intel_rps.c 46.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2019 Intel Corporation
 */

#include "i915_drv.h"
#include "intel_gt.h"
#include "intel_gt_irq.h"
#include "intel_gt_pm_irq.h"
#include "intel_rps.h"
#include "intel_sideband.h"
#include "../../../platform/x86/intel_ips.h"

/*
 * Lock protecting IPS related data structures
 */
static DEFINE_SPINLOCK(mchdev_lock);

static struct intel_gt *rps_to_gt(struct intel_rps *rps)
{
	return container_of(rps, struct intel_gt, rps);
}

static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
{
	return rps_to_gt(rps)->i915;
}

static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
{
	return rps_to_gt(rps)->uncore;
}

static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
{
	return mask & ~rps->pm_intrmsk_mbz;
}

static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
{
	u32 mask = 0;

	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
	if (val > rps->min_freq_softlimit)
		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
			 GEN6_PM_RP_DOWN_THRESHOLD |
			 GEN6_PM_RP_DOWN_TIMEOUT);

	if (val < rps->max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;

	mask &= rps->pm_events;

	return rps_pm_sanitize_mask(rps, ~mask);
}

static void rps_reset_ei(struct intel_rps *rps)
{
	memset(&rps->ei, 0, sizeof(rps->ei));
}

static void rps_enable_interrupts(struct intel_rps *rps)
{
	struct intel_gt *gt = rps_to_gt(rps);

	rps_reset_ei(rps);

	if (IS_VALLEYVIEW(gt->i915))
		/* WaGsvRC0ResidencyMethod:vlv */
		rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
	else
		rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
				  GEN6_PM_RP_DOWN_THRESHOLD |
				  GEN6_PM_RP_DOWN_TIMEOUT);

	spin_lock_irq(&gt->irq_lock);
	gen6_gt_pm_enable_irq(gt, rps->pm_events);
	spin_unlock_irq(&gt->irq_lock);

	intel_uncore_write(gt->uncore, GEN6_PMINTRMSK,
			   rps_pm_mask(rps, rps->cur_freq));
}

static void gen6_rps_reset_interrupts(struct intel_rps *rps)
{
	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
}

static void gen11_rps_reset_interrupts(struct intel_rps *rps)
{
	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
		;
}

static void rps_reset_interrupts(struct intel_rps *rps)
{
	struct intel_gt *gt = rps_to_gt(rps);

	spin_lock_irq(&gt->irq_lock);
	if (INTEL_GEN(gt->i915) >= 11)
		gen11_rps_reset_interrupts(rps);
	else
		gen6_rps_reset_interrupts(rps);

	rps->pm_iir = 0;
	spin_unlock_irq(&gt->irq_lock);
}

static void rps_disable_interrupts(struct intel_rps *rps)
{
	struct intel_gt *gt = rps_to_gt(rps);

	rps->pm_events = 0;

	intel_uncore_write(gt->uncore, GEN6_PMINTRMSK,
			   rps_pm_sanitize_mask(rps, ~0u));

	spin_lock_irq(&gt->irq_lock);
	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
	spin_unlock_irq(&gt->irq_lock);

	intel_synchronize_irq(gt->i915);

	/*
	 * Now that we will not be generating any more work, flush any
	 * outstanding tasks. As we are called on the RPS idle path,
	 * we will reset the GPU to minimum frequencies, so the current
	 * state of the worker can be discarded.
	 */
	cancel_work_sync(&rps->work);

	rps_reset_interrupts(rps);
}

static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

static void gen5_rps_init(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	struct intel_uncore *uncore = rps_to_uncore(rps);
	u8 fmax, fmin, fstart;
	u32 rgvmodectl;
	int c_m, i;

	if (i915->fsb_freq <= 3200)
		c_m = 0;
	else if (i915->fsb_freq <= 4800)
		c_m = 1;
	else
		c_m = 2;

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
			rps->ips.m = cparams[i].m;
			rps->ips.c = cparams[i].c;
			break;
		}
	}

	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

183 184
	rps->min_freq = fmax;
	rps->max_freq = fmin;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
}

static unsigned long
__ips_chipset_val(struct intel_ips *ips)
{
	struct intel_uncore *uncore =
		rps_to_uncore(container_of(ips, struct intel_rps, ips));
	unsigned long now = jiffies_to_msecs(jiffies), dt;
	unsigned long result;
	u64 total, delta;

	lockdep_assert_held(&mchdev_lock);

	/*
	 * Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	dt = now - ips->last_time1;
	if (dt <= 10)
		return ips->chipset_power;

	/* FIXME: handle per-counter overflow */
	total = intel_uncore_read(uncore, DMIEC);
	total += intel_uncore_read(uncore, DDREC);
	total += intel_uncore_read(uncore, CSIEC);

	delta = total - ips->last_count1;

	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);

	ips->last_count1 = total;
	ips->last_time1 = now;

	ips->chipset_power = result;

	return result;
}

static unsigned long ips_mch_val(struct intel_uncore *uncore)
{
	unsigned int m, x, b;
	u32 tsfs;

	tsfs = intel_uncore_read(uncore, TSFS);
	x = intel_uncore_read8(uncore, TR1);

	b = tsfs & TSFS_INTR_MASK;
	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;

	return m * x / 127 - b;
}

static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
{
	const int vd = _pxvid_to_vd(pxvid);

	if (INTEL_INFO(i915)->is_mobile)
		return max(vd - 1125, 0);

	return vd;
}

static void __gen5_ips_update(struct intel_ips *ips)
{
	struct intel_uncore *uncore =
		rps_to_uncore(container_of(ips, struct intel_rps, ips));
	u64 now, delta, dt;
	u32 count;

	lockdep_assert_held(&mchdev_lock);

	now = ktime_get_raw_ns();
	dt = now - ips->last_time2;
	do_div(dt, NSEC_PER_MSEC);

	/* Don't divide by 0 */
	if (dt <= 10)
		return;

	count = intel_uncore_read(uncore, GFXEC);
	delta = count - ips->last_count2;

	ips->last_count2 = count;
	ips->last_time2 = now;

	/* More magic constants... */
	ips->gfx_power = div_u64(delta * 1181, dt * 10);
}

static void gen5_rps_update(struct intel_rps *rps)
{
	spin_lock_irq(&mchdev_lock);
	__gen5_ips_update(&rps->ips);
	spin_unlock_irq(&mchdev_lock);
}

static bool gen5_rps_set(struct intel_rps *rps, u8 val)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	u16 rgvswctl;

	lockdep_assert_held(&mchdev_lock);

	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

310 311 312
	/* Invert the frequency bin into an ips delay */
	val = rps->max_freq - val;
	val = rps->min_freq + val;
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	rgvswctl =
		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) |
		MEMCTL_SFCAVM;
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
	intel_uncore_posting_read16(uncore, MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);

	return true;
}

static unsigned long intel_pxfreq(u32 vidfreq)
{
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	return div * 133333 / (pre << post);
}

static unsigned int init_emon(struct intel_uncore *uncore)
{
	u8 pxw[16];
	int i;

	/* Disable to program */
	intel_uncore_write(uncore, ECR, 0);
	intel_uncore_posting_read(uncore, ECR);

	/* Program energy weights for various events */
	intel_uncore_write(uncore, SDEW, 0x15040d00);
	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
	intel_uncore_write(uncore, CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		intel_uncore_write(uncore, PEW(i), 0);
	for (i = 0; i < 3; i++)
		intel_uncore_write(uncore, DEW(i), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
		unsigned int freq = intel_pxfreq(pxvidfreq);
		unsigned int vid =
			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
		unsigned int val;

		val = vid * vid * freq / 1000 * 255;
		val /= 127 * 127 * 900;

		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		intel_uncore_write(uncore, PXW(i),
				   pxw[i * 4 + 0] << 24 |
				   pxw[i * 4 + 1] << 16 |
				   pxw[i * 4 + 2] <<  8 |
				   pxw[i * 4 + 3] <<  0);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	intel_uncore_write(uncore, OGW0, 0);
	intel_uncore_write(uncore, OGW1, 0);
	intel_uncore_write(uncore, EG0, 0x00007f00);
	intel_uncore_write(uncore, EG1, 0x0000000e);
	intel_uncore_write(uncore, EG2, 0x000e0000);
	intel_uncore_write(uncore, EG3, 0x68000300);
	intel_uncore_write(uncore, EG4, 0x42000000);
	intel_uncore_write(uncore, EG5, 0x00140031);
	intel_uncore_write(uncore, EG6, 0);
	intel_uncore_write(uncore, EG7, 0);

	for (i = 0; i < 8; i++)
		intel_uncore_write(uncore, PXWL(i), 0);

	/* Enable PMON + select events */
	intel_uncore_write(uncore, ECR, 0x80000019);

	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
}

static bool gen5_rps_enable(struct intel_rps *rps)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	u8 fstart, vstart;
	u32 rgvmodectl;

	spin_lock_irq(&mchdev_lock);

	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);

	/* Enable temp reporting */
	intel_uncore_write16(uncore, PMMISC,
			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
	intel_uncore_write16(uncore, TSC1,
			     intel_uncore_read16(uncore, TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	intel_uncore_write(uncore, RCUPEI, 100000);
	intel_uncore_write(uncore, RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	intel_uncore_write(uncore, RCBMAXAVG, 90000);
	intel_uncore_write(uncore, RCBMINAVG, 80000);

	intel_uncore_write(uncore, MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;

	intel_uncore_write(uncore,
			   MEMINTREN,
			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	intel_uncore_write(uncore, VIDSTART, vstart);
	intel_uncore_posting_read(uncore, VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);

	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
			     MEMCTL_CMD_STS) == 0, 10))
		DRM_ERROR("stuck trying to change perf mode\n");
	mdelay(1);

	gen5_rps_set(rps, rps->cur_freq);

	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
	rps->ips.last_time1 = jiffies_to_msecs(jiffies);

	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
	rps->ips.last_time2 = ktime_get_raw_ns();

	spin_unlock_irq(&mchdev_lock);

	rps->ips.corr = init_emon(uncore);

	return true;
}

static void gen5_rps_disable(struct intel_rps *rps)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);

	/* Ack interrupts, disable EFC interrupt */
	intel_uncore_write(uncore, MEMINTREN,
			   intel_uncore_read(uncore, MEMINTREN) &
			   ~MEMINT_EVAL_CHG_EN);
	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
	intel_uncore_write(uncore, DEIER,
			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
	intel_uncore_write(uncore, DEIMR,
			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
	gen5_rps_set(rps, rps->idle_freq);
	mdelay(1);
	rgvswctl |= MEMCTL_CMD_STS;
	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
	mdelay(1);

	spin_unlock_irq(&mchdev_lock);
}

static u32 rps_limits(struct intel_rps *rps, u8 val)
{
	u32 limits;

	/*
	 * Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt.
	 */
	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
		limits = rps->max_freq_softlimit << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 14;
	} else {
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
	}

	return limits;
}

static void rps_set_power(struct intel_rps *rps, int new_power)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;

	lockdep_assert_held(&rps->power.mutex);

	if (new_power == rps->power.mode)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		ei_up = 16000;
		threshold_up = 95;

		/* Downclock if less than 85% busy over 32ms */
		ei_down = 32000;
		threshold_down = 85;
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		ei_up = 13000;
		threshold_up = 90;

		/* Downclock if less than 75% busy over 32ms */
		ei_down = 32000;
		threshold_down = 75;
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		ei_up = 10000;
		threshold_up = 85;

		/* Downclock if less than 60% busy over 32ms */
		ei_down = 32000;
		threshold_down = 60;
		break;
	}

	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(i915))
		goto skip_hw_write;

	intel_uncore_write(uncore, GEN6_RP_UP_EI,
			   GT_INTERVAL_FROM_US(i915, ei_up));
	intel_uncore_write(uncore, GEN6_RP_UP_THRESHOLD,
			   GT_INTERVAL_FROM_US(i915,
					       ei_up * threshold_up / 100));

	intel_uncore_write(uncore, GEN6_RP_DOWN_EI,
			   GT_INTERVAL_FROM_US(i915, ei_down));
	intel_uncore_write(uncore, GEN6_RP_DOWN_THRESHOLD,
			   GT_INTERVAL_FROM_US(i915,
					       ei_down * threshold_down / 100));

	intel_uncore_write(uncore, GEN6_RP_CONTROL,
			   (INTEL_GEN(i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);

skip_hw_write:
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
{
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(rps, new_power);
	mutex_unlock(&rps->power.mutex);
}

void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
{
	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && rps->active)
			rps_set_power(rps, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

static int gen6_rps_set(struct intel_rps *rps, u8 val)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 swreq;

	if (INTEL_GEN(i915) >= 9)
		swreq = GEN9_FREQUENCY(val);
	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
		swreq = HSW_FREQUENCY(val);
	else
		swreq = (GEN6_FREQUENCY(val) |
			 GEN6_OFFSET(0) |
			 GEN6_AGGRESSIVE_TURBO);
	intel_uncore_write(uncore, GEN6_RPNSWREQ, swreq);

	return 0;
}

static int vlv_rps_set(struct intel_rps *rps, u8 val)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	int err;

	vlv_punit_get(i915);
	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
	vlv_punit_put(i915);

	return err;
}

static int rps_set(struct intel_rps *rps, u8 val)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	int err;

	if (INTEL_GEN(i915) < 6)
		return 0;

	if (val == rps->last_freq)
		return 0;

	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
		err = vlv_rps_set(rps, val);
	else
		err = gen6_rps_set(rps, val);
	if (err)
		return err;

	gen6_rps_set_thresholds(rps, val);
	rps->last_freq = val;

	return 0;
}

void intel_rps_unpark(struct intel_rps *rps)
{
	u8 freq;

	if (!rps->enabled)
		return;

	/*
	 * Use the user's desired frequency as a guide, but for better
	 * performance, jump directly to RPe as our starting frequency.
	 */
	mutex_lock(&rps->lock);
	rps->active = true;
	freq = max(rps->cur_freq, rps->efficient_freq),
	freq = clamp(freq, rps->min_freq_softlimit, rps->max_freq_softlimit);
	intel_rps_set(rps, freq);
	rps->last_adj = 0;
	mutex_unlock(&rps->lock);

	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
		rps_enable_interrupts(rps);

	if (IS_GEN(rps_to_i915(rps), 5))
		gen5_rps_update(rps);
}

void intel_rps_park(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);

	if (!rps->enabled)
		return;

	if (INTEL_GEN(i915) >= 6)
		rps_disable_interrupts(rps);

	rps->active = false;
	if (rps->last_freq <= rps->idle_freq)
		return;

	/*
	 * The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
	rps_set(rps, rps->idle_freq);
	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
}

void intel_rps_boost(struct i915_request *rq)
{
	struct intel_rps *rps = &rq->engine->gt->rps;
	unsigned long flags;

	if (i915_request_signaled(rq) || !rps->active)
		return;

	/* Serializes with i915_request_retire() */
	spin_lock_irqsave(&rq->lock, flags);
	if (!i915_request_has_waitboost(rq) &&
	    !dma_fence_is_signaled_locked(&rq->fence)) {
		rq->flags |= I915_REQUEST_WAITBOOST;

		if (!atomic_fetch_inc(&rps->num_waiters) &&
		    READ_ONCE(rps->cur_freq) < rps->boost_freq)
			schedule_work(&rps->work);

		atomic_inc(&rps->boosts);
	}
	spin_unlock_irqrestore(&rq->lock, flags);
}

int intel_rps_set(struct intel_rps *rps, u8 val)
{
	int err = 0;

	lockdep_assert_held(&rps->lock);
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);

	if (rps->active) {
		err = rps_set(rps, val);

		/*
		 * Make sure we continue to get interrupts
		 * until we hit the minimum or maximum frequencies.
		 */
		if (INTEL_GEN(rps_to_i915(rps)) >= 6) {
			struct intel_uncore *uncore = rps_to_uncore(rps);

			intel_uncore_write(uncore, GEN6_RP_INTERRUPT_LIMITS,
					   rps_limits(rps, val));

			intel_uncore_write(uncore, GEN6_PMINTRMSK,
					   rps_pm_mask(rps, val));
		}
	}

	if (err == 0)
		rps->cur_freq = val;

	return err;
}

static void gen6_rps_init(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	struct intel_uncore *uncore = rps_to_uncore(rps);

	/* All of these values are in units of 50MHz */

	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
	if (IS_GEN9_LP(i915)) {
		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);

		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);

		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
	}

	/* hw_max = RP0 until we check for overclocking */
	rps->max_freq = rps->rp0_freq;

	rps->efficient_freq = rps->rp1_freq;
	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(i915,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status, NULL) == 0)
			rps->efficient_freq =
				clamp_t(u8,
					(ddcc_status >> 8) & 0xff,
					rps->min_freq,
					rps->max_freq);
	}

	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
		/* Store the frequency values in 16.66 MHZ units, which is
		 * the natural hardware unit for SKL
		 */
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
	}
}

static bool rps_reset(struct intel_rps *rps)
{
	/* force a reset */
	rps->power.mode = -1;
	rps->last_freq = -1;

	if (rps_set(rps, rps->min_freq)) {
		DRM_ERROR("Failed to reset RPS to initial values\n");
		return false;
	}

	rps->cur_freq = rps->min_freq;
	return true;
}

/* See the Gen9_GT_PM_Programming_Guide doc for the below */
static bool gen9_rps_enable(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	struct intel_uncore *uncore = rps_to_uncore(rps);

	/* Program defaults and thresholds for RPS */
	if (IS_GEN(i915, 9))
		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
				      GEN9_FREQUENCY(rps->rp1_freq));

	/* 1 second timeout */
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT,
			      GT_INTERVAL_FROM_US(i915, 1000000));

	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);

	return rps_reset(rps);
}

static bool gen8_rps_enable(struct intel_rps *rps)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);

	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
			      HSW_FREQUENCY(rps->rp1_freq));

	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT,
			      100000000 / 128); /* 1 second timeout */

	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);

	return rps_reset(rps);
}

static bool gen6_rps_enable(struct intel_rps *rps)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);

	/* Power down if completely idle for over 50ms */
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);

	return rps_reset(rps);
}

static int chv_rps_max_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);

	switch (RUNTIME_INFO(i915)->sseu.eu_total) {
	case 8:
		/* (2 * 4) config */
		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
		break;
	case 12:
		/* (2 * 6) config */
		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
		break;
	}

	return val & FB_GFX_FREQ_FUSE_MASK;
}

static int chv_rps_rpe_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;

	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
}

static int chv_rps_guar_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);

	return val & FB_GFX_FREQ_FUSE_MASK;
}

static u32 chv_rps_min_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;

	return val & FB_GFX_FREQ_FUSE_MASK;
}

static bool chv_rps_enable(struct intel_rps *rps)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	/* 1: Program defaults and thresholds for RPS*/
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);

	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 2: Enable RPS */
	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
			      GEN6_RP_MEDIA_IS_GFX |
			      GEN6_RP_ENABLE |
			      GEN6_RP_UP_BUSY_AVG |
			      GEN6_RP_DOWN_IDLE_AVG);

	/* Setting Fixed Bias */
	vlv_punit_get(i915);

	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);

	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);

	vlv_punit_put(i915);

	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	return rps_reset(rps);
}

static int vlv_rps_guar_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val, rp1;

	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

static int vlv_rps_max_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val, rp0;

	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int vlv_rps_rpe_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val, rpe;

	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

static int vlv_rps_min_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
}

static bool vlv_rps_enable(struct intel_rps *rps)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);

	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);

	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
			      GEN6_RP_MEDIA_TURBO |
			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
			      GEN6_RP_MEDIA_IS_GFX |
			      GEN6_RP_ENABLE |
			      GEN6_RP_UP_BUSY_AVG |
			      GEN6_RP_DOWN_IDLE_CONT);

	vlv_punit_get(i915);

	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);

	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);

	vlv_punit_put(i915);

	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	return rps_reset(rps);
}

static unsigned long __ips_gfx_val(struct intel_ips *ips)
{
	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
	struct intel_uncore *uncore = rps_to_uncore(rps);
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

	lockdep_assert_held(&mchdev_lock);

	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);

	state1 = ext_v;

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	t = ips_mch_val(uncore);
	if (t > 80)
		corr = t * 2349 + 135940;
	else if (t >= 50)
		corr = t * 964 + 29317;
	else /* < 50 */
		corr = t * 301 + 1004;

	corr = corr * 150142 * state1 / 10000 - 78642;
	corr /= 100000;
	corr2 = corr * ips->corr;

	state2 = corr2 * state1 / 10000;
	state2 /= 100; /* convert to mW */

	__gen5_ips_update(ips);

	return ips->gfx_power + state2;
}

void intel_rps_enable(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	struct intel_uncore *uncore = rps_to_uncore(rps);

	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
	if (IS_CHERRYVIEW(i915))
		rps->enabled = chv_rps_enable(rps);
	else if (IS_VALLEYVIEW(i915))
		rps->enabled = vlv_rps_enable(rps);
	else if (INTEL_GEN(i915) >= 9)
		rps->enabled = gen9_rps_enable(rps);
	else if (INTEL_GEN(i915) >= 8)
		rps->enabled = gen8_rps_enable(rps);
	else if (INTEL_GEN(i915) >= 6)
		rps->enabled = gen6_rps_enable(rps);
	else if (IS_IRONLAKE_M(i915))
		rps->enabled = gen5_rps_enable(rps);
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
	if (!rps->enabled)
		return;

	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);

	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
}

static void gen6_rps_disable(struct intel_rps *rps)
{
	intel_uncore_write(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
}

void intel_rps_disable(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);

	rps->enabled = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_disable(rps);
	else if (IS_IRONLAKE_M(i915))
		gen5_rps_disable(rps);
}

static int byt_gpu_freq(struct intel_rps *rps, int val)
{
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
}

static int byt_freq_opcode(struct intel_rps *rps, int val)
{
	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
}

static int chv_gpu_freq(struct intel_rps *rps, int val)
{
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
}

static int chv_freq_opcode(struct intel_rps *rps, int val)
{
	/* CHV needs even values */
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
}

int intel_gpu_freq(struct intel_rps *rps, int val)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);

	if (INTEL_GEN(i915) >= 9)
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
	else if (IS_CHERRYVIEW(i915))
		return chv_gpu_freq(rps, val);
	else if (IS_VALLEYVIEW(i915))
		return byt_gpu_freq(rps, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
}

int intel_freq_opcode(struct intel_rps *rps, int val)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);

	if (INTEL_GEN(i915) >= 9)
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
	else if (IS_CHERRYVIEW(i915))
		return chv_freq_opcode(rps, val);
	else if (IS_VALLEYVIEW(i915))
		return byt_freq_opcode(rps, val);
	else
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
}

static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);

	rps->gpll_ref_freq =
		vlv_get_cck_clock(i915, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  i915->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n", rps->gpll_ref_freq);
}

static void vlv_rps_init(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	vlv_iosf_sb_get(i915,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

	vlv_init_gpll_ref_freq(rps);

	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		i915->mem_freq = 800;
		break;
	case 2:
		i915->mem_freq = 1066;
		break;
	case 3:
		i915->mem_freq = 1333;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq);

	rps->max_freq = vlv_rps_max_freq(rps);
	rps->rp0_freq = rps->max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->max_freq),
			 rps->max_freq);

	rps->efficient_freq = vlv_rps_rpe_freq(rps);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->efficient_freq),
			 rps->efficient_freq);

	rps->rp1_freq = vlv_rps_guar_freq(rps);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->rp1_freq),
			 rps->rp1_freq);

	rps->min_freq = vlv_rps_min_freq(rps);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->min_freq),
			 rps->min_freq);

	vlv_iosf_sb_put(i915,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));
}

static void chv_rps_init(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 val;

	vlv_iosf_sb_get(i915,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

	vlv_init_gpll_ref_freq(rps);

	val = vlv_cck_read(i915, CCK_FUSE_REG);

	switch ((val >> 2) & 0x7) {
	case 3:
		i915->mem_freq = 2000;
		break;
	default:
		i915->mem_freq = 1600;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq);

	rps->max_freq = chv_rps_max_freq(rps);
	rps->rp0_freq = rps->max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->max_freq),
			 rps->max_freq);

	rps->efficient_freq = chv_rps_rpe_freq(rps);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->efficient_freq),
			 rps->efficient_freq);

	rps->rp1_freq = chv_rps_guar_freq(rps);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->rp1_freq),
			 rps->rp1_freq);

	rps->min_freq = chv_rps_min_freq(rps);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 intel_gpu_freq(rps, rps->min_freq),
			 rps->min_freq);

	vlv_iosf_sb_put(i915,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
		  "Odd GPU freq values\n");
}

static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
{
	ei->ktime = ktime_get_raw();
	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
}

static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	const struct intel_rps_ei *prev = &rps->ei;
	struct intel_rps_ei now;
	u32 events = 0;

	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
		return 0;

	vlv_c0_read(uncore, &now);

	if (prev->ktime) {
		u64 time, c0;
		u32 render, media;

		time = ktime_us_delta(now.ktime, prev->ktime);

		time *= rps_to_i915(rps)->czclk_freq;

		/* Workload can be split between render + media,
		 * e.g. SwapBuffers being blitted in X after being rendered in
		 * mesa. To account for this we need to combine both engines
		 * into our activity counter.
		 */
		render = now.render_c0 - prev->render_c0;
		media = now.media_c0 - prev->media_c0;
		c0 = max(render, media);
		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */

		if (c0 > time * rps->power.up_threshold)
			events = GEN6_PM_RP_UP_THRESHOLD;
		else if (c0 < time * rps->power.down_threshold)
			events = GEN6_PM_RP_DOWN_THRESHOLD;
	}

	rps->ei = now;
	return events;
}

static void rps_work(struct work_struct *work)
{
	struct intel_rps *rps = container_of(work, typeof(*rps), work);
	struct intel_gt *gt = rps_to_gt(rps);
	bool client_boost = false;
	int new_freq, adj, min, max;
	u32 pm_iir = 0;

	spin_lock_irq(&gt->irq_lock);
	pm_iir = fetch_and_zero(&rps->pm_iir);
	client_boost = atomic_read(&rps->num_waiters);
	spin_unlock_irq(&gt->irq_lock);

	/* Make sure we didn't queue anything we're not going to process. */
	if ((pm_iir & rps->pm_events) == 0 && !client_boost)
		goto out;

	mutex_lock(&rps->lock);

	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);

	adj = rps->last_adj;
	new_freq = rps->cur_freq;
	min = rps->min_freq_softlimit;
	max = rps->max_freq_softlimit;
	if (client_boost)
		max = rps->max_freq;
	if (client_boost && new_freq < rps->boost_freq) {
		new_freq = rps->boost_freq;
		adj = 0;
	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
		if (adj > 0)
			adj *= 2;
		else /* CHV needs even encode values */
			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;

		if (new_freq >= rps->max_freq_softlimit)
			adj = 0;
	} else if (client_boost) {
		adj = 0;
	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
		if (rps->cur_freq > rps->efficient_freq)
			new_freq = rps->efficient_freq;
		else if (rps->cur_freq > rps->min_freq_softlimit)
			new_freq = rps->min_freq_softlimit;
		adj = 0;
	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
		if (adj < 0)
			adj *= 2;
		else /* CHV needs even encode values */
			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;

		if (new_freq <= rps->min_freq_softlimit)
			adj = 0;
	} else { /* unknown event */
		adj = 0;
	}

	rps->last_adj = adj;

	/*
	 * Limit deboosting and boosting to keep ourselves at the extremes
	 * when in the respective power modes (i.e. slowly decrease frequencies
	 * while in the HIGH_POWER zone and slowly increase frequencies while
	 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
	 * to the next level quickly, and conversely if busy we expect to
	 * hit a waitboost and rapidly switch into max power.
	 */
	if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
	    (adj > 0 && rps->power.mode == LOW_POWER))
		rps->last_adj = 0;

	/* sysfs frequency interfaces may have snuck in while servicing the
	 * interrupt
	 */
	new_freq += adj;
	new_freq = clamp_t(int, new_freq, min, max);

	if (intel_rps_set(rps, new_freq)) {
		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
		rps->last_adj = 0;
	}

	mutex_unlock(&rps->lock);

out:
	spin_lock_irq(&gt->irq_lock);
	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
	spin_unlock_irq(&gt->irq_lock);
}

void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
{
	struct intel_gt *gt = rps_to_gt(rps);
	const u32 events = rps->pm_events & pm_iir;

	lockdep_assert_held(&gt->irq_lock);

	if (unlikely(!events))
		return;

	gen6_gt_pm_mask_irq(gt, events);

	rps->pm_iir |= events;
	schedule_work(&rps->work);
}

void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
{
1555
	struct intel_gt *gt = rps_to_gt(rps);
1556 1557 1558 1559 1560 1561 1562 1563 1564

	if (pm_iir & rps->pm_events) {
		spin_lock(&gt->irq_lock);
		gen6_gt_pm_mask_irq(gt, pm_iir & rps->pm_events);
		rps->pm_iir |= pm_iir & rps->pm_events;
		schedule_work(&rps->work);
		spin_unlock(&gt->irq_lock);
	}

1565
	if (INTEL_GEN(gt->i915) >= 8)
1566 1567 1568
		return;

	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1569
		intel_engine_breadcrumbs_irq(gt->engine[VECS0]);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
}

void gen5_rps_irq_handler(struct intel_rps *rps)
{
	struct intel_uncore *uncore = rps_to_uncore(rps);
	u32 busy_up, busy_down, max_avg, min_avg;
	u8 new_freq;

	spin_lock(&mchdev_lock);

	intel_uncore_write16(uncore,
			     MEMINTRSTS,
			     intel_uncore_read(uncore, MEMINTRSTS));

	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
	min_avg = intel_uncore_read(uncore, RCBMINAVG);

	/* Handle RCS change request from hw */
	new_freq = rps->cur_freq;
	if (busy_up > max_avg)
		new_freq++;
	else if (busy_down < min_avg)
		new_freq--;
	new_freq = clamp(new_freq,
			 rps->min_freq_softlimit,
			 rps->max_freq_softlimit);

	if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
		rps->cur_freq = new_freq;

	spin_unlock(&mchdev_lock);
}

1609
void intel_rps_init_early(struct intel_rps *rps)
1610 1611 1612 1613 1614 1615 1616
{
	mutex_init(&rps->lock);
	mutex_init(&rps->power.mutex);

	INIT_WORK(&rps->work, rps_work);

	atomic_set(&rps->num_waiters, 0);
1617 1618 1619 1620 1621
}

void intel_rps_init(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	if (IS_CHERRYVIEW(i915))
		chv_rps_init(rps);
	else if (IS_VALLEYVIEW(i915))
		vlv_rps_init(rps);
	else if (INTEL_GEN(i915) >= 6)
		gen6_rps_init(rps);
	else if (IS_IRONLAKE_M(i915))
		gen5_rps_init(rps);

	/* Derive initial user preferences/limits from the hardware limits */
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;

	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
		u32 params = 0;

		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
				       &params, NULL);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (rps->max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			rps->max_freq = params & 0xff;
		}
	}

	/* Finally allow us to boost to max by default */
	rps->boost_freq = rps->max_freq;
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;

	rps->pm_intrmsk_mbz = 0;

	/*
	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 *
	 * TODO: verify if this can be reproduced on VLV,CHV.
	 */
	if (INTEL_GEN(i915) <= 7)
		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;

1666
	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1667 1668 1669
		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
}

1670
u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1671 1672 1673 1674
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 cagf;

1675 1676 1677
	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
		cagf = (rpstat >> 8) & 0xff;
	else if (INTEL_GEN(i915) >= 9)
1678 1679 1680 1681 1682 1683
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	return cagf;
}

static u32 read_cagf(struct intel_rps *rps)
{
	struct drm_i915_private *i915 = rps_to_i915(rps);
	u32 freq;

	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
		vlv_punit_get(i915);
		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
		vlv_punit_put(i915);
	} else {
		freq = intel_uncore_read(rps_to_gt(rps)->uncore, GEN6_RPSTAT1);
	}

	return intel_rps_get_cagf(rps, freq);
}

u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
{
	struct intel_runtime_pm *rpm = rps_to_gt(rps)->uncore->rpm;
	intel_wakeref_t wakeref;
	u32 freq = 0;

	with_intel_runtime_pm_if_in_use(rpm, wakeref)
		freq = intel_gpu_freq(rps, read_cagf(rps));

	return freq;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
}

/* External interface for intel_ips.ko */

static struct drm_i915_private __rcu *ips_mchdev;

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_rps_driver_register(struct intel_rps *rps)
{
	struct intel_gt *gt = rps_to_gt(rps);

	/*
	 * We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values.
	 */
	if (IS_GEN(gt->i915, 5)) {
1748
		GEM_BUG_ON(ips_mchdev);
1749 1750 1751 1752 1753 1754 1755
		rcu_assign_pointer(ips_mchdev, gt->i915);
		ips_ping_for_i915_load();
	}
}

void intel_rps_driver_unregister(struct intel_rps *rps)
{
1756
	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1757
		rcu_assign_pointer(ips_mchdev, NULL);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
}

static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
	i915 = rcu_dereference(ips_mchdev);
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
}

/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;

	i915 = mchdev_get();
	if (!i915)
		return 0;

	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
		struct intel_ips *ips = &i915->gt.rps.ips;

		spin_lock_irq(&mchdev_lock);
		chipset_val = __ips_chipset_val(ips);
		graphics_val = __ips_gfx_val(ips);
		spin_unlock_irq(&mchdev_lock);
	}

	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *i915;
	struct intel_rps *rps;

	i915 = mchdev_get();
	if (!i915)
		return false;

	rps = &i915->gt.rps;

	spin_lock_irq(&mchdev_lock);
	if (rps->max_freq_softlimit < rps->max_freq)
		rps->max_freq_softlimit++;
	spin_unlock_irq(&mchdev_lock);

	drm_dev_put(&i915->drm);
	return true;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *i915;
	struct intel_rps *rps;

	i915 = mchdev_get();
	if (!i915)
		return false;

	rps = &i915->gt.rps;

	spin_lock_irq(&mchdev_lock);
	if (rps->max_freq_softlimit > rps->min_freq)
		rps->max_freq_softlimit--;
	spin_unlock_irq(&mchdev_lock);

	drm_dev_put(&i915->drm);
	return true;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *i915;
	bool ret;

	i915 = mchdev_get();
	if (!i915)
		return false;

	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *i915;
	struct intel_rps *rps;
	bool ret;

	i915 = mchdev_get();
	if (!i915)
		return false;

	rps = &i915->gt.rps;

	spin_lock_irq(&mchdev_lock);
	rps->max_freq_softlimit = rps->min_freq;
	ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
	spin_unlock_irq(&mchdev_lock);

	drm_dev_put(&i915->drm);
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);