snd_intelhad *intelhaddata = info->private_data;

	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
		return -ENODEV;
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = HAD_MAX_CHANNEL;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
	return 0;
}

static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
	struct snd_intelhad *intelhaddata = info->private_data;
	int i = 0;
	const struct snd_pcm_chmap_elem *chmap;

	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
		return -ENODEV;
	if (intelhaddata->chmap->chmap ==  NULL)
		return -ENODATA;
	chmap = intelhaddata->chmap->chmap;
578
	for (i = 0; i < chmap->channels; i++)
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		ucontrol->value.integer.value[i] = chmap->map[i];

	return 0;
}

static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
						struct snd_pcm *pcm)
{
	int err = 0;

	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
			NULL, 0, (unsigned long)intelhaddata,
			&intelhaddata->chmap);
	if (err < 0)
		return err;

	intelhaddata->chmap->private_data = intelhaddata;
	intelhaddata->kctl = intelhaddata->chmap->kctl;
	intelhaddata->kctl->info = had_chmap_ctl_info;
	intelhaddata->kctl->get = had_chmap_ctl_get;
	intelhaddata->chmap->chmap = NULL;
	return 0;
}

603 604
/*
 * snd_intelhad_prog_dip - to initialize Data Island Packets registers
605 606 607 608 609 610
 *
 * @substream:substream for which the prepare function is called
 * @intelhaddata:substream private data
 *
 * This function is called in the prepare callback
 */
611 612
static void snd_intelhad_prog_dip(struct snd_pcm_substream *substream,
				  struct snd_intelhad *intelhaddata)
613 614 615 616 617 618
{
	int i;
	union aud_ctrl_st ctrl_state = {.ctrl_val = 0};
	union aud_info_frame2 frame2 = {.fr2_val = 0};
	union aud_info_frame3 frame3 = {.fr3_val = 0};
	u8 checksum = 0;
619
	u32 info_frame;
620 621 622 623
	int channels;

	channels = substream->runtime->channels;

624
	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val);
625

626 627 628 629 630 631
	if (intelhaddata->dp_output) {
		info_frame = DP_INFO_FRAME_WORD1;
		frame2.fr2_val = 1;
	} else {
		info_frame = HDMI_INFO_FRAME_WORD1;
		frame2.fr2_regx.chnl_cnt = substream->runtime->channels - 1;
632

633 634
		frame3.fr3_regx.chnl_alloc = snd_intelhad_channel_allocation(
			intelhaddata, channels);
635

636 637 638 639 640 641 642
		/*Calculte the byte wide checksum for all valid DIP words*/
		for (i = 0; i < BYTES_PER_WORD; i++)
			checksum += (info_frame >> i*BITS_PER_BYTE) & MASK_BYTE0;
		for (i = 0; i < BYTES_PER_WORD; i++)
			checksum += (frame2.fr2_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
		for (i = 0; i < BYTES_PER_WORD; i++)
			checksum += (frame3.fr3_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
643

644 645
		frame2.fr2_regx.chksum = -(checksum);
	}
646

647 648 649
	had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, info_frame);
	had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, frame2.fr2_val);
	had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, frame3.fr3_val);
650 651 652

	/* program remaining DIP words with zero */
	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
653
		had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, 0x0);
654 655 656

	ctrl_state.ctrl_regx.dip_freq = 1;
	ctrl_state.ctrl_regx.dip_en_sta = 1;
657
	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val);
658 659 660 661 662 663 664 665 666 667 668
}

/**
 * snd_intelhad_prog_buffer - programs buffer
 * address and length registers
 *
 * @substream:substream for which the prepare function is called
 * @intelhaddata:substream private data
 *
 * This function programs ring buffer address and length into registers.
 */
669
static int snd_intelhad_prog_buffer(struct snd_intelhad *intelhaddata,
670 671 672 673 674 675 676
					int start, int end)
{
	u32 ring_buf_addr, ring_buf_size, period_bytes;
	u8 i, num_periods;
	struct snd_pcm_substream *substream;

	substream = intelhaddata->stream_info.had_substream;
677
	if (WARN_ON(!substream))
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		return 0;

	ring_buf_addr = substream->runtime->dma_addr;
	ring_buf_size = snd_pcm_lib_buffer_bytes(substream);
	intelhaddata->stream_info.ring_buf_size = ring_buf_size;
	period_bytes = frames_to_bytes(substream->runtime,
				substream->runtime->period_size);
	num_periods = substream->runtime->periods;

	/*
	 * buffer addr should  be 64 byte aligned, period bytes
	 * will be used to calculate addr offset
	 */
	period_bytes &= ~0x3F;

	/* Hardware supports MAX_PERIODS buffers */
	if (end >= HAD_MAX_PERIODS)
		return -EINVAL;

	for (i = start; i <= end; i++) {
		/* Program the buf registers with addr and len */
		intelhaddata->buf_info[i].buf_addr = ring_buf_addr +
							 (i * period_bytes);
		if (i < num_periods-1)
			intelhaddata->buf_info[i].buf_size = period_bytes;
		else
			intelhaddata->buf_info[i].buf_size = ring_buf_size -
							(period_bytes*i);

707 708
		had_write_register(intelhaddata,
				   AUD_BUF_A_ADDR + (i * HAD_REG_WIDTH),
709 710
					intelhaddata->buf_info[i].buf_addr |
					BIT(0) | BIT(1));
711 712
		had_write_register(intelhaddata,
				   AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
713 714 715
					period_bytes);
		intelhaddata->buf_info[i].is_valid = true;
	}
716 717 718 719
	dev_dbg(intelhaddata->dev, "%s:buf[%d-%d] addr=%#x  and size=%d\n",
		__func__, start, end,
		intelhaddata->buf_info[start].buf_addr,
		intelhaddata->buf_info[start].buf_size);
720 721 722 723
	intelhaddata->valid_buf_cnt = num_periods;
	return 0;
}

724
static int snd_intelhad_read_len(struct snd_intelhad *intelhaddata)
725 726 727 728 729
{
	int i, retval = 0;
	u32 len[4];

	for (i = 0; i < 4 ; i++) {
730 731 732
		had_read_register(intelhaddata,
				  AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
				  &len[i]);
733 734 735 736 737
		if (!len[i])
			retval++;
	}
	if (retval != 1) {
		for (i = 0; i < 4 ; i++)
738 739
			dev_dbg(intelhaddata->dev, "buf[%d] size=%d\n",
				i, len[i]);
740 741 742 743 744
	}

	return retval;
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
{
	u32 maud_val;

	/* Select maud according to DP 1.2 spec*/
	if (link_rate == DP_2_7_GHZ) {
		switch (aud_samp_freq) {
		case AUD_SAMPLE_RATE_32:
			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_44_1:
			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_48:
			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_88_2:
			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_96:
			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_176_4:
			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
			break;

		case HAD_MAX_RATE:
			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
			break;

		default:
			maud_val = -EINVAL;
			break;
		}
	} else if (link_rate == DP_1_62_GHZ) {
		switch (aud_samp_freq) {
		case AUD_SAMPLE_RATE_32:
			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_44_1:
			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_48:
			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_88_2:
			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_96:
			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_176_4:
			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
			break;

		case HAD_MAX_RATE:
			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
			break;

		default:
			maud_val = -EINVAL;
			break;
		}
	} else
		maud_val = -EINVAL;

	return maud_val;
}

824 825
/*
 * snd_intelhad_prog_cts - Program HDMI audio CTS value
826 827 828 829 830 831 832 833
 *
 * @aud_samp_freq: sampling frequency of audio data
 * @tmds: sampling frequency of the display data
 * @n_param: N value, depends on aud_samp_freq
 * @intelhaddata:substream private data
 *
 * Program CTS register based on the audio and display sampling frequency
 */
834 835 836
static void snd_intelhad_prog_cts(u32 aud_samp_freq, u32 tmds,
				  u32 link_rate, u32 n_param,
				  struct snd_intelhad *intelhaddata)
837 838 839 840
{
	u32 cts_val;
	u64 dividend, divisor;

841 842 843 844 845 846 847 848 849
	if (intelhaddata->dp_output) {
		/* Substitute cts_val with Maud according to DP 1.2 spec*/
		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
	} else {
		/* Calculate CTS according to HDMI 1.3a spec*/
		dividend = (u64)tmds * n_param*1000;
		divisor = 128 * aud_samp_freq;
		cts_val = div64_u64(dividend, divisor);
	}
850
	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
851
		 tmds, n_param, cts_val);
852
	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
}

static int had_calculate_n_value(u32 aud_samp_freq)
{
	s32 n_val;

	/* Select N according to HDMI 1.3a spec*/
	switch (aud_samp_freq) {
	case AUD_SAMPLE_RATE_32:
		n_val = 4096;
	break;

	case AUD_SAMPLE_RATE_44_1:
		n_val = 6272;
	break;

	case AUD_SAMPLE_RATE_48:
		n_val = 6144;
	break;

	case AUD_SAMPLE_RATE_88_2:
		n_val = 12544;
	break;

	case AUD_SAMPLE_RATE_96:
		n_val = 12288;
	break;

	case AUD_SAMPLE_RATE_176_4:
		n_val = 25088;
	break;

	case HAD_MAX_RATE:
		n_val = 24576;
	break;

	default:
		n_val = -EINVAL;
	break;
	}
	return n_val;
}

896 897
/*
 * snd_intelhad_prog_n - Program HDMI audio N value
898 899 900 901 902 903 904 905
 *
 * @aud_samp_freq: sampling frequency of audio data
 * @n_param: N value, depends on aud_samp_freq
 * @intelhaddata:substream private data
 *
 * This function is called in the prepare callback.
 * It programs based on the audio and display sampling frequency
 */
906 907
static int snd_intelhad_prog_n(u32 aud_samp_freq, u32 *n_param,
			       struct snd_intelhad *intelhaddata)
908 909 910
{
	s32 n_val;

911 912 913 914 915 916 917 918 919 920 921 922
	if (intelhaddata->dp_output) {
		/*
		 * According to DP specs, Maud and Naud values hold
		 * a relationship, which is stated as:
		 * Maud/Naud = 512 * fs / f_LS_Clk
		 * where, fs is the sampling frequency of the audio stream
		 * and Naud is 32768 for Async clock.
		 */

		n_val = DP_NAUD_VAL;
	} else
		n_val =	had_calculate_n_value(aud_samp_freq);
923 924 925 926

	if (n_val < 0)
		return n_val;

927
	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
928 929 930 931
	*n_param = n_val;
	return 0;
}

932
static void snd_intelhad_handle_underrun(struct snd_intelhad *intelhaddata)
933 934 935 936
{
	u32 hdmi_status, i = 0;

	/* Handle Underrun interrupt within Audio Unit */
937
	had_write_register(intelhaddata, AUD_CONFIG, 0);
938
	/* Reset buffer pointers */
939 940
	had_write_register(intelhaddata, AUD_HDMI_STATUS_v2, 1);
	had_write_register(intelhaddata, AUD_HDMI_STATUS_v2, 0);
941 942 943 944 945
	/**
	 * The interrupt status 'sticky' bits might not be cleared by
	 * setting '1' to that bit once...
	 */
	do { /* clear bit30, 31 AUD_HDMI_STATUS */
946 947
		had_read_register(intelhaddata, AUD_HDMI_STATUS_v2,
				  &hdmi_status);
948
		dev_dbg(intelhaddata->dev, "HDMI status =0x%x\n", hdmi_status);
949 950
		if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) {
			i++;
951 952
			had_write_register(intelhaddata,
					   AUD_HDMI_STATUS_v2, hdmi_status);
953 954 955 956
		} else
			break;
	} while (i < MAX_CNT);
	if (i >= MAX_CNT)
957
		dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
958 959 960 961 962 963 964 965 966 967 968 969 970
}

/**
 * snd_intelhad_open - stream initializations are done here
 * @substream:substream for which the stream function is called
 *
 * This function is called whenever a PCM stream is opened
 */
static int snd_intelhad_open(struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata;
	struct snd_pcm_runtime *runtime;
	struct had_stream_pvt *stream;
971
	struct had_stream_data *had_stream;
972 973 974
	int retval;

	intelhaddata = snd_pcm_substream_chip(substream);
975
	had_stream = &intelhaddata->stream_data;
976
	runtime = substream->runtime;
977
	intelhaddata->underrun_count = 0;
978 979 980 981

	pm_runtime_get(intelhaddata->dev);

	if (had_get_hwstate(intelhaddata)) {
982 983
		dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
			__func__);
984 985 986 987 988 989
		retval = -ENODEV;
		goto exit_put_handle;
	}

	/* Check, if device already in use */
	if (runtime->private_data) {
990
		dev_dbg(intelhaddata->dev, "Device already in use\n");
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		retval = -EBUSY;
		goto exit_put_handle;
	}

	/* set the runtime hw parameter with local snd_pcm_hardware struct */
	runtime->hw = snd_intel_hadstream;

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		retval = -ENOMEM;
		goto exit_put_handle;
	}
	stream->stream_status = STREAM_INIT;
	runtime->private_data = stream;

	retval = snd_pcm_hw_constraint_integer(runtime,
			 SNDRV_PCM_HW_PARAM_PERIODS);
	if (retval < 0)
		goto exit_err;

	/* Make sure, that the period size is always aligned
	 * 64byte boundary
	 */
	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
	if (retval < 0) {
1017 1018
		dev_dbg(intelhaddata->dev, "%s:step_size=64 failed,err=%d\n",
			__func__, retval);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		goto exit_err;
	}

	return retval;
exit_err:
	kfree(stream);
exit_put_handle:
	pm_runtime_put(intelhaddata->dev);
	runtime->private_data = NULL;
	return retval;
}

1031
/*
1032
 * had_period_elapsed - updates the hardware pointer status
1033
 * @had_substream: substream for which the stream function is called
1034
 */
1035
static void had_period_elapsed(struct snd_pcm_substream *substream)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
{
	struct had_stream_pvt *stream;

	if (!substream || !substream->runtime)
		return;
	stream = substream->runtime->private_data;
	if (!stream)
		return;

	if (stream->stream_status != STREAM_RUNNING)
		return;
	snd_pcm_period_elapsed(substream);
}

/**
 * snd_intelhad_init_stream - internal function to initialize stream info
 * @substream:substream for which the stream function is called
 *
 */
static int snd_intelhad_init_stream(struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);

	intelhaddata->stream_info.had_substream = substream;
	intelhaddata->stream_info.buffer_ptr = 0;
	intelhaddata->stream_info.buffer_rendered = 0;
	intelhaddata->stream_info.sfreq = substream->runtime->rate;
	return 0;
}

/**
 * snd_intelhad_close- to free parameteres when stream is stopped
 *
 * @substream:  substream for which the function is called
 *
 * This function is called by ALSA framework when stream is stopped
 */
static int snd_intelhad_close(struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata;
	struct snd_pcm_runtime *runtime;

	intelhaddata = snd_pcm_substream_chip(substream);
	runtime = substream->runtime;

1081
	if (WARN_ON(!runtime->private_data))
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		return 0;

	intelhaddata->stream_info.buffer_rendered = 0;
	intelhaddata->stream_info.buffer_ptr = 0;
	intelhaddata->stream_info.str_id = 0;
	intelhaddata->stream_info.had_substream = NULL;

	/* Check if following drv_status modification is required - VA */
	if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) {
		intelhaddata->drv_status = HAD_DRV_CONNECTED;
1092 1093
		dev_dbg(intelhaddata->dev,
			"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
			__func__, __LINE__);
	}
	kfree(runtime->private_data);
	runtime->private_data = NULL;
	pm_runtime_put(intelhaddata->dev);
	return 0;
}

/**
 * snd_intelhad_hw_params- to setup the hardware parameters
 * like allocating the buffers
 *
 * @substream:  substream for which the function is called
 * @hw_params: hardware parameters
 *
 * This function is called by ALSA framework when hardware params are set
 */
static int snd_intelhad_hw_params(struct snd_pcm_substream *substream,
				    struct snd_pcm_hw_params *hw_params)
{
1114
	struct snd_intelhad *intelhaddata;
1115 1116 1117 1118 1119 1120
	unsigned long addr;
	int pages, buf_size, retval;

	if (!hw_params)
		return -EINVAL;

1121
	intelhaddata = snd_pcm_substream_chip(substream);
1122 1123 1124 1125
	buf_size = params_buffer_bytes(hw_params);
	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
	if (retval < 0)
		return retval;
1126 1127
	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
		__func__, buf_size);
1128 1129 1130 1131 1132
	/* mark the pages as uncached region */
	addr = (unsigned long) substream->runtime->dma_area;
	pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
	retval = set_memory_uc(addr, pages);
	if (retval) {
1133 1134
		dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
			retval);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		return retval;
	}
	memset(substream->runtime->dma_area, 0, buf_size);

	return retval;
}

/**
 * snd_intelhad_hw_free- to release the resources allocated during
 * hardware params setup
 *
 * @substream:  substream for which the function is called
 *
 * This function is called by ALSA framework before close callback.
 *
 */
static int snd_intelhad_hw_free(struct snd_pcm_substream *substream)
{
	unsigned long addr;
	u32 pages;

	/* mark back the pages as cached/writeback region before the free */
	if (substream->runtime->dma_area != NULL) {
		addr = (unsigned long) substream->runtime->dma_area;
		pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
								PAGE_SIZE;
		set_memory_wb(addr, pages);
		return snd_pcm_lib_free_pages(substream);
	}
	return 0;
}

/**
 * snd_intelhad_pcm_trigger - stream activities are handled here
 * @substream:substream for which the stream function is called
 * @cmd:the stream commamd thats requested from upper layer
 * This function is called whenever an a stream activity is invoked
 */
static int snd_intelhad_pcm_trigger(struct snd_pcm_substream *substream,
					int cmd)
{
1176
	int retval = 0;
1177 1178 1179
	unsigned long flag_irq;
	struct snd_intelhad *intelhaddata;
	struct had_stream_pvt *stream;
1180
	struct had_stream_data *had_stream;
1181 1182 1183

	intelhaddata = snd_pcm_substream_chip(substream);
	stream = substream->runtime->private_data;
1184
	had_stream = &intelhaddata->stream_data;
1185 1186 1187 1188 1189

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		/* Disable local INTRs till register prgmng is done */
		if (had_get_hwstate(intelhaddata)) {
1190 1191
			dev_dbg(intelhaddata->dev,
				"_START: HDMI cable plugged-out\n");
1192 1193 1194 1195 1196 1197 1198 1199
			retval = -ENODEV;
			break;
		}
		stream->stream_status = STREAM_RUNNING;

		had_stream->stream_type = HAD_RUNNING_STREAM;

		/* Enable Audio */
1200 1201
		snd_intelhad_enable_audio_int(intelhaddata, true);
		snd_intelhad_enable_audio(intelhaddata, true);
1202 1203 1204 1205 1206 1207 1208
		break;

	case SNDRV_PCM_TRIGGER_STOP:
		spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irq);
		intelhaddata->stream_info.str_id = 0;
		intelhaddata->curr_buf = 0;

1209
		/* Stop reporting BUFFER_DONE/UNDERRUN to above layers */
1210 1211 1212 1213

		had_stream->stream_type = HAD_INIT;
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irq);
		/* Disable Audio */
1214 1215
		snd_intelhad_enable_audio_int(intelhaddata, false);
		snd_intelhad_enable_audio(intelhaddata, false);
1216
		/* Reset buffer pointers */
1217 1218
		snd_intelhad_reset_audio(intelhaddata, 1);
		snd_intelhad_reset_audio(intelhaddata, 0);
1219
		stream->stream_status = STREAM_DROPPED;
1220
		snd_intelhad_enable_audio_int(intelhaddata, false);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		break;

	default:
		retval = -EINVAL;
	}
	return retval;
}

/**
 * snd_intelhad_pcm_prepare- internal preparation before starting a stream
 *
 * @substream:  substream for which the function is called
 *
 * This function is called when a stream is started for internal preparation.
 */
static int snd_intelhad_pcm_prepare(struct snd_pcm_substream *substream)
{
	int retval;
	u32 disp_samp_freq, n_param;
1240
	u32 link_rate = 0;
1241 1242
	struct snd_intelhad *intelhaddata;
	struct snd_pcm_runtime *runtime;
1243
	struct had_stream_data *had_stream;
1244 1245 1246

	intelhaddata = snd_pcm_substream_chip(substream);
	runtime = substream->runtime;
1247
	had_stream = &intelhaddata->stream_data;
1248 1249

	if (had_get_hwstate(intelhaddata)) {
1250 1251
		dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
			__func__);
1252 1253 1254 1255
		retval = -ENODEV;
		goto prep_end;
	}

1256
	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1257
		(int)frames_to_bytes(runtime, runtime->period_size));
1258 1259 1260 1261 1262
	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
		(int)snd_pcm_lib_buffer_bytes(substream));
	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1263 1264

	if (intelhaddata->stream_info.str_id) {
1265 1266
		dev_dbg(intelhaddata->dev,
			"_prepare is called for existing str_id#%d\n",
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
					intelhaddata->stream_info.str_id);
		retval = snd_intelhad_pcm_trigger(substream,
						SNDRV_PCM_TRIGGER_STOP);
		return retval;
	}

	retval = snd_intelhad_init_stream(substream);
	if (retval)
		goto prep_end;


	/* Get N value in KHz */
1279
	disp_samp_freq = intelhaddata->tmds_clock_speed;
1280

1281 1282
	retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
				     intelhaddata);
1283
	if (retval) {
1284 1285
		dev_err(intelhaddata->dev,
			"programming N value failed %#x\n", retval);
1286 1287
		goto prep_end;
	}
1288 1289

	if (intelhaddata->dp_output)
1290
		link_rate = intelhaddata->link_rate;
1291

1292 1293 1294
	snd_intelhad_prog_cts(substream->runtime->rate,
			      disp_samp_freq, link_rate,
			      n_param, intelhaddata);
1295

1296
	snd_intelhad_prog_dip(substream, intelhaddata);
1297

1298
	retval = snd_intelhad_audio_ctrl(substream, intelhaddata);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	/* Prog buffer address */
	retval = snd_intelhad_prog_buffer(intelhaddata,
			HAD_BUF_TYPE_A, HAD_BUF_TYPE_D);

	/*
	 * Program channel mapping in following order:
	 * FL, FR, C, LFE, RL, RR
	 */

1309
	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

prep_end:
	return retval;
}

/**
 * snd_intelhad_pcm_pointer- to send the current buffer pointerprocessed by hw
 *
 * @substream:  substream for which the function is called
 *
 * This function is called by ALSA framework to get the current hw buffer ptr
 * when a period is elapsed
 */
static snd_pcm_uframes_t snd_intelhad_pcm_pointer(
					struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata;
	u32 bytes_rendered = 0;
	u32 t;
	int buf_id;

	intelhaddata = snd_pcm_substream_chip(substream);

	if (intelhaddata->flag_underrun) {
		intelhaddata->flag_underrun = 0;
		return SNDRV_PCM_POS_XRUN;
	}

	/* Use a hw register to calculate sub-period position reports.
	 * This makes PulseAudio happier.
	 */

	buf_id = intelhaddata->curr_buf % 4;
1343 1344
	had_read_register(intelhaddata,
			  AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &t);
1345 1346

	if ((t == 0) || (t == ((u32)-1L))) {
1347
		intelhaddata->underrun_count++;
1348 1349
		dev_dbg(intelhaddata->dev,
			"discovered buffer done for buf %d, count = %d\n",
1350
			 buf_id, intelhaddata->underrun_count);
1351

1352
		if (intelhaddata->underrun_count > (HAD_MIN_PERIODS/2)) {
1353 1354
			dev_dbg(intelhaddata->dev,
				"assume audio_codec_reset, underrun = %d - do xrun\n",
1355 1356
				 intelhaddata->underrun_count);
			intelhaddata->underrun_count = 0;
1357 1358 1359 1360
			return SNDRV_PCM_POS_XRUN;
		}
	} else {
		/* Reset Counter */
1361
		intelhaddata->underrun_count = 0;
1362
	}
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	t = intelhaddata->buf_info[buf_id].buf_size - t;

	if (intelhaddata->stream_info.buffer_rendered)
		div_u64_rem(intelhaddata->stream_info.buffer_rendered,
			intelhaddata->stream_info.ring_buf_size,
			&(bytes_rendered));

	intelhaddata->stream_info.buffer_ptr = bytes_to_frames(
						substream->runtime,
						bytes_rendered + t);
	return intelhaddata->stream_info.buffer_ptr;
}

/**
 * snd_intelhad_pcm_mmap- mmaps a kernel buffer to user space for copying data
 *
 * @substream:  substream for which the function is called
 * @vma:		struct instance of memory VMM memory area
 *
 * This function is called by OS when a user space component
 * tries to get mmap memory from driver
 */
static int snd_intelhad_pcm_mmap(struct snd_pcm_substream *substream,
	struct vm_area_struct *vma)
{
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
	return remap_pfn_range(vma, vma->vm_start,
			substream->dma_buffer.addr >> PAGE_SHIFT,
			vma->vm_end - vma->vm_start, vma->vm_page_prot);
}

1395
static int hdmi_audio_mode_change(struct snd_intelhad *intelhaddata)
1396
{
1397
	struct snd_pcm_substream *substream;
1398 1399
	int retval = 0;
	u32 disp_samp_freq, n_param;
1400
	u32 link_rate = 0;
1401

1402 1403 1404
	substream = intelhaddata->stream_info.had_substream;
	if (!substream || !substream->runtime)
		return 0;
1405 1406

	/* Disable Audio */
1407
	snd_intelhad_enable_audio(intelhaddata, false);
1408 1409

	/* Update CTS value */
1410
	disp_samp_freq = intelhaddata->tmds_clock_speed;
1411

1412 1413
	retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
				     intelhaddata);
1414
	if (retval) {
1415 1416
		dev_err(intelhaddata->dev,
			"programming N value failed %#x\n", retval);
1417 1418
		goto out;
	}
1419 1420

	if (intelhaddata->dp_output)
1421
		link_rate = intelhaddata->link_rate;
1422

1423 1424 1425
	snd_intelhad_prog_cts(substream->runtime->rate,
			      disp_samp_freq, link_rate,
			      n_param, intelhaddata);
1426 1427

	/* Enable Audio */
1428
	snd_intelhad_enable_audio(intelhaddata, true);
1429 1430 1431 1432 1433

out:
	return retval;
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/*
 * hdmi_lpe_audio_suspend - power management suspend function
 *
 * @pdev: platform device
 *
 * This function is called by client driver to suspend the
 * hdmi audio.
 */
static int hdmi_lpe_audio_suspend(struct platform_device *pdev,
				  pm_message_t state)
{
	struct had_stream_data *had_stream;
	unsigned long flag_irqs;
	struct snd_pcm_substream *substream;
	struct snd_intelhad *intelhaddata = platform_get_drvdata(pdev);

	had_stream = &intelhaddata->stream_data;
	substream = intelhaddata->stream_info.had_substream;

T
Takashi Iwai 已提交
1453
	if (!pm_runtime_status_suspended(intelhaddata->dev)) {
1454
		dev_err(intelhaddata->dev, "audio stream is active\n");
1455 1456 1457 1458 1459 1460 1461
		return -EAGAIN;
	}


	spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
1462
		dev_dbg(intelhaddata->dev, "had not connected\n");
1463 1464 1465 1466 1467
		return 0;
	}

	if (intelhaddata->drv_status == HAD_DRV_SUSPENDED) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
1468
		dev_dbg(intelhaddata->dev, "had already suspended\n");
1469 1470 1471 1472
		return 0;
	}

	intelhaddata->drv_status = HAD_DRV_SUSPENDED;
1473 1474
	dev_dbg(intelhaddata->dev,
		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_SUSPENDED\n",
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
			__func__, __LINE__);

	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
	snd_intelhad_enable_audio_int(intelhaddata, false);
	return 0;
}

/*
 * hdmi_lpe_audio_resume - power management resume function
 *
 *@pdev: platform device
 *
 * This function is called by client driver to resume the
 * hdmi audio.
 */
static int hdmi_lpe_audio_resume(struct platform_device *pdev)
{
	struct snd_intelhad *intelhaddata = platform_get_drvdata(pdev);
	unsigned long flag_irqs;

	spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
1498
		dev_dbg(intelhaddata->dev, "had not connected\n");
1499 1500 1501 1502 1503
		return 0;
	}

	if (intelhaddata->drv_status != HAD_DRV_SUSPENDED) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
1504
		dev_err(intelhaddata->dev, "had is not in suspended state\n");
1505 1506 1507 1508 1509
		return 0;
	}

	if (had_get_hwstate(intelhaddata)) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
1510 1511
		dev_err(intelhaddata->dev,
			"Failed to resume. Device not accessible\n");
1512 1513 1514 1515
		return -ENODEV;
	}

	intelhaddata->drv_status = HAD_DRV_CONNECTED;
1516 1517
	dev_dbg(intelhaddata->dev,
		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
			__func__, __LINE__);
	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
	snd_intelhad_enable_audio_int(intelhaddata, true);
	return 0;
}

static inline int had_chk_intrmiss(struct snd_intelhad *intelhaddata,
		enum intel_had_aud_buf_type buf_id)
{
	int i, intr_count = 0;
	enum intel_had_aud_buf_type buff_done;
	u32 buf_size, buf_addr;
	struct had_stream_data *had_stream;
	unsigned long flag_irqs;

	had_stream = &intelhaddata->stream_data;

	buff_done = buf_id;

	intr_count = snd_intelhad_read_len(intelhaddata);
	if (intr_count > 1) {
		/* In case of active playback */
1540 1541 1542
		dev_err(intelhaddata->dev,
			"Driver detected %d missed buffer done interrupt(s)\n",
			(intr_count - 1));
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		if (intr_count > 3)
			return intr_count;

		buf_id += (intr_count - 1);
		/* Reprogram registers*/
		for (i = buff_done; i < buf_id; i++) {
			int j = i % 4;

			buf_size = intelhaddata->buf_info[j].buf_size;
			buf_addr = intelhaddata->buf_info[j].buf_addr;
			had_write_register(intelhaddata,
					   AUD_BUF_A_LENGTH +
					   (j * HAD_REG_WIDTH), buf_size);
			had_write_register(intelhaddata,
					   AUD_BUF_A_ADDR+(j * HAD_REG_WIDTH),
					   (buf_addr | BIT(0) | BIT(1)));
		}
		buf_id = buf_id % 4;
		spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
		intelhaddata->buff_done = buf_id;
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
	}

	return intr_count;
}

static int had_process_buffer_done(struct snd_intelhad *intelhaddata)
{
	u32 len = 1;
	enum intel_had_aud_buf_type buf_id;
	enum intel_had_aud_buf_type buff_done;
	struct pcm_stream_info *stream;
	u32 buf_size;
	struct had_stream_data *had_stream;
	int intr_count;
	enum had_status_stream		stream_type;
	unsigned long flag_irqs;

	had_stream = &intelhaddata->stream_data;
	stream = &intelhaddata->stream_info;
	intr_count = 1;

	spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
1588 1589
		dev_dbg(intelhaddata->dev,
			"%s:Device already disconnected\n", __func__);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		return 0;
	}
	buf_id = intelhaddata->curr_buf;
	intelhaddata->buff_done = buf_id;
	buff_done = intelhaddata->buff_done;
	buf_size = intelhaddata->buf_info[buf_id].buf_size;
	stream_type = had_stream->stream_type;

	/* Every debug statement has an implication
	 * of ~5msec. Thus, avoid having >3 debug statements
	 * for each buffer_done handling.
	 */

	/* Check for any intr_miss in case of active playback */
	if (had_stream->stream_type == HAD_RUNNING_STREAM) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
		intr_count = had_chk_intrmiss(intelhaddata, buf_id);
		if (!intr_count || (intr_count > 3)) {
1608 1609
			dev_err(intelhaddata->dev,
				"HAD SW state in non-recoverable mode\n");
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
			return 0;
		}
		buf_id += (intr_count - 1);
		buf_id = buf_id % 4;
		spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
	}

	intelhaddata->buf_info[buf_id].is_valid = true;
	if (intelhaddata->valid_buf_cnt-1 == buf_id) {
		if (had_stream->stream_type >= HAD_RUNNING_STREAM)
			intelhaddata->curr_buf = HAD_BUF_TYPE_A;
	} else
		intelhaddata->curr_buf = buf_id + 1;

	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);

	if (had_get_hwstate(intelhaddata)) {
1627
		dev_dbg(intelhaddata->dev, "HDMI cable plugged-out\n");
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		return 0;
	}

	/*Reprogram the registers with addr and length*/
	had_write_register(intelhaddata,
			   AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH),
			   buf_size);
	had_write_register(intelhaddata,
			   AUD_BUF_A_ADDR + (buf_id * HAD_REG_WIDTH),
			   intelhaddata->buf_info[buf_id].buf_addr |
			   BIT(0) | BIT(1));

	had_read_register(intelhaddata,
			  AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH),
			  &len);
1643
	dev_dbg(intelhaddata->dev, "%s:Enabled buf[%d]\n", __func__, buf_id);
1644 1645 1646 1647

	/* In case of actual data,
	 * report buffer_done to above ALSA layer
	 */
1648
	buf_size = intelhaddata->buf_info[buf_id].buf_size;
1649 1650 1651
	if (stream_type >= HAD_RUNNING_STREAM) {
		intelhaddata->stream_info.buffer_rendered +=
			(intr_count * buf_size);
1652
		had_period_elapsed(stream->had_substream);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	}

	return 0;
}

static int had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
{
	enum intel_had_aud_buf_type buf_id;
	struct pcm_stream_info *stream;
	struct had_stream_data *had_stream;
	enum had_status_stream stream_type;
	unsigned long flag_irqs;
	int drv_status;

	had_stream = &intelhaddata->stream_data;
	stream = &intelhaddata->stream_info;

	spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
	buf_id = intelhaddata->curr_buf;
	stream_type = had_stream->stream_type;
	intelhaddata->buff_done = buf_id;
	drv_status = intelhaddata->drv_status;
	if (stream_type == HAD_RUNNING_STREAM)
		intelhaddata->curr_buf = HAD_BUF_TYPE_A;

	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);

1680
	dev_dbg(intelhaddata->dev, "Enter:%s buf_id=%d, stream_type=%d\n",
1681 1682 1683 1684 1685
			__func__, buf_id, stream_type);

	snd_intelhad_handle_underrun(intelhaddata);

	if (drv_status == HAD_DRV_DISCONNECTED) {
1686 1687
		dev_dbg(intelhaddata->dev,
			"%s:Device already disconnected\n", __func__);
1688 1689 1690 1691 1692 1693
		return 0;
	}

	if (stream_type == HAD_RUNNING_STREAM) {
		/* Report UNDERRUN error to above layers */
		intelhaddata->flag_underrun = 1;
1694
		had_period_elapsed(stream->had_substream);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	}

	return 0;
}

static int had_process_hot_plug(struct snd_intelhad *intelhaddata)
{
	enum intel_had_aud_buf_type buf_id;
	struct snd_pcm_substream *substream;
	struct had_stream_data *had_stream;
	unsigned long flag_irqs;

	substream = intelhaddata->stream_info.had_substream;
	had_stream = &intelhaddata->stream_data;

	spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
	if (intelhaddata->drv_status == HAD_DRV_CONNECTED) {
1712
		dev_dbg(intelhaddata->dev, "Device already connected\n");
1713 1714 1715 1716 1717 1718
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
		return 0;
	}
	buf_id = intelhaddata->curr_buf;
	intelhaddata->buff_done = buf_id;
	intelhaddata->drv_status = HAD_DRV_CONNECTED;
1719 1720
	dev_dbg(intelhaddata->dev,
		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1721 1722 1723
			__func__, __LINE__);
	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);

1724 1725
	dev_dbg(intelhaddata->dev, "Processing HOT_PLUG, buf_id = %d\n",
		buf_id);
1726 1727 1728

	/* Safety check */
	if (substream) {
1729 1730
		dev_dbg(intelhaddata->dev,
			"Force to stop the active stream by disconnection\n");
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		/* Set runtime->state to hw_params done */
		snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
	}

	had_build_channel_allocation_map(intelhaddata);

	return 0;
}

static int had_process_hot_unplug(struct snd_intelhad *intelhaddata)
{
	enum intel_had_aud_buf_type buf_id;
	struct had_stream_data *had_stream;
	unsigned long flag_irqs;

	had_stream = &intelhaddata->stream_data;
	buf_id = intelhaddata->curr_buf;

	spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);

	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
1752
		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
		return 0;

	} else {
		/* Disable Audio */
		snd_intelhad_enable_audio_int(intelhaddata, false);
		snd_intelhad_enable_audio(intelhaddata, false);
	}

	intelhaddata->drv_status = HAD_DRV_DISCONNECTED;
1763 1764
	dev_dbg(intelhaddata->dev,
		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			__func__, __LINE__);

	/* Report to above ALSA layer */
	if (intelhaddata->stream_info.had_substream != NULL) {
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
		snd_pcm_stop(intelhaddata->stream_info.had_substream,
				SNDRV_PCM_STATE_SETUP);
		spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irqs);
	}

	had_stream->stream_type = HAD_INIT;
	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irqs);
	kfree(intelhaddata->chmap->chmap);
	intelhaddata->chmap->chmap = NULL;
	intelhaddata->audio_reg_base = NULL;

	return 0;
}

/* PCM operations structure and the calls back for the same */
static struct snd_pcm_ops snd_intelhad_playback_ops = {
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	.open =		snd_intelhad_open,
	.close =	snd_intelhad_close,
	.ioctl =	snd_pcm_lib_ioctl,
	.hw_params =	snd_intelhad_hw_params,
	.hw_free =	snd_intelhad_hw_free,
	.prepare =	snd_intelhad_pcm_prepare,
	.trigger =	snd_intelhad_pcm_trigger,
	.pointer =	snd_intelhad_pcm_pointer,
	.mmap =	snd_intelhad_pcm_mmap,
};

1797
/*
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
 * snd_intelhad_pcm_free - to free the memory allocated
 *
 * @pcm: pointer to pcm instance
 * This function is called when the device is removed
 */
static void snd_intelhad_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int had_iec958_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int had_iec958_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);

	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
	ucontrol->value.iec958.status[2] =
					(intelhaddata->aes_bits >> 16) & 0xff;
	ucontrol->value.iec958.status[3] =
					(intelhaddata->aes_bits >> 24) & 0xff;
	return 0;
}
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	ucontrol->value.iec958.status[0] = 0xff;
	ucontrol->value.iec958.status[1] = 0xff;
	ucontrol->value.iec958.status[2] = 0xff;
	ucontrol->value.iec958.status[3] = 0xff;
	return 0;
}
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static int had_iec958_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	unsigned int val;
	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);

	val = (ucontrol->value.iec958.status[0] << 0) |
		(ucontrol->value.iec958.status[1] << 8) |
		(ucontrol->value.iec958.status[2] << 16) |
		(ucontrol->value.iec958.status[3] << 24);
	if (intelhaddata->aes_bits != val) {
		intelhaddata->aes_bits = val;
		return 1;
	}
	return 1;
}

static struct snd_kcontrol_new had_control_iec958_mask = {
	.access =   SNDRV_CTL_ELEM_ACCESS_READ,
	.iface =    SNDRV_CTL_ELEM_IFACE_PCM,
	.name =     SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
	.info =     had_iec958_info, /* shared */
	.get =      had_iec958_mask_get,
};

static struct snd_kcontrol_new had_control_iec958 = {
	.iface =    SNDRV_CTL_ELEM_IFACE_PCM,
	.name =         SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
	.info =         had_iec958_info,
	.get =          had_iec958_get,
	.put =          had_iec958_put
};

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static void _had_wq(struct work_struct *work)
{
	struct snd_intelhad *ctx =
		container_of(work, struct snd_intelhad, hdmi_audio_wq);

	had_process_hot_plug(ctx);
}

static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
{
	struct snd_intelhad *ctx = dev_id;
	u32 audio_stat, audio_reg;

	audio_reg = AUD_HDMI_STATUS_v2;
	mid_hdmi_audio_read(ctx, audio_reg, &audio_stat);

	if (audio_stat & HDMI_AUDIO_UNDERRUN) {
		mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_UNDERRUN);
		had_process_buffer_underrun(ctx);
	}

	if (audio_stat & HDMI_AUDIO_BUFFER_DONE) {
		mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_BUFFER_DONE);
		had_process_buffer_done(ctx);
	}

	return IRQ_HANDLED;
}

static void notify_audio_lpe(struct platform_device *pdev)
{
	struct snd_intelhad *ctx = platform_get_drvdata(pdev);
	struct intel_hdmi_lpe_audio_pdata *pdata = pdev->dev.platform_data;

	if (pdata->hdmi_connected != true) {

		dev_dbg(&pdev->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
			__func__);

		if (ctx->state == hdmi_connector_status_connected) {

			ctx->state = hdmi_connector_status_disconnected;

			had_process_hot_unplug(ctx);
		} else
			dev_dbg(&pdev->dev, "%s: Already Unplugged!\n",
				__func__);

	} else {
		struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld;

		switch (eld->pipe_id) {
		case 0:
			ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
			break;
		case 1:
			ctx->had_config_offset = AUDIO_HDMI_CONFIG_B;
			break;
		case 2:
			ctx->had_config_offset = AUDIO_HDMI_CONFIG_C;
			break;
		default:
			dev_dbg(&pdev->dev, "Invalid pipe %d\n",
				eld->pipe_id);
			break;
		}

		memcpy(&ctx->eld, eld->eld_data, sizeof(ctx->eld));

		had_process_hot_plug(ctx);

		ctx->state = hdmi_connector_status_connected;

		dev_dbg(&pdev->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
			__func__, eld->port_id,	pdata->tmds_clock_speed);

		if (pdata->tmds_clock_speed) {
			ctx->tmds_clock_speed = pdata->tmds_clock_speed;
			ctx->dp_output = pdata->dp_output;
			ctx->link_rate = pdata->link_rate;

			/* Process mode change if stream is active */
			if (ctx->stream_data.stream_type == HAD_RUNNING_STREAM)
				hdmi_audio_mode_change(ctx);
		}
	}
}

/* release resources */
static void hdmi_lpe_audio_free(struct snd_card *card)
{
	struct snd_intelhad *ctx = card->private_data;

	if (ctx->mmio_start)
		iounmap(ctx->mmio_start);
	if (ctx->irq >= 0)
		free_irq(ctx->irq, ctx);
}

1972
/*
1973
 * hdmi_lpe_audio_probe - start bridge with i915
1974
 *
1975 1976 1977
 * This function is called when the i915 driver creates the
 * hdmi-lpe-audio platform device. Card creation is deferred until a
 * hot plug event is received
1978
 */
1979
static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1980 1981
{
	struct snd_card *card;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	struct snd_intelhad *ctx;
	struct snd_pcm *pcm;
	struct intel_hdmi_lpe_audio_pdata *pdata;
	int irq;
	struct resource *res_mmio;
	int ret;
	unsigned long flags;

	dev_dbg(&pdev->dev, "dma_mask: %p\n", pdev->dev.dma_mask);

	pdata = pdev->dev.platform_data;
	if (!pdata) {
		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
		return -EINVAL;
	}
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	/* get resources */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "Could not get irq resource\n");
		return -ENODEV;
	}

	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res_mmio) {
		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
		return -ENXIO;
	}
2010

2011
	/* create a card instance with ALSA framework */
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
			   THIS_MODULE, sizeof(*ctx), &card);
	if (ret)
		return ret;

	ctx = card->private_data;
	spin_lock_init(&ctx->had_spinlock);
	ctx->drv_status = HAD_DRV_DISCONNECTED;
	ctx->dev = &pdev->dev;
	ctx->card = card;
	ctx->card_id = hdmi_card_id;
	ctx->card_index = card->number;
	ctx->flag_underrun = 0;
	ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
	strcpy(card->driver, INTEL_HAD);
	strcpy(card->shortname, INTEL_HAD);

	ctx->irq = -1;
	ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5;
	INIT_WORK(&ctx->hdmi_audio_wq, _had_wq);
	ctx->state = hdmi_connector_status_disconnected;

	card->private_free = hdmi_lpe_audio_free;

	/* assume pipe A as default */
	ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;

	platform_set_drvdata(pdev, ctx);

	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
		__func__, (unsigned int)res_mmio->start,
		(unsigned int)res_mmio->end);

	ctx->mmio_start = ioremap_nocache(res_mmio->start,
					  (size_t)(resource_size(res_mmio)));
	if (!ctx->mmio_start) {
		dev_err(&pdev->dev, "Could not get ioremap\n");
		ret = -EACCES;
		goto err;
	}
2052

2053 2054 2055 2056 2057 2058 2059
	/* setup interrupt handler */
	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
			  pdev->name, ctx);
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq failed\n");
		goto err;
	}
2060

2061 2062 2063 2064 2065
	ctx->irq = irq;

	ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
			  MAX_CAP_STREAMS, &pcm);
	if (ret)
2066 2067 2068
		goto err;

	/* setup private data which can be retrieved when required */
2069
	pcm->private_data = ctx;
2070 2071 2072
	pcm->private_free = snd_intelhad_pcm_free;
	pcm->info_flags = 0;
	strncpy(pcm->name, card->shortname, strlen(card->shortname));
2073
	/* setup the ops for playabck */
2074 2075 2076 2077 2078 2079
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
			    &snd_intelhad_playback_ops);
	/* allocate dma pages for ALSA stream operations
	 * memory allocated is based on size, not max value
	 * thus using same argument for max & size
	 */
2080
	snd_pcm_lib_preallocate_pages_for_all(pcm,
2081 2082 2083 2084
			SNDRV_DMA_TYPE_DEV, NULL,
			HAD_MAX_BUFFER, HAD_MAX_BUFFER);

	/* IEC958 controls */
2085 2086
	ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958_mask, ctx));
	if (ret < 0)
2087
		goto err;
2088 2089
	ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958, ctx));
	if (ret < 0)
2090 2091 2092 2093 2094
		goto err;

	init_channel_allocations();

	/* Register channel map controls */
2095 2096
	ret = had_register_chmap_ctls(ctx, pcm);
	if (ret < 0)
2097 2098
		goto err;

2099 2100
	ret = snd_card_register(card);
	if (ret)
2101 2102
		goto err;

2103 2104 2105
	spin_lock_irqsave(&pdata->lpe_audio_slock, flags);
	pdata->notify_audio_lpe = notify_audio_lpe;
	if (pdata->notify_pending) {
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
		notify_audio_lpe(pdev);
		pdata->notify_pending = false;
	}
	spin_unlock_irqrestore(&pdata->lpe_audio_slock, flags);

	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	schedule_work(&ctx->hdmi_audio_wq);
2117

2118
	return 0;
2119

2120 2121
err:
	snd_card_free(card);
2122
	return ret;
2123 2124
}

2125
/*
2126
 * hdmi_lpe_audio_remove - stop bridge with i915
2127
 *
2128 2129
 * This function is called when the platform device is destroyed. The sound
 * card should have been removed on hot plug event.
2130
 */
2131
static int hdmi_lpe_audio_remove(struct platform_device *pdev)
2132
{
2133
	struct snd_intelhad *ctx = platform_get_drvdata(pdev);
2134

2135 2136 2137
	if (ctx->drv_status != HAD_DRV_DISCONNECTED)
		snd_intelhad_enable_audio_int(ctx, false);
	snd_card_free(ctx->card);
2138 2139 2140
	return 0;
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
static struct platform_driver hdmi_lpe_audio_driver = {
	.driver		= {
		.name  = "hdmi-lpe-audio",
	},
	.probe          = hdmi_lpe_audio_probe,
	.remove		= hdmi_lpe_audio_remove,
	.suspend	= hdmi_lpe_audio_suspend,
	.resume		= hdmi_lpe_audio_resume
};

module_platform_driver(hdmi_lpe_audio_driver);
MODULE_ALIAS("platform:hdmi_lpe_audio");

2154 2155 2156 2157 2158 2159 2160
MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
MODULE_DESCRIPTION("Intel HDMI Audio driver");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");