book3s_hv.c 33.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33 34 35 36 37 38 39 40 41 42 43 44

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
45
#include <asm/cputhreads.h>
46
#include <asm/page.h>
47
#include <asm/hvcall.h>
48
#include <asm/switch_to.h>
49 50 51
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
52
#include <linux/hugetlb.h>
53 54 55 56 57

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

58
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59
static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
60

61 62 63
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	local_paca->kvm_hstate.kvm_vcpu = vcpu;
64
	local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
65 66 67 68 69 70 71 72 73
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
74
	kvmppc_end_cede(vcpu);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
111
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
112 113 114
	       vcpu->arch.last_inst);
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
142
	unsigned long len, nb;
143 144
	void *va;
	struct kvm_vcpu *tvcpu;
145
	int err = H_PARAMETER;
146 147 148 149 150 151 152 153 154 155 156 157

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

	flags >>= 63 - 18;
	flags &= 7;
	if (flags == 0 || flags == 4)
		return H_PARAMETER;
	if (flags < 4) {
		if (vpa & 0x7f)
			return H_PARAMETER;
158 159
		if (flags >= 2 && !tvcpu->arch.vpa)
			return H_RESOURCE;
160
		/* registering new area; convert logical addr to real */
161 162
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
163
			return H_PARAMETER;
164 165 166 167
		if (flags <= 1)
			len = *(unsigned short *)(va + 4);
		else
			len = *(unsigned int *)(va + 4);
168 169
		if (len > nb)
			goto out_unpin;
170 171 172
		switch (flags) {
		case 1:		/* register VPA */
			if (len < 640)
173 174 175
				goto out_unpin;
			if (tvcpu->arch.vpa)
				kvmppc_unpin_guest_page(kvm, vcpu->arch.vpa);
176 177 178 179 180
			tvcpu->arch.vpa = va;
			init_vpa(vcpu, va);
			break;
		case 2:		/* register DTL */
			if (len < 48)
181
				goto out_unpin;
182
			len -= len % 48;
183 184
			if (tvcpu->arch.dtl)
				kvmppc_unpin_guest_page(kvm, vcpu->arch.dtl);
185 186 187 188
			tvcpu->arch.dtl = va;
			tvcpu->arch.dtl_end = va + len;
			break;
		case 3:		/* register SLB shadow buffer */
189 190 191 192
			if (len < 16)
				goto out_unpin;
			if (tvcpu->arch.slb_shadow)
				kvmppc_unpin_guest_page(kvm, vcpu->arch.slb_shadow);
193 194 195 196 197 198 199 200
			tvcpu->arch.slb_shadow = va;
			break;
		}
	} else {
		switch (flags) {
		case 5:		/* unregister VPA */
			if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
				return H_RESOURCE;
201 202 203
			if (!tvcpu->arch.vpa)
				break;
			kvmppc_unpin_guest_page(kvm, tvcpu->arch.vpa);
204 205 206
			tvcpu->arch.vpa = NULL;
			break;
		case 6:		/* unregister DTL */
207 208 209
			if (!tvcpu->arch.dtl)
				break;
			kvmppc_unpin_guest_page(kvm, tvcpu->arch.dtl);
210 211 212
			tvcpu->arch.dtl = NULL;
			break;
		case 7:		/* unregister SLB shadow buffer */
213 214 215
			if (!tvcpu->arch.slb_shadow)
				break;
			kvmppc_unpin_guest_page(kvm, tvcpu->arch.slb_shadow);
216 217 218 219 220
			tvcpu->arch.slb_shadow = NULL;
			break;
		}
	}
	return H_SUCCESS;
221 222 223 224

 out_unpin:
	kvmppc_unpin_guest_page(kvm, va);
	return err;
225 226 227 228 229 230 231 232 233
}

int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;

	switch (req) {
234 235 236 237 238 239
	case H_ENTER:
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
		break;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
329 330 331 332 333
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
334 335
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
336 337
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
338 339
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
340 341
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				kvmppc_get_pc(vcpu), 0);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
	case KVM_REG_PPC_HIOR:
		r = put_user(0, (u64 __user *)reg->addr);
		break;
	default:
		break;
	}

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
	case KVM_REG_PPC_HIOR:
	{
		u64 hior;
		/* Only allow this to be set to zero */
		r = get_user(hior, (u64 __user *)reg->addr);
		if (!r && (hior != 0))
			r = -EINVAL;
		break;
	}
	default:
		break;
	}

	return r;
}

437 438
int kvmppc_core_check_processor_compat(void)
{
439
	if (cpu_has_feature(CPU_FTR_HVMODE))
440 441 442 443 444 445 446
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
447 448 449
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
450

451 452 453 454 455
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
456
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);

	kvmppc_mmu_book3s_hv_init(vcpu);

474
	/*
475
	 * We consider the vcpu stopped until we see the first run ioctl for it.
476
	 */
477
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
478 479 480 481 482 483 484 485 486 487

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
488
			init_waitqueue_head(&vcore->wq);
489 490 491 492 493 494 495 496 497 498 499 500 501
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;

502 503 504
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

505 506 507
	return vcpu;

free_vcpu:
508
	kmem_cache_free(kvm_vcpu_cache, vcpu);
509 510 511 512 513 514
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
515 516 517 518 519 520
	if (vcpu->arch.dtl)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl);
	if (vcpu->arch.slb_shadow)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow);
	if (vcpu->arch.vpa)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa);
521
	kvm_vcpu_uninit(vcpu);
522
	kmem_cache_free(kvm_vcpu_cache, vcpu);
523 524
}

525
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
526
{
527
	unsigned long dec_nsec, now;
528

529 530 531 532
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
533
		kvmppc_core_prepare_to_enter(vcpu);
534
		return;
535
	}
536 537 538 539 540
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
541 542
}

543
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
544
{
545 546 547 548 549
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
550 551
}

552
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
553
extern void xics_wake_cpu(int cpu);
554

555 556
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
557
{
558
	struct kvm_vcpu *v;
559

560 561 562 563
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
564
	++vc->n_busy;
565 566 567 568 569 570 571 572 573 574 575 576 577
	/* decrement the physical thread id of each following vcpu */
	v = vcpu;
	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
		--v->arch.ptid;
	list_del(&vcpu->arch.run_list);
}

static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

578 579 580 581
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
582 583 584 585
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
586 587
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
588
	smp_wmb();
589
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
590 591 592 593 594
	if (vcpu->arch.ptid) {
		tpaca->cpu_start = 0x80;
		wmb();
		xics_wake_cpu(cpu);
		++vc->n_woken;
595
	}
596 597
#endif
}
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
 * this core are off-line.
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
639
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
640 641
	long ret;
	u64 now;
642
	int ptid;
643 644 645 646 647

	/* don't start if any threads have a signal pending */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (signal_pending(vcpu->arch.run_task))
			return 0;
648 649 650 651 652 653 654

	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 * XXX we should also block attempts to bring any
	 * secondary threads online.
	 */
655 656 657 658
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
659 660
	}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
	if (!vcpu0)
		return 0;		/* nothing to run */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

680 681 682
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
683
	vc->vcore_state = VCORE_RUNNING;
684 685
	vc->in_guest = 0;
	vc->pcpu = smp_processor_id();
686
	vc->napping_threads = 0;
687 688 689
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		kvmppc_start_thread(vcpu);

690
	preempt_disable();
691
	spin_unlock(&vc->lock);
692

693
	kvm_guest_enter();
694
	__kvmppc_vcore_entry(NULL, vcpu0);
695

696
	spin_lock(&vc->lock);
697 698 699 700
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
701 702 703
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
704
	vc->vcore_state = VCORE_EXITING;
705 706 707 708
	spin_unlock(&vc->lock);

	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
709 710 711 712 713 714
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

	now = get_tb();
715 716 717 718 719
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
720 721 722 723 724 725

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

726 727
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
728 729 730 731 732 733 734

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
735
	}
736

737
	spin_lock(&vc->lock);
738
 out:
739
	vc->vcore_state = VCORE_INACTIVE;
740 741 742 743 744 745 746 747 748 749 750
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}

	return 1;
}

751 752 753 754 755
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
756 757 758
{
	DEFINE_WAIT(wait);

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);
	struct kvm_vcpu *v;
	int all_idle = 1;

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
		if (!v->arch.ceded || v->arch.pending_exceptions) {
			all_idle = 0;
			break;
		}
783
	}
784 785 786 787 788 789
	if (all_idle)
		schedule();
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
790

791 792 793 794 795 796
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
797

798 799 800 801 802 803 804 805 806
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
807
	vcpu->arch.ceded = 0;
808 809
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
810 811
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
812 813 814
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

815 816 817 818 819 820 821 822 823 824
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
			kvmppc_start_thread(vcpu);
825 826
		}

827 828
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
848
			kvmppc_core_prepare_to_enter(v);
849 850 851 852 853 854 855 856 857
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
	}
858

859 860 861 862 863 864 865 866 867 868 869 870 871
	if (signal_pending(current)) {
		if (vc->vcore_state == VCORE_RUNNING ||
		    vc->vcore_state == VCORE_EXITING) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
872 873 874 875
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
876 877
}

878 879 880 881
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;

882 883 884 885 886
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

887 888
	kvmppc_core_prepare_to_enter(vcpu);

889 890 891 892 893 894
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

895 896 897 898 899 900
	/* On the first time here, set up VRMA or RMA */
	if (!vcpu->kvm->arch.rma_setup_done) {
		r = kvmppc_hv_setup_rma(vcpu);
		if (r)
			return r;
	}
901 902 903 904 905

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
906
	vcpu->arch.pgdir = current->mm->pgd;
907

908 909 910 911 912 913
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
914
			kvmppc_core_prepare_to_enter(vcpu);
915 916 917 918 919
		}
	} while (r == RESUME_GUEST);
	return r;
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static long kvmppc_stt_npages(unsigned long window_size)
{
	return ALIGN((window_size >> SPAPR_TCE_SHIFT)
		     * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
}

static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
{
	struct kvm *kvm = stt->kvm;
	int i;

	mutex_lock(&kvm->lock);
	list_del(&stt->list);
	for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
		__free_page(stt->pages[i]);
	kfree(stt);
	mutex_unlock(&kvm->lock);

	kvm_put_kvm(kvm);
}

static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
	struct page *page;

	if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
		return VM_FAULT_SIGBUS;

	page = stt->pages[vmf->pgoff];
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
	.fault = kvm_spapr_tce_fault,
};

static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_ops = &kvm_spapr_tce_vm_ops;
	return 0;
}

static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
{
	struct kvmppc_spapr_tce_table *stt = filp->private_data;

	release_spapr_tce_table(stt);
	return 0;
}

static struct file_operations kvm_spapr_tce_fops = {
	.mmap           = kvm_spapr_tce_mmap,
	.release	= kvm_spapr_tce_release,
};

long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
				   struct kvm_create_spapr_tce *args)
{
	struct kvmppc_spapr_tce_table *stt = NULL;
	long npages;
	int ret = -ENOMEM;
	int i;

	/* Check this LIOBN hasn't been previously allocated */
	list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
		if (stt->liobn == args->liobn)
			return -EBUSY;
	}

	npages = kvmppc_stt_npages(args->window_size);

	stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
		      GFP_KERNEL);
	if (!stt)
		goto fail;

	stt->liobn = args->liobn;
	stt->window_size = args->window_size;
	stt->kvm = kvm;

	for (i = 0; i < npages; i++) {
		stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
		if (!stt->pages[i])
			goto fail;
	}

	kvm_get_kvm(kvm);

	mutex_lock(&kvm->lock);
	list_add(&stt->list, &kvm->arch.spapr_tce_tables);

	mutex_unlock(&kvm->lock);

	return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
				stt, O_RDWR);

fail:
	if (stt) {
		for (i = 0; i < npages; i++)
			if (stt->pages[i])
				__free_page(stt->pages[i]);

		kfree(stt);
	}
	return ret;
}

1030
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1031
   Assumes POWER7 or PPC970. */
1032 1033 1034 1035
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1036 1037 1038
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1058
	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1083
	struct kvmppc_linear_info *ri = filp->private_data;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
1096
	struct kvmppc_linear_info *ri;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

	r = kvmppc_hv_get_dirty_log(kvm, memslot);
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

1160 1161 1162
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
1163
	unsigned long npages;
1164
	unsigned long *phys;
1165

1166 1167
	/* Allocate a slot_phys array */
	phys = kvm->arch.slot_phys[mem->slot];
1168 1169
	if (!kvm->arch.using_mmu_notifiers && !phys) {
		npages = mem->memory_size >> PAGE_SHIFT;
1170 1171 1172 1173 1174 1175
		phys = vzalloc(npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		kvm->arch.slot_phys[mem->slot] = phys;
		kvm->arch.slot_npages[mem->slot] = npages;
	}
1176

1177 1178
	return 0;
}
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
static void unpin_slot(struct kvm *kvm, int slot_id)
{
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;

	physp = kvm->arch.slot_phys[slot_id];
	npages = kvm->arch.slot_npages[slot_id];
	if (physp) {
		spin_lock(&kvm->arch.slot_phys_lock);
		for (j = 0; j < npages; j++) {
			if (!(physp[j] & KVMPPC_GOT_PAGE))
				continue;
			pfn = physp[j] >> PAGE_SHIFT;
			page = pfn_to_page(pfn);
			SetPageDirty(page);
			put_page(page);
1197
		}
1198 1199 1200
		kvm->arch.slot_phys[slot_id] = NULL;
		spin_unlock(&kvm->arch.slot_phys_lock);
		vfree(physp);
1201
	}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
}

static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1213
	struct kvmppc_linear_info *ri = NULL;
1214 1215 1216
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1217
	unsigned long lpcr, senc;
1218 1219 1220 1221
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1222
	unsigned long i, npages;
1223 1224 1225 1226

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1227

1228 1229
	/* Look up the memslot for guest physical address 0 */
	memslot = gfn_to_memslot(kvm, 0);
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
		goto out;

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1244
	porder = __ilog2(psize);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
			goto out;
		}

1261 1262 1263 1264 1265 1266
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
			goto out;

1267
		/* Update VRMASD field in the LPCR */
1268
		senc = slb_pgsize_encoding(psize);
1269 1270
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1271 1272
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1273 1274 1275
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1276
		kvmppc_map_vrma(vcpu, memslot, porder);
1277 1278 1279 1280 1281 1282 1283

	} else {
		/* Set up to use an RMO region */
		rma_size = ri->npages;
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1284
		rmls = lpcr_rmls(rma_size);
1285
		err = -EINVAL;
1286
		if (rmls < 0) {
1287 1288
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
			goto out;
1289 1290 1291
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1310
		kvm->arch.lpcr = lpcr;
1311
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1312 1313
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1314
		/* Initialize phys addrs of pages in RMO */
1315 1316
		npages = ri->npages;
		porder = __ilog2(npages);
1317 1318 1319
		physp = kvm->arch.slot_phys[memslot->id];
		spin_lock(&kvm->arch.slot_phys_lock);
		for (i = 0; i < npages; ++i)
1320
			physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1321
		spin_unlock(&kvm->arch.slot_phys_lock);
1322 1323
	}

1324 1325 1326 1327 1328 1329 1330
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
 out:
	mutex_unlock(&kvm->lock);
	return err;
1331

1332 1333 1334
 up_out:
	up_read(&current->mm->mmap_sem);
	goto out;
1335 1336 1337 1338 1339
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
	long r;
1340
	unsigned long lpcr;
1341 1342 1343

	/* Allocate hashed page table */
	r = kvmppc_alloc_hpt(kvm);
1344 1345
	if (r)
		return r;
1346

1347
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1348 1349 1350

	kvm->arch.rma = NULL;

1351
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		unsigned long lpid = kvm->arch.lpid;
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1367 1368 1369
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1370 1371
	}
	kvm->arch.lpcr = lpcr;
1372

1373
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1374
	spin_lock_init(&kvm->arch.slot_phys_lock);
1375
	return 0;
1376 1377 1378 1379
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1380 1381
	unsigned long i;

1382 1383 1384
	if (!kvm->arch.using_mmu_notifiers)
		for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
			unpin_slot(kvm, i);
1385

1386 1387 1388 1389 1390
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1391
	kvmppc_free_hpt(kvm);
1392
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);