ich8lan.c 110.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
57 58 59 60 61 62 63 64 65
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
66
#define ICH_FLASH_PR0			0x0074
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 89
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID		0x00008000
90 91 92 93 94 95 96 97 98 99

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
100 101
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
102 103 104 105 106 107

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

108 109 110 111
#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3

112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

126 127
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

128 129
#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

130 131
/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
132
#define HV_SMB_ADDR_MASK       0x007F
133 134 135
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080

136 137 138
/* PHY Power Management Control */
#define HV_PM_CTRL		PHY_REG(770, 17)

139 140 141 142
/* PHY Low Power Idle Control */
#define I82579_LPI_CTRL			PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK	0x6000

143 144 145 146 147
/* EMI Registers */
#define I82579_EMI_ADDR         0x10
#define I82579_EMI_DATA         0x11
#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */

148 149 150 151 152
/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17

153 154 155
/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
156
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
157 158
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

159 160 161
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

162 163 164 165
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW      0x0400

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

207 208 209 210 211 212 213 214 215 216 217 218 219
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

220 221 222 223 224 225
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
226 227
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
228 229 230 231 232 233
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
234
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
235 236 237 238 239 240 241 242
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
243
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
244
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
245
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
246
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
247
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
248 249
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
250
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
251
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))

278 279 280 281 282 283 284 285
static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
	ew32(CTRL, ctrl);
286
	e1e_flush();
287 288 289 290 291
	udelay(10);
	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
	ew32(CTRL, ctrl);
}

292 293 294 295 296 297 298 299 300
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
301
	u32 fwsm;
302 303 304 305 306
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

307
	phy->ops.set_page             = e1000_set_page_igp;
308 309
	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
310
	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
311 312
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
313 314
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
315
	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
316 317
	phy->ops.power_up             = e1000_power_up_phy_copper;
	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
318 319
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

320 321 322 323 324 325
	/*
	 * The MAC-PHY interconnect may still be in SMBus mode
	 * after Sx->S0.  If the manageability engine (ME) is
	 * disabled, then toggle the LANPHYPC Value bit to force
	 * the interconnect to PCIe mode.
	 */
326
	fwsm = er32(FWSM);
327
	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
328
		e1000_toggle_lanphypc_value_ich8lan(hw);
329
		msleep(50);
330 331 332 333 334 335 336

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if (hw->mac.type == e1000_pch2lan)
			e1000_gate_hw_phy_config_ich8lan(hw, true);
337 338
	}

339
	/*
340
	 * Reset the PHY before any access to it.  Doing so, ensures that
341 342 343 344 345 346 347 348
	 * the PHY is in a known good state before we read/write PHY registers.
	 * The generic reset is sufficient here, because we haven't determined
	 * the PHY type yet.
	 */
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		goto out;

349
	/* Ungate automatic PHY configuration on non-managed 82579 */
350
	if ((hw->mac.type == e1000_pch2lan) &&
351
	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
352
		usleep_range(10000, 20000);
353 354 355
		e1000_gate_hw_phy_config_ich8lan(hw, false);
	}

356
	phy->id = e1000_phy_unknown;
357 358 359 360 361 362 363 364 365
	switch (hw->mac.type) {
	default:
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			goto out;
		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
			break;
		/* fall-through */
	case e1000_pch2lan:
366
		/*
367
		 * In case the PHY needs to be in mdio slow mode,
368 369 370 371 372 373 374 375
		 * set slow mode and try to get the PHY id again.
		 */
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			goto out;
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			goto out;
376
		break;
377
	}
378 379
	phy->type = e1000e_get_phy_type_from_id(phy->id);

380 381
	switch (phy->type) {
	case e1000_phy_82577:
382
	case e1000_phy_82579:
383 384
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
385
		    e1000_phy_force_speed_duplex_82577;
386
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
387 388
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
389
		break;
390 391 392 393 394 395 396 397 398
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
399 400
	}

401
out:
402 403 404
	return ret_val;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

420 421 422
	phy->ops.power_up               = e1000_power_up_phy_copper;
	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;

423 424 425 426 427 428
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
429 430
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
431
		ret_val = e1000e_determine_phy_address(hw);
B
Bruce Allan 已提交
432 433
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
434
			return ret_val;
B
Bruce Allan 已提交
435
		}
436 437
	}

438 439 440
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
441
		usleep_range(1000, 2000);
442 443 444 445 446 447 448 449 450 451
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
452 453
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
454 455 456
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
457 458 459 460 461 462
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
463 464 465
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
466
		break;
467 468 469
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
470 471 472
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
473 474 475
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
476
		break;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
496
	u32 gfpreg, sector_base_addr, sector_end_addr;
497 498
	u16 i;

499
	/* Can't read flash registers if the register set isn't mapped. */
500
	if (!hw->flash_address) {
501
		e_dbg("ERROR: Flash registers not mapped\n");
502 503 504 505 506 507 508
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

509 510
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
511
	 * Add 1 to sector_end_addr since this sector is included in
512 513
	 * the overall size.
	 */
514 515 516 517 518 519
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

520 521 522 523
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
524 525 526 527 528 529 530 531 532 533
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
534
		dev_spec->shadow_ram[i].modified = false;
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
554
	hw->phy.media_type = e1000_media_type_copper;
555 556 557 558 559 560 561

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
562 563 564 565
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
566 567
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
568

569 570 571 572 573
	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
574 575
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
576 577
		/* ID LED init */
		mac->ops.id_led_init = e1000e_id_led_init;
578 579
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
580 581 582 583 584 585 586 587 588
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pchlan:
589
	case e1000_pch2lan:
590 591
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
592 593 594 595 596 597 598 599 600 601 602 603 604 605
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

606 607
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
608
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
609

610 611 612 613
	/* Gate automatic PHY configuration by hardware on managed 82579 */
	if ((mac->type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);
614

615 616 617
	return 0;
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 *  the LPI Control register will remain set only if/when link is up.
 **/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_reg;

	if (hw->phy.type != e1000_phy_82579)
		goto out;

	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
	if (ret_val)
		goto out;

	if (hw->dev_spec.ich8lan.eee_disable)
		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
	else
		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;

	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
out:
	return ret_val;
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status) {
		ret_val = 0;
		goto out;
	}

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

681 682 683 684 685 686
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
			goto out;
	}

687 688 689 690 691 692 693 694 695 696 697
	if (!link)
		goto out; /* No link detected */

	mac->get_link_status = false;

	if (hw->phy.type == e1000_phy_82578) {
		ret_val = e1000_link_stall_workaround_hv(hw);
		if (ret_val)
			goto out;
	}

698 699 700 701 702 703
	if (hw->mac.type == e1000_pch2lan) {
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
			goto out;
	}

704 705 706 707 708 709
	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

710 711 712 713 714
	/* Enable/Disable EEE after link up */
	ret_val = e1000_set_eee_pchlan(hw);
	if (ret_val)
		goto out;

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	e1000e_config_collision_dist(hw);

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
739
		e_dbg("Error configuring flow control\n");
740 741 742 743 744

out:
	return ret_val;
}

J
Jeff Kirsher 已提交
745
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
746 747 748 749 750 751 752 753 754 755 756 757
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_ich8lan(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

758 759 760 761
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
762
		rc = e1000_init_phy_params_ich8lan(hw);
763 764 765 766 767 768 769 770
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
771 772 773
	if (rc)
		return rc;

774 775 776 777 778 779 780
	/*
	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
781 782
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
783 784

		hw->mac.ops.blink_led = NULL;
785 786
	}

787 788 789 790
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
	    (adapter->hw.phy.type == e1000_phy_igp_3))
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

791 792 793 794
	/* Disable EEE by default until IEEE802.3az spec is finalized */
	if (adapter->flags2 & FLAG2_HAS_EEE)
		adapter->hw.dev_spec.ich8lan.eee_disable = true;

795 796 797
	return 0;
}

798 799
static DEFINE_MUTEX(nvm_mutex);

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);
}

static DEFINE_MUTEX(swflag_mutex);

826 827 828 829
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
830 831
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
832 833 834
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
835 836
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
837

838
	mutex_lock(&swflag_mutex);
839

840 841
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
842 843
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;
844

845 846 847 848 849
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
850
		e_dbg("SW/FW/HW has locked the resource for too long.\n");
851 852 853 854
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

855
	timeout = SW_FLAG_TIMEOUT;
856 857 858 859 860 861 862 863

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;
864

865 866 867 868 869
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
870
		e_dbg("Failed to acquire the semaphore.\n");
871 872
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
873 874
		ret_val = -E1000_ERR_CONFIG;
		goto out;
875 876
	}

877 878
out:
	if (ret_val)
879
		mutex_unlock(&swflag_mutex);
880 881

	return ret_val;
882 883 884 885 886 887
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
888 889
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
890 891 892 893 894 895
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
896 897 898 899 900 901 902

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}
903

904
	mutex_unlock(&swflag_mutex);
905 906
}

907 908 909 910
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
911
 *  This checks if the adapter has any manageability enabled.
912 913 914 915 916
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
917 918 919
	u32 fwsm;

	fwsm = er32(FWSM);
920 921 922 923
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       ((fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
924

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
940 941
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
	s32 ret_val = 0;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
		goto out;

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
	ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);

out:
	return ret_val;
}

987 988 989 990 991 992 993 994 995 996 997
/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
998
	s32 ret_val = 0;
999 1000 1001 1002 1003 1004 1005 1006 1007
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
1008 1009 1010 1011 1012
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

B
Bruce Allan 已提交
1013 1014
		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1015 1016 1017 1018 1019
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
1020
	case e1000_pch2lan:
1021
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1022 1023 1024 1025 1026 1027 1028 1029
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
1030 1031 1032 1033

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
		goto out;
1034

1035 1036 1037 1038 1039
	/*
	 * Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
1040 1041 1042 1043
	if (!(hw->mac.type == e1000_pch2lan)) {
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
			goto out;
	}
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
		goto out;

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

1054 1055 1056
	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
	    (hw->mac.type == e1000_pchlan)) ||
	     (hw->mac.type == e1000_pch2lan)) {
1057
		/*
1058 1059 1060 1061
		 * HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
1062
		 */
1063
		ret_val = e1000_write_smbus_addr(hw);
1064
		if (ret_val)
1065 1066
			goto out;

1067 1068 1069 1070
		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
1071
			goto out;
1072
	}
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
					 &reg_data);
		if (ret_val)
			goto out;

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
			goto out;

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
1094
		}
1095 1096 1097 1098 1099 1100 1101 1102

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
						    reg_data);
		if (ret_val)
			goto out;
1103 1104 1105
	}

out:
1106
	hw->phy.ops.release(hw);
1107 1108 1109
	return ret_val;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
		goto out;

	/* Wrap the whole flow with the sw flag */
1130
	ret_val = hw->phy.ops.acquire(hw);
1131 1132 1133 1134 1135 1136
	if (ret_val)
		goto out;

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
1137
			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
1153
			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
1169
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1170 1171 1172 1173 1174 1175
		                                           0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
1176
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1177 1178 1179 1180 1181 1182 1183 1184
		                                           0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
1185
	hw->phy.ops.release(hw);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
out:
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
1200
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

	ret_val = e1000e_read_kmrn_reg_locked(hw,
	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
	                                     &kmrn_reg);
	if (ret_val)
		goto out;

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

	ret_val = e1000e_write_kmrn_reg_locked(hw,
	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
	                                      kmrn_reg);
	if (ret_val)
		goto out;

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1234
	e1e_flush();
1235 1236 1237
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
1238
	e1e_flush();
1239 1240 1241 1242 1243 1244
	udelay(20);

out:
	return ret_val;
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

1260
	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1261 1262
		return ret_val;

1263
	ret_val = hw->phy.ops.acquire(hw);
1264 1265 1266
	if (ret_val)
		return ret_val;

1267 1268 1269 1270 1271
	if (!(hw->mac.type == e1000_pch2lan)) {
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
			goto out;
	}
1272 1273 1274 1275 1276 1277 1278

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
		goto out;

	mac_reg = er32(PHY_CTRL);

1279
	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (ret_val)
		goto out;

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	}
	/* Restart auto-neg to activate the bits */
1299 1300
	if (!e1000_check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;
1301
	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1302 1303

out:
1304
	hw->phy.ops.release(hw);
1305 1306 1307 1308 1309

	return ret_val;
}


1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

1330 1331 1332 1333 1334 1335 1336
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
1337
	u16 phy_data;
1338 1339 1340 1341

	if (hw->mac.type != e1000_pchlan)
		return ret_val;

1342 1343 1344 1345 1346 1347 1348
	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			goto out;
	}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
1375
	ret_val = hw->phy.ops.acquire(hw);
1376 1377
	if (ret_val)
		return ret_val;
1378

1379
	hw->phy.addr = 1;
1380
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1381
	hw->phy.ops.release(hw);
1382 1383
	if (ret_val)
		goto out;
1384

1385 1386 1387 1388 1389
	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1390 1391
	if (ret_val)
		goto out;
1392

1393 1394 1395 1396
	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
1397
	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1398 1399
	if (ret_val)
		goto release;
1400 1401
	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
					       phy_data & 0x00FF);
1402 1403
release:
	hw->phy.ops.release(hw);
1404
out:
1405 1406 1407
	return ret_val;
}

1408 1409 1410 1411 1412 1413 1414
/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
1415 1416 1417 1418 1419 1420 1421 1422 1423
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;
1424 1425 1426 1427

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
		mac_reg = er32(RAL(i));
1428 1429 1430 1431 1432
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

1433
		mac_reg = er32(RAH(i));
1434 1435 1436 1437 1438
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
1439
	}
1440 1441 1442 1443 1444

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

	if (hw->mac.type != e1000_pch2lan)
		goto out;

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
		goto out;

	if (enable) {
		/*
		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
			u8 mac_addr[ETH_ALEN] = {0};
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

1489
			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
			goto out;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
			goto out;
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
			goto out;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			goto out;

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x1A << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			goto out;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
		if (ret_val)
			goto out;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
			goto out;
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
1561
		ew32(RCTL, mac_reg);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
			goto out;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
			goto out;
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
			goto out;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			goto out;

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			goto out;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
			goto out;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
			goto out;
	}

	/* re-enable Rx path after enabling/disabling workaround */
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));

out:
	return ret_val;
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
		goto out;

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);

out:
	return ret_val;
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	u32 mac_reg;

	if (hw->mac.type != e1000_pch2lan)
		goto out;

	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
		goto out;

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		mac_reg = er32(FEXTNVM4);
		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;

		if (status_reg & HV_M_STATUS_SPEED_1000)
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
		else
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;

		ew32(FEXTNVM4, mac_reg);
	}

out:
	return ret_val;
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

	if (hw->mac.type != e1000_pch2lan)
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
	return;
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
1724
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1725 1726 1727 1728 1729 1730 1731

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

1732
/**
1733
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1734 1735
 *  @hw: pointer to the HW structure
 **/
1736
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1737
{
1738 1739
	s32 ret_val = 0;
	u16 reg;
1740

1741 1742
	if (e1000_check_reset_block(hw))
		goto out;
1743

B
Bruce Allan 已提交
1744
	/* Allow time for h/w to get to quiescent state after reset */
1745
	usleep_range(10000, 20000);
B
Bruce Allan 已提交
1746

1747
	/* Perform any necessary post-reset workarounds */
1748 1749
	switch (hw->mac.type) {
	case e1000_pchlan:
1750 1751
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1752 1753
			goto out;
		break;
1754 1755 1756 1757 1758
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			goto out;
		break;
1759 1760
	default:
		break;
1761 1762
	}

1763 1764 1765 1766 1767 1768
	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}
1769

1770 1771 1772 1773
	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		goto out;
1774

1775
	/* Configure the LCD with the OEM bits in NVM */
1776
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1777

1778 1779 1780
	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1781
			usleep_range(10000, 20000);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			goto out;
		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
						       I82579_LPI_UPDATE_TIMER);
		if (ret_val)
			goto release;
		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
						       0x1387);
release:
		hw->phy.ops.release(hw);
1797 1798
	}

1799
out:
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

1815 1816 1817 1818 1819
	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

1820 1821 1822 1823 1824 1825 1826 1827
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_post_phy_reset_ich8lan(hw);

out:
	return ret_val;
1828 1829
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		goto out;

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

	oem_reg |= HV_OEM_BITS_RESTART_AN;
	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);

out:
	return ret_val;
}

1862 1863 1864
/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
1865
 *  @active: true to enable LPLU, false to disable
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

1882
	if (phy->type == e1000_phy_ife)
1883 1884 1885 1886 1887 1888 1889 1890
		return ret_val;

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1891 1892 1893
		if (phy->type != e1000_phy_igp_3)
			return 0;

1894 1895 1896 1897
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
1898
		if (hw->mac.type == e1000_ich8lan)
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1911 1912 1913
		if (phy->type != e1000_phy_igp_3)
			return 0;

1914 1915
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1916 1917
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1918 1919
		 * SmartSpeed, so performance is maintained.
		 */
1920 1921
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1922
					   &data);
1923 1924 1925 1926 1927
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1928
					   data);
1929 1930 1931 1932
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1933
					   &data);
1934 1935 1936 1937 1938
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1939
					   data);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
1951
 *  @active: true to enable LPLU, false to disable
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val;
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
1973 1974 1975 1976

		if (phy->type != e1000_phy_igp_3)
			return 0;

1977 1978
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1979 1980
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1981 1982
		 * SmartSpeed, so performance is maintained.
		 */
1983
		if (phy->smart_speed == e1000_smart_speed_on) {
1984 1985
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
1986 1987 1988 1989
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
1990 1991
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
1992 1993 1994
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
1995 1996
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
1997 1998 1999 2000
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2001 2002
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2003 2004 2005 2006 2007 2008 2009 2010 2011
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2012 2013 2014
		if (phy->type != e1000_phy_igp_3)
			return 0;

2015 2016 2017 2018
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2019
		if (hw->mac.type == e1000_ich8lan)
2020 2021 2022
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
2023
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2024 2025 2026 2027
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2028
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2029 2030 2031 2032 2033
	}

	return 0;
}

2034 2035 2036 2037 2038 2039
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
2040
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2041 2042 2043
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
2044
	u32 eecd;
2045 2046 2047
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2048 2049
	u8 sig_byte = 0;
	s32 ret_val = 0;
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
2064
		e_dbg("Unable to determine valid NVM bank via EEC - "
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
		       "reading flash signature\n");
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
2078
			*bank = 0;
2079 2080
			return 0;
		}
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
2092
		}
2093

2094
		e_dbg("ERROR: No valid NVM bank present\n");
2095
		return -E1000_ERR_NVM;
2096 2097 2098 2099 2100
	}

	return 0;
}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
2116
	s32 ret_val = 0;
2117
	u32 bank = 0;
2118 2119 2120 2121
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2122
		e_dbg("nvm parameter(s) out of bounds\n");
2123 2124
		ret_val = -E1000_ERR_NVM;
		goto out;
2125 2126
	}

2127
	nvm->ops.acquire(hw);
2128

2129
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2130
	if (ret_val) {
2131
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2132 2133
		bank = 0;
	}
2134 2135

	act_offset = (bank) ? nvm->flash_bank_size : 0;
2136 2137
	act_offset += offset;

2138
	ret_val = 0;
2139
	for (i = 0; i < words; i++) {
2140
		if (dev_spec->shadow_ram[offset+i].modified) {
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

2152
	nvm->ops.release(hw);
2153

2154 2155
out:
	if (ret_val)
2156
		e_dbg("NVM read error: %d\n", ret_val);
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (hsfsts.hsf_status.fldesvalid == 0) {
2177
		e_dbg("Flash descriptor invalid.  "
J
Joe Perches 已提交
2178
			 "SW Sequencing must be used.\n");
2179 2180 2181 2182 2183 2184 2185 2186 2187
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2188 2189
	/*
	 * Either we should have a hardware SPI cycle in progress
2190 2191
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
2192
	 * is 1 after hardware reset, which can then be used as an
2193 2194 2195 2196 2197
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (hsfsts.hsf_status.flcinprog == 0) {
2198 2199
		/*
		 * There is no cycle running at present,
B
Bruce Allan 已提交
2200
		 * so we can start a cycle.
2201 2202
		 * Begin by setting Flash Cycle Done.
		 */
2203 2204 2205 2206
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
2207 2208
		s32 i = 0;

2209
		/*
B
Bruce Allan 已提交
2210
		 * Otherwise poll for sometime so the current
2211 2212
		 * cycle has a chance to end before giving up.
		 */
2213 2214 2215 2216 2217 2218 2219 2220 2221
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcinprog == 0) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
		if (ret_val == 0) {
2222 2223 2224 2225
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
2226 2227 2228
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
J
Joe Perches 已提交
2229
			e_dbg("Flash controller busy, cannot get access\n");
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone == 1)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
		return 0;

	return ret_val;
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val != 0)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

2353 2354
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
2355 2356
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
2357 2358
		 * least significant byte first msb to lsb
		 */
2359 2360
		if (ret_val == 0) {
			flash_data = er32flash(ICH_FLASH_FDATA0);
B
Bruce Allan 已提交
2361
			if (size == 1)
2362
				*data = (u8)(flash_data & 0x000000FF);
B
Bruce Allan 已提交
2363
			else if (size == 2)
2364 2365 2366
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
2367 2368
			/*
			 * If we've gotten here, then things are probably
2369 2370 2371 2372 2373 2374 2375 2376 2377
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (hsfsts.hsf_status.flcdone == 0) {
2378
				e_dbg("Timeout error - flash cycle "
J
Joe Perches 已提交
2379
					 "did not complete.\n");
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2406
		e_dbg("nvm parameter(s) out of bounds\n");
2407 2408 2409
		return -E1000_ERR_NVM;
	}

2410
	nvm->ops.acquire(hw);
2411

2412
	for (i = 0; i < words; i++) {
2413
		dev_spec->shadow_ram[offset+i].modified = true;
2414 2415 2416
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

2417
	nvm->ops.release(hw);
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
2430
 *  After a successful commit, the shadow ram is cleared and is ready for
2431 2432 2433 2434 2435 2436
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2437
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2438 2439 2440 2441 2442
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
2443
		goto out;
2444 2445

	if (nvm->type != e1000_nvm_flash_sw)
2446
		goto out;
2447

2448
	nvm->ops.acquire(hw);
2449

2450 2451
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
2452
	 * write to bank 0 etc.  We also need to erase the segment that
2453 2454
	 * is going to be written
	 */
2455
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2456
	if (ret_val) {
2457
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2458
		bank = 0;
2459
	}
2460 2461

	if (bank == 0) {
2462 2463
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
2464
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2465 2466
		if (ret_val)
			goto release;
2467 2468 2469
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
2470
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2471 2472
		if (ret_val)
			goto release;
2473 2474 2475
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2476 2477
		/*
		 * Determine whether to write the value stored
2478
		 * in the other NVM bank or a modified value stored
2479 2480
		 * in the shadow RAM
		 */
2481 2482 2483
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
2484 2485 2486 2487 2488
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
2489 2490
		}

2491 2492
		/*
		 * If the word is 0x13, then make sure the signature bits
2493 2494 2495 2496
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
2497 2498
		 * while the write is still in progress
		 */
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

2521 2522 2523 2524
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
2525
	if (ret_val) {
2526
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2527
		e_dbg("Flash commit failed.\n");
2528
		goto release;
2529 2530
	}

2531 2532
	/*
	 * Finally validate the new segment by setting bit 15:14
2533 2534
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
2535 2536
	 * and we need to change bit 14 to 0b
	 */
2537
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2538
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2539 2540 2541
	if (ret_val)
		goto release;

2542 2543 2544 2545
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
2546 2547
	if (ret_val)
		goto release;
2548

2549 2550
	/*
	 * And invalidate the previously valid segment by setting
2551 2552
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
2553 2554
	 * to 1's. We can write 1's to 0's without an erase
	 */
2555 2556
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2557 2558
	if (ret_val)
		goto release;
2559 2560 2561

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2562
		dev_spec->shadow_ram[i].modified = false;
2563 2564 2565
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

2566
release:
2567
	nvm->ops.release(hw);
2568

2569 2570
	/*
	 * Reload the EEPROM, or else modifications will not appear
2571 2572
	 * until after the next adapter reset.
	 */
2573 2574
	if (!ret_val) {
		e1000e_reload_nvm(hw);
2575
		usleep_range(10000, 20000);
2576
	}
2577

2578 2579
out:
	if (ret_val)
2580
		e_dbg("NVM update error: %d\n", ret_val);
2581

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

2598 2599
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

	if ((data & 0x40) == 0) {
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
2633
	struct e1000_nvm_info *nvm = &hw->nvm;
2634 2635 2636 2637
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

2638
	nvm->ops.acquire(hw);
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2659
	nvm->ops.release(hw);
2660 2661
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

2710 2711 2712 2713
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
2714 2715 2716 2717 2718
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

2719 2720
		/*
		 * If we're here, then things are most likely
2721 2722 2723 2724 2725 2726 2727 2728 2729
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr == 1)
			/* Repeat for some time before giving up. */
			continue;
		if (hsfsts.hsf_status.flcdone == 0) {
2730
			e_dbg("Timeout error - flash cycle "
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
				 "did not complete.");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
2775
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
2805
	s32 j, iteration, sector_size;
2806 2807 2808

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

2809 2810 2811 2812
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
2830
		iteration = 1;
2831 2832
		break;
	case 2:
2833 2834
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
2835 2836 2837
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
2838
		iteration = 1;
2839 2840 2841 2842 2843 2844 2845
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
2846
	flash_linear_addr += (bank) ? flash_bank_size : 0;
2847 2848 2849 2850 2851 2852 2853 2854

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

2855 2856 2857 2858
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
2859 2860 2861 2862
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

2863 2864
			/*
			 * Write the last 24 bits of an index within the
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
			if (ret_val == 0)
				break;

2876 2877
			/*
			 * Check if FCERR is set to 1.  If 1,
2878
			 * clear it and try the whole sequence
2879 2880
			 * a few more times else Done
			 */
2881 2882
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1)
2883
				/* repeat for some time before giving up */
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
				continue;
			else if (hsfsts.hsf_status.flcdone == 0)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
2908
		e_dbg("NVM Read Error\n");
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		goto out;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

out:
	return ret_val;
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

3006 3007
	/*
	 * ICH devices are "PCI Express"-ish.  They have
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
3027
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3028
	u16 reg;
3029
	u32 ctrl, kab;
3030 3031
	s32 ret_val;

3032 3033
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3034 3035 3036
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
3037
	if (ret_val)
3038
		e_dbg("PCI-E Master disable polling has failed.\n");
3039

3040
	e_dbg("Masking off all interrupts\n");
3041 3042
	ew32(IMC, 0xffffffff);

3043 3044
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
3045 3046 3047 3048 3049 3050 3051
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

3052
	usleep_range(10000, 20000);
3053 3054 3055 3056 3057 3058 3059 3060 3061

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	if (hw->mac.type == e1000_pchlan) {
		/* Save the NVM K1 bit setting*/
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
		if (ret_val)
			return ret_val;

		if (reg & E1000_NVM_K1_ENABLE)
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

3074 3075 3076
	ctrl = er32(CTRL);

	if (!e1000_check_reset_block(hw)) {
3077
		/*
3078
		 * Full-chip reset requires MAC and PHY reset at the same
3079 3080 3081 3082
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
3083 3084 3085 3086 3087 3088 3089 3090

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
3091 3092
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
3093
	e_dbg("Issuing a global reset to ich8lan\n");
3094
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3095
	/* cannot issue a flush here because it hangs the hardware */
3096 3097
	msleep(20);

3098
	if (!ret_val)
3099
		mutex_unlock(&swflag_mutex);
3100

3101
	if (ctrl & E1000_CTRL_PHY_RST) {
3102
		ret_val = hw->phy.ops.get_cfg_done(hw);
3103 3104
		if (ret_val)
			goto out;
3105

3106
		ret_val = e1000_post_phy_reset_ich8lan(hw);
3107 3108 3109
		if (ret_val)
			goto out;
	}
3110

3111 3112 3113 3114 3115 3116 3117 3118
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

3119
	ew32(IMC, 0xffffffff);
3120
	er32(ICR);
3121 3122 3123 3124 3125

	kab = er32(KABGTXD);
	kab |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, kab);

3126
out:
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	return ret_val;
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
3139
 *   - setup transmit descriptors
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
3152
	ret_val = mac->ops.id_led_init(hw);
3153
	if (ret_val)
3154
		e_dbg("Error initializing identification LED\n");
3155
		/* This is not fatal and we should not stop init due to this */
3156 3157 3158 3159 3160

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
3161
	e_dbg("Zeroing the MTA\n");
3162 3163 3164
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

3165 3166
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3167
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3168 3169 3170
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
3171 3172 3173
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3174 3175 3176 3177 3178
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

3179 3180 3181 3182
	/* Setup link and flow control */
	ret_val = e1000_setup_link_ich8lan(hw);

	/* Set the transmit descriptor write-back policy for both queues */
3183
	txdctl = er32(TXDCTL(0));
3184 3185 3186 3187
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3188 3189
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
3190 3191 3192 3193
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3194
	ew32(TXDCTL(1), txdctl);
3195

3196 3197 3198 3199
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

3210 3211
	/*
	 * Clear all of the statistics registers (clear on read).  It is
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

	return 0;
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
3234 3235 3236
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
3237 3238 3239
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
3240
	reg = er32(TXDCTL(0));
3241
	reg |= (1 << 22);
3242
	ew32(TXDCTL(0), reg);
3243 3244

	/* Transmit Descriptor Control 1 */
3245
	reg = er32(TXDCTL(1));
3246
	reg |= (1 << 22);
3247
	ew32(TXDCTL(1), reg);
3248 3249

	/* Transmit Arbitration Control 0 */
3250
	reg = er32(TARC(0));
3251 3252 3253
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3254
	ew32(TARC(0), reg);
3255 3256

	/* Transmit Arbitration Control 1 */
3257
	reg = er32(TARC(1));
3258 3259 3260 3261 3262
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3263
	ew32(TARC(1), reg);
3264 3265 3266 3267 3268 3269 3270

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
3271 3272 3273 3274 3275 3276 3277 3278

	/*
	 * work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
	ew32(RFCTL, reg);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (e1000_check_reset_block(hw))
		return 0;

3298 3299
	/*
	 * ICH parts do not have a word in the NVM to determine
3300 3301 3302
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
3303 3304 3305 3306 3307 3308 3309
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
3310

3311 3312 3313 3314 3315
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
3316

3317
	e_dbg("After fix-ups FlowControl is now = %x\n",
3318
		hw->fc.current_mode);
3319 3320 3321 3322 3323 3324

	/* Continue to configure the copper link. */
	ret_val = e1000_setup_copper_link_ich8lan(hw);
	if (ret_val)
		return ret_val;

3325
	ew32(FCTTV, hw->fc.pause_time);
3326
	if ((hw->phy.type == e1000_phy_82578) ||
3327
	    (hw->phy.type == e1000_phy_82579) ||
3328
	    (hw->phy.type == e1000_phy_82577)) {
3329 3330
		ew32(FCRTV_PCH, hw->fc.refresh_time);

3331 3332
		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
3333 3334 3335
		if (ret_val)
			return ret_val;
	}
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

3359 3360
	/*
	 * Set the mac to wait the maximum time between each iteration
3361
	 * and increase the max iterations when polling the phy;
3362 3363
	 * this fixes erroneous timeouts at 10Mbps.
	 */
3364
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3365 3366
	if (ret_val)
		return ret_val;
3367 3368
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                               &reg_data);
3369 3370 3371
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
3372 3373
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                                reg_data);
3374 3375 3376
	if (ret_val)
		return ret_val;

3377 3378
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
3379 3380 3381
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
3382 3383 3384
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
3385 3386 3387
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
3388 3389
		break;
	case e1000_phy_82577:
3390
	case e1000_phy_82579:
3391 3392 3393 3394 3395
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
3396
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
3414
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3415 3416
		if (ret_val)
			return ret_val;
3417 3418 3419
		break;
	default:
		break;
3420
	}
3421 3422 3423 3424 3425 3426 3427 3428 3429
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
3430
 *  Calls the generic get_speed_and_duplex to retrieve the current link
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

3478 3479
	/*
	 * Make sure link is up before proceeding.  If not just return.
3480
	 * Attempting this while link is negotiating fouled up link
3481 3482
	 * stability
	 */
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

3511 3512 3513 3514
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
3515 3516 3517 3518 3519 3520 3521
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
3522
 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3523
 *  @hw: pointer to the HW structure
3524
 *  @state: boolean value used to set the current Kumeran workaround state
3525
 *
3526 3527
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
3528 3529 3530 3531 3532 3533 3534
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
3535
		e_dbg("Workaround applies to ICH8 only.\n");
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

3569 3570 3571 3572
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3599
 *  LPLU, Gig disable, MDIC PHY reset):
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
 *  Should only be called for ICH8[m] devices with IGP_3 Phy.
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

	if ((hw->mac.type != e1000_ich8lan) ||
	    (hw->phy.type != e1000_phy_igp_3))
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

3627
/**
3628
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3629 3630 3631 3632 3633
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
 *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3634 3635
 *  to a lower speed.  For PCH and newer parts, the OEM bits PHY register
 *  (LED, GbE disable and LPLU configurations) also needs to be written.
3636
 **/
3637
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3638 3639
{
	u32 phy_ctrl;
3640
	s32 ret_val;
3641

3642 3643 3644
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
	ew32(PHY_CTRL, phy_ctrl);
3645

3646
	if (hw->mac.type >= e1000_pchlan) {
3647
		e1000_oem_bits_config_ich8lan(hw, false);
3648 3649 3650 3651 3652 3653
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
3654 3655
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	if (hw->mac.type != e1000_pch2lan)
		return;

	fwsm = er32(FWSM);
	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
		u16 phy_id1, phy_id2;
		s32 ret_val;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val) {
			e_dbg("Failed to acquire PHY semaphore in resume\n");
			return;
		}

		/* Test access to the PHY registers by reading the ID regs */
		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
		if (ret_val)
			goto release;
		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
		if (ret_val)
			goto release;

		if (hw->phy.id == ((u32)(phy_id1 << 16) |
				   (u32)(phy_id2 & PHY_REVISION_MASK)))
			goto release;

		e1000_toggle_lanphypc_value_ich8lan(hw);

		hw->phy.ops.release(hw);
		msleep(50);
		e1000_phy_hw_reset(hw);
		msleep(50);
		return;
	}

release:
	hw->phy.ops.release(hw);

	return;
}

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
3726
 *  e1000_led_on_ich8lan - Turn LEDs on
3727 3728
 *  @hw: pointer to the HW structure
 *
3729
 *  Turn on the LEDs.
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
3742
 *  e1000_led_off_ich8lan - Turn LEDs off
3743 3744
 *  @hw: pointer to the HW structure
 *
3745
 *  Turn off the LEDs.
3746 3747 3748 3749 3750
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3751 3752
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));
3753 3754 3755 3756 3757

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

3758 3759 3760 3761 3762 3763 3764 3765
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
3766
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
3777
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3808
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3839
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3840 3841
}

3842
/**
3843
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3844 3845
 *  @hw: pointer to the HW structure
 *
3846 3847 3848 3849 3850 3851 3852
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
3853 3854 3855
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
3856
	s32 ret_val = 0;
3857
	u32 bank = 0;
3858
	u32 status;
3859

3860
	e1000e_get_cfg_done(hw);
3861

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
3876 3877
	}

3878 3879 3880 3881 3882 3883
	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");
3884 3885

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3886
	if (hw->mac.type <= e1000_ich9lan) {
3887 3888 3889 3890 3891 3892 3893
		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
3894
			e_dbg("EEPROM not present\n");
3895
			ret_val = -E1000_ERR_CONFIG;
3896 3897 3898
		}
	}

3899
	return ret_val;
3900 3901
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

3917 3918 3919 3920 3921 3922 3923 3924 3925
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
3926
	u16 phy_data;
3927
	s32 ret_val;
3928 3929 3930

	e1000e_clear_hw_cntrs_base(hw);

3931 3932 3933 3934 3935 3936
	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);
3937

3938 3939 3940
	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);
3941

3942 3943
	er32(IAC);
	er32(ICRXOC);
3944

3945 3946
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
3947
	    (hw->phy.type == e1000_phy_82579) ||
3948
	    (hw->phy.type == e1000_phy_82577)) {
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
3972
	}
3973 3974 3975
}

static struct e1000_mac_operations ich8_mac_ops = {
3976
	.id_led_init		= e1000e_id_led_init,
3977
	/* check_mng_mode dependent on mac type */
3978
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
3979
	/* cleanup_led dependent on mac type */
3980 3981
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
3982
	.set_lan_id		= e1000_set_lan_id_single_port,
3983
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
3984 3985
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
3986
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
3987 3988 3989 3990
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
3991
	/* id_led_init dependent on mac type */
3992 3993 3994
};

static struct e1000_phy_operations ich8_phy_ops = {
3995
	.acquire		= e1000_acquire_swflag_ich8lan,
3996
	.check_reset_block	= e1000_check_reset_block_ich8lan,
3997
	.commit			= NULL,
3998
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
3999
	.get_cable_length	= e1000e_get_cable_length_igp_2,
4000 4001 4002
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
4003 4004
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4005
	.write_reg		= e1000e_write_phy_reg_igp,
4006 4007 4008
};

static struct e1000_nvm_operations ich8_nvm_ops = {
4009 4010 4011 4012
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read		 	= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
	.update			= e1000_update_nvm_checksum_ich8lan,
4013
	.valid_led_default	= e1000_valid_led_default_ich8lan,
4014 4015
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
4016 4017 4018 4019 4020
};

struct e1000_info e1000_ich8_info = {
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
4021
				  | FLAG_IS_ICH
4022 4023 4024 4025 4026 4027
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
4028
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
4029
	.get_variants		= e1000_get_variants_ich8lan,
4030 4031 4032 4033 4034 4035 4036 4037
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

struct e1000_info e1000_ich9_info = {
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
4038
				  | FLAG_IS_ICH
4039 4040 4041 4042 4043 4044 4045 4046
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
4047
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
4048
	.get_variants		= e1000_get_variants_ich8lan,
4049 4050 4051 4052 4053
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
struct e1000_info e1000_ich10_info = {
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
4066
	.max_hw_frame_size	= DEFAULT_JUMBO,
4067 4068 4069 4070 4071
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081

struct e1000_info e1000_pch_info = {
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
4082
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4083
				  | FLAG_APME_IN_WUC,
4084
	.flags2			= FLAG2_HAS_PHY_STATS,
4085 4086 4087 4088 4089 4090 4091
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102

struct e1000_info e1000_pch2_info = {
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
4103 4104
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
4105
	.pba			= 26,
4106 4107 4108 4109 4110 4111
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};