mt9t031.c 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Driver for MT9T031 CMOS Image Sensor from Micron
 *
 * Copyright (C) 2008, Guennadi Liakhovetski, DENX Software Engineering <lg@denx.de>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

11
#include <linux/device.h>
12 13
#include <linux/i2c.h>
#include <linux/log2.h>
14 15
#include <linux/pm.h>
#include <linux/slab.h>
16
#include <linux/v4l2-mediabus.h>
17
#include <linux/videodev2.h>
18
#include <linux/module.h>
19 20

#include <media/soc_camera.h>
21 22
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-subdev.h>
23
#include <media/v4l2-ctrls.h>
24

25 26 27 28 29 30 31
/*
 * ATTENTION: this driver still cannot be used outside of the soc-camera
 * framework because of its PM implementation, using the video_device node.
 * If hardware becomes available for testing, alternative PM approaches shall
 * be considered and tested.
 */

32 33
/*
 * mt9t031 i2c address 0x5d
34
 * The platform has to define i2c_board_info and link to it from
35 36
 * struct soc_camera_link
 */
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

/* mt9t031 selected register addresses */
#define MT9T031_CHIP_VERSION		0x00
#define MT9T031_ROW_START		0x01
#define MT9T031_COLUMN_START		0x02
#define MT9T031_WINDOW_HEIGHT		0x03
#define MT9T031_WINDOW_WIDTH		0x04
#define MT9T031_HORIZONTAL_BLANKING	0x05
#define MT9T031_VERTICAL_BLANKING	0x06
#define MT9T031_OUTPUT_CONTROL		0x07
#define MT9T031_SHUTTER_WIDTH_UPPER	0x08
#define MT9T031_SHUTTER_WIDTH		0x09
#define MT9T031_PIXEL_CLOCK_CONTROL	0x0a
#define MT9T031_FRAME_RESTART		0x0b
#define MT9T031_SHUTTER_DELAY		0x0c
#define MT9T031_RESET			0x0d
#define MT9T031_READ_MODE_1		0x1e
#define MT9T031_READ_MODE_2		0x20
#define MT9T031_READ_MODE_3		0x21
#define MT9T031_ROW_ADDRESS_MODE	0x22
#define MT9T031_COLUMN_ADDRESS_MODE	0x23
#define MT9T031_GLOBAL_GAIN		0x35
#define MT9T031_CHIP_ENABLE		0xF8

#define MT9T031_MAX_HEIGHT		1536
#define MT9T031_MAX_WIDTH		2048
#define MT9T031_MIN_HEIGHT		2
64
#define MT9T031_MIN_WIDTH		18
65 66 67 68 69 70
#define MT9T031_HORIZONTAL_BLANK	142
#define MT9T031_VERTICAL_BLANK		25
#define MT9T031_COLUMN_SKIP		32
#define MT9T031_ROW_SKIP		20

struct mt9t031 {
71
	struct v4l2_subdev subdev;
72 73 74 75 76 77
	struct v4l2_ctrl_handler hdl;
	struct {
		/* exposure/auto-exposure cluster */
		struct v4l2_ctrl *autoexposure;
		struct v4l2_ctrl *exposure;
	};
78
	struct v4l2_rect rect;	/* Sensor window */
79 80 81
	int model;	/* V4L2_IDENT_MT9T031* codes from v4l2-chip-ident.h */
	u16 xskip;
	u16 yskip;
82
	unsigned int total_h;
83
	unsigned short y_skip_top;	/* Lines to skip at the top */
84 85
};

86 87 88 89 90
static struct mt9t031 *to_mt9t031(const struct i2c_client *client)
{
	return container_of(i2c_get_clientdata(client), struct mt9t031, subdev);
}

91
static int reg_read(struct i2c_client *client, const u8 reg)
92
{
93
	return i2c_smbus_read_word_swapped(client, reg);
94 95
}

96
static int reg_write(struct i2c_client *client, const u8 reg,
97 98
		     const u16 data)
{
99
	return i2c_smbus_write_word_swapped(client, reg, data);
100 101
}

102
static int reg_set(struct i2c_client *client, const u8 reg,
103 104 105 106
		   const u16 data)
{
	int ret;

107
	ret = reg_read(client, reg);
108 109
	if (ret < 0)
		return ret;
110
	return reg_write(client, reg, ret | data);
111 112
}

113
static int reg_clear(struct i2c_client *client, const u8 reg,
114 115 116 117
		     const u16 data)
{
	int ret;

118
	ret = reg_read(client, reg);
119 120
	if (ret < 0)
		return ret;
121
	return reg_write(client, reg, ret & ~data);
122 123
}

124
static int set_shutter(struct i2c_client *client, const u32 data)
125 126 127
{
	int ret;

128
	ret = reg_write(client, MT9T031_SHUTTER_WIDTH_UPPER, data >> 16);
129 130

	if (ret >= 0)
131
		ret = reg_write(client, MT9T031_SHUTTER_WIDTH, data & 0xffff);
132 133 134 135

	return ret;
}

136
static int get_shutter(struct i2c_client *client, u32 *data)
137 138 139
{
	int ret;

140
	ret = reg_read(client, MT9T031_SHUTTER_WIDTH_UPPER);
141 142 143
	*data = ret << 16;

	if (ret >= 0)
144
		ret = reg_read(client, MT9T031_SHUTTER_WIDTH);
145 146 147 148 149
	*data |= ret & 0xffff;

	return ret < 0 ? ret : 0;
}

150
static int mt9t031_idle(struct i2c_client *client)
151 152 153 154
{
	int ret;

	/* Disable chip output, synchronous option update */
155
	ret = reg_write(client, MT9T031_RESET, 1);
156
	if (ret >= 0)
157
		ret = reg_write(client, MT9T031_RESET, 0);
158
	if (ret >= 0)
159
		ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2);
160 161 162 163

	return ret >= 0 ? 0 : -EIO;
}

164 165
static int mt9t031_s_stream(struct v4l2_subdev *sd, int enable)
{
166
	struct i2c_client *client = v4l2_get_subdevdata(sd);
167 168 169 170 171 172 173 174 175 176
	int ret;

	if (enable)
		/* Switch to master "normal" mode */
		ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 2);
	else
		/* Stop sensor readout */
		ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2);

	if (ret < 0)
177
		return -EIO;
178

179 180 181
	return 0;
}

182 183
/* target must be _even_ */
static u16 mt9t031_skip(s32 *source, s32 target, s32 max)
184
{
185 186 187 188 189 190 191 192 193 194 195 196 197
	unsigned int skip;

	if (*source < target + target / 2) {
		*source = target;
		return 1;
	}

	skip = min(max, *source + target / 2) / target;
	if (skip > 8)
		skip = 8;
	*source = target * skip;

	return skip;
198 199
}

200
/* rect is the sensor rectangle, the caller guarantees parameter validity */
201
static int mt9t031_set_params(struct i2c_client *client,
202
			      struct v4l2_rect *rect, u16 xskip, u16 yskip)
203
{
204
	struct mt9t031 *mt9t031 = to_mt9t031(client);
205
	int ret;
206
	u16 xbin, ybin;
207 208 209 210 211 212
	const u16 hblank = MT9T031_HORIZONTAL_BLANK,
		vblank = MT9T031_VERTICAL_BLANK;

	xbin = min(xskip, (u16)3);
	ybin = min(yskip, (u16)3);

213 214 215 216 217 218 219 220 221 222 223 224 225
	/*
	 * Could just do roundup(rect->left, [xy]bin * 2); but this is cheaper.
	 * There is always a valid suitably aligned value. The worst case is
	 * xbin = 3, width = 2048. Then we will start at 36, the last read out
	 * pixel will be 2083, which is < 2085 - first black pixel.
	 *
	 * MT9T031 datasheet imposes window left border alignment, depending on
	 * the selected xskip. Failing to conform to this requirement produces
	 * dark horizontal stripes in the image. However, even obeying to this
	 * requirement doesn't eliminate the stripes in all configurations. They
	 * appear "locally reproducibly," but can differ between tests under
	 * different lighting conditions.
	 */
226
	switch (xbin) {
227 228
	case 1:
		rect->left &= ~1;
229 230
		break;
	case 2:
231
		rect->left &= ~3;
232 233
		break;
	case 3:
234 235
		rect->left = rect->left > roundup(MT9T031_COLUMN_SKIP, 6) ?
			(rect->left / 6) * 6 : roundup(MT9T031_COLUMN_SKIP, 6);
236 237
	}

238 239 240 241 242
	rect->top &= ~1;

	dev_dbg(&client->dev, "skip %u:%u, rect %ux%u@%u:%u\n",
		xskip, yskip, rect->width, rect->height, rect->left, rect->top);

243
	/* Disable register update, reconfigure atomically */
244
	ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 1);
245 246 247
	if (ret < 0)
		return ret;

248
	/* Blanking and start values - default... */
249
	ret = reg_write(client, MT9T031_HORIZONTAL_BLANKING, hblank);
250
	if (ret >= 0)
251
		ret = reg_write(client, MT9T031_VERTICAL_BLANKING, vblank);
252

253
	if (yskip != mt9t031->yskip || xskip != mt9t031->xskip) {
254 255
		/* Binning, skipping */
		if (ret >= 0)
256
			ret = reg_write(client, MT9T031_COLUMN_ADDRESS_MODE,
257 258
					((xbin - 1) << 4) | (xskip - 1));
		if (ret >= 0)
259
			ret = reg_write(client, MT9T031_ROW_ADDRESS_MODE,
260 261
					((ybin - 1) << 4) | (yskip - 1));
	}
262 263
	dev_dbg(&client->dev, "new physical left %u, top %u\n",
		rect->left, rect->top);
264

265 266
	/*
	 * The caller provides a supported format, as guaranteed by
267
	 * .try_mbus_fmt(), soc_camera_s_crop() and soc_camera_cropcap()
268
	 */
269
	if (ret >= 0)
270
		ret = reg_write(client, MT9T031_COLUMN_START, rect->left);
271
	if (ret >= 0)
272
		ret = reg_write(client, MT9T031_ROW_START, rect->top);
273
	if (ret >= 0)
274
		ret = reg_write(client, MT9T031_WINDOW_WIDTH, rect->width - 1);
275
	if (ret >= 0)
276
		ret = reg_write(client, MT9T031_WINDOW_HEIGHT,
277
				rect->height + mt9t031->y_skip_top - 1);
278 279 280 281
	if (ret >= 0 && v4l2_ctrl_g_ctrl(mt9t031->autoexposure) == V4L2_EXPOSURE_AUTO) {
		mt9t031->total_h = rect->height + mt9t031->y_skip_top + vblank;

		ret = set_shutter(client, mt9t031->total_h);
282 283
	}

284 285
	/* Re-enable register update, commit all changes */
	if (ret >= 0)
286
		ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 1);
287

288 289 290 291 292 293
	if (ret >= 0) {
		mt9t031->rect = *rect;
		mt9t031->xskip = xskip;
		mt9t031->yskip = yskip;
	}

294 295 296
	return ret < 0 ? ret : 0;
}

297
static int mt9t031_s_crop(struct v4l2_subdev *sd, const struct v4l2_crop *a)
298
{
299
	struct v4l2_rect rect = a->c;
300
	struct i2c_client *client = v4l2_get_subdevdata(sd);
301
	struct mt9t031 *mt9t031 = to_mt9t031(client);
302

303 304 305 306 307 308 309 310 311
	rect.width = ALIGN(rect.width, 2);
	rect.height = ALIGN(rect.height, 2);

	soc_camera_limit_side(&rect.left, &rect.width,
		     MT9T031_COLUMN_SKIP, MT9T031_MIN_WIDTH, MT9T031_MAX_WIDTH);

	soc_camera_limit_side(&rect.top, &rect.height,
		     MT9T031_ROW_SKIP, MT9T031_MIN_HEIGHT, MT9T031_MAX_HEIGHT);

312
	return mt9t031_set_params(client, &rect, mt9t031->xskip, mt9t031->yskip);
313 314 315 316
}

static int mt9t031_g_crop(struct v4l2_subdev *sd, struct v4l2_crop *a)
{
317
	struct i2c_client *client = v4l2_get_subdevdata(sd);
318 319 320 321
	struct mt9t031 *mt9t031 = to_mt9t031(client);

	a->c	= mt9t031->rect;
	a->type	= V4L2_BUF_TYPE_VIDEO_CAPTURE;
322

323 324 325 326 327 328 329 330 331 332 333 334 335
	return 0;
}

static int mt9t031_cropcap(struct v4l2_subdev *sd, struct v4l2_cropcap *a)
{
	a->bounds.left			= MT9T031_COLUMN_SKIP;
	a->bounds.top			= MT9T031_ROW_SKIP;
	a->bounds.width			= MT9T031_MAX_WIDTH;
	a->bounds.height		= MT9T031_MAX_HEIGHT;
	a->defrect			= a->bounds;
	a->type				= V4L2_BUF_TYPE_VIDEO_CAPTURE;
	a->pixelaspect.numerator	= 1;
	a->pixelaspect.denominator	= 1;
336

337 338 339
	return 0;
}

340 341
static int mt9t031_g_fmt(struct v4l2_subdev *sd,
			 struct v4l2_mbus_framefmt *mf)
342
{
343
	struct i2c_client *client = v4l2_get_subdevdata(sd);
344 345
	struct mt9t031 *mt9t031 = to_mt9t031(client);

346 347 348 349 350
	mf->width	= mt9t031->rect.width / mt9t031->xskip;
	mf->height	= mt9t031->rect.height / mt9t031->yskip;
	mf->code	= V4L2_MBUS_FMT_SBGGR10_1X10;
	mf->colorspace	= V4L2_COLORSPACE_SRGB;
	mf->field	= V4L2_FIELD_NONE;
351 352

	return 0;
353 354
}

355 356
static int mt9t031_s_fmt(struct v4l2_subdev *sd,
			 struct v4l2_mbus_framefmt *mf)
357
{
358
	struct i2c_client *client = v4l2_get_subdevdata(sd);
359
	struct mt9t031 *mt9t031 = to_mt9t031(client);
360
	u16 xskip, yskip;
361
	struct v4l2_rect rect = mt9t031->rect;
362 363

	/*
364 365
	 * try_fmt has put width and height within limits.
	 * S_FMT: use binning and skipping for scaling
366
	 */
367 368 369 370 371
	xskip = mt9t031_skip(&rect.width, mf->width, MT9T031_MAX_WIDTH);
	yskip = mt9t031_skip(&rect.height, mf->height, MT9T031_MAX_HEIGHT);

	mf->code	= V4L2_MBUS_FMT_SBGGR10_1X10;
	mf->colorspace	= V4L2_COLORSPACE_SRGB;
372

373
	/* mt9t031_set_params() doesn't change width and height */
374
	return mt9t031_set_params(client, &rect, xskip, yskip);
375 376
}

377 378 379 380
/*
 * If a user window larger than sensor window is requested, we'll increase the
 * sensor window.
 */
381 382
static int mt9t031_try_fmt(struct v4l2_subdev *sd,
			   struct v4l2_mbus_framefmt *mf)
383
{
384
	v4l_bound_align_image(
385 386 387 388 389
		&mf->width, MT9T031_MIN_WIDTH, MT9T031_MAX_WIDTH, 1,
		&mf->height, MT9T031_MIN_HEIGHT, MT9T031_MAX_HEIGHT, 1, 0);

	mf->code	= V4L2_MBUS_FMT_SBGGR10_1X10;
	mf->colorspace	= V4L2_COLORSPACE_SRGB;
390 391 392 393

	return 0;
}

394 395
static int mt9t031_g_chip_ident(struct v4l2_subdev *sd,
				struct v4l2_dbg_chip_ident *id)
396
{
397
	struct i2c_client *client = v4l2_get_subdevdata(sd);
398
	struct mt9t031 *mt9t031 = to_mt9t031(client);
399

400
	if (id->match.type != V4L2_CHIP_MATCH_I2C_ADDR)
401 402
		return -EINVAL;

403
	if (id->match.addr != client->addr)
404 405 406 407 408 409 410 411 412
		return -ENODEV;

	id->ident	= mt9t031->model;
	id->revision	= 0;

	return 0;
}

#ifdef CONFIG_VIDEO_ADV_DEBUG
413 414
static int mt9t031_g_register(struct v4l2_subdev *sd,
			      struct v4l2_dbg_register *reg)
415
{
416
	struct i2c_client *client = v4l2_get_subdevdata(sd);
417

418
	if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff)
419 420
		return -EINVAL;

421
	if (reg->match.addr != client->addr)
422 423
		return -ENODEV;

424
	reg->val = reg_read(client, reg->reg);
425 426 427 428 429 430 431

	if (reg->val > 0xffff)
		return -EIO;

	return 0;
}

432 433
static int mt9t031_s_register(struct v4l2_subdev *sd,
			      struct v4l2_dbg_register *reg)
434
{
435
	struct i2c_client *client = v4l2_get_subdevdata(sd);
436

437
	if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff)
438 439
		return -EINVAL;

440
	if (reg->match.addr != client->addr)
441 442
		return -ENODEV;

443
	if (reg_write(client, reg->reg, reg->val) < 0)
444 445 446 447 448 449
		return -EIO;

	return 0;
}
#endif

450
static int mt9t031_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
451
{
452 453 454 455
	struct mt9t031 *mt9t031 = container_of(ctrl->handler,
					       struct mt9t031, hdl);
	const u32 shutter_max = MT9T031_MAX_HEIGHT + MT9T031_VERTICAL_BLANK;
	s32 min, max;
456 457 458

	switch (ctrl->id) {
	case V4L2_CID_EXPOSURE_AUTO:
459 460 461 462 463
		min = mt9t031->exposure->minimum;
		max = mt9t031->exposure->maximum;
		mt9t031->exposure->val =
			(shutter_max / 2 + (mt9t031->total_h - 1) * (max - min))
				/ shutter_max + min;
464
		break;
465 466 467 468
	}
	return 0;
}

469
static int mt9t031_s_ctrl(struct v4l2_ctrl *ctrl)
470
{
471 472 473
	struct mt9t031 *mt9t031 = container_of(ctrl->handler,
					       struct mt9t031, hdl);
	struct v4l2_subdev *sd = &mt9t031->subdev;
474
	struct i2c_client *client = v4l2_get_subdevdata(sd);
475
	struct v4l2_ctrl *exp = mt9t031->exposure;
476 477 478 479
	int data;

	switch (ctrl->id) {
	case V4L2_CID_VFLIP:
480
		if (ctrl->val)
481
			data = reg_set(client, MT9T031_READ_MODE_2, 0x8000);
482
		else
483
			data = reg_clear(client, MT9T031_READ_MODE_2, 0x8000);
484 485
		if (data < 0)
			return -EIO;
486
		return 0;
487
	case V4L2_CID_HFLIP:
488
		if (ctrl->val)
489
			data = reg_set(client, MT9T031_READ_MODE_2, 0x4000);
490
		else
491
			data = reg_clear(client, MT9T031_READ_MODE_2, 0x4000);
492 493
		if (data < 0)
			return -EIO;
494
		return 0;
495 496
	case V4L2_CID_GAIN:
		/* See Datasheet Table 7, Gain settings. */
497
		if (ctrl->val <= ctrl->default_value) {
498
			/* Pack it into 0..1 step 0.125, register values 0..8 */
499 500
			unsigned long range = ctrl->default_value - ctrl->minimum;
			data = ((ctrl->val - ctrl->minimum) * 8 + range / 2) / range;
501

502
			dev_dbg(&client->dev, "Setting gain %d\n", data);
503
			data = reg_write(client, MT9T031_GLOBAL_GAIN, data);
504 505 506
			if (data < 0)
				return -EIO;
		} else {
507
			/* Pack it into 1.125..128 variable step, register values 9..0x7860 */
508
			/* We assume qctrl->maximum - qctrl->default_value - 1 > 0 */
509
			unsigned long range = ctrl->maximum - ctrl->default_value - 1;
510
			/* calculated gain: map 65..127 to 9..1024 step 0.125 */
511
			unsigned long gain = ((ctrl->val - ctrl->default_value - 1) *
512
					       1015 + range / 2) / range + 9;
513

514
			if (gain <= 32)		/* calculated gain 9..32 -> 9..32 */
515
				data = gain;
516
			else if (gain <= 64)	/* calculated gain 33..64 -> 0x51..0x60 */
517 518
				data = ((gain - 32) * 16 + 16) / 32 + 80;
			else
519 520
				/* calculated gain 65..1024 -> (1..120) << 8 + 0x60 */
				data = (((gain - 64 + 7) * 32) & 0xff00) | 0x60;
521

522
			dev_dbg(&client->dev, "Set gain from 0x%x to 0x%x\n",
523 524
				reg_read(client, MT9T031_GLOBAL_GAIN), data);
			data = reg_write(client, MT9T031_GLOBAL_GAIN, data);
525 526 527
			if (data < 0)
				return -EIO;
		}
528
		return 0;
529

530 531 532 533 534
	case V4L2_CID_EXPOSURE_AUTO:
		if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
			unsigned int range = exp->maximum - exp->minimum;
			unsigned int shutter = ((exp->val - exp->minimum) * 1048 +
						 range / 2) / range + 1;
535 536
			u32 old;

537
			get_shutter(client, &old);
538
			dev_dbg(&client->dev, "Set shutter from %u to %u\n",
539
				old, shutter);
540
			if (set_shutter(client, shutter) < 0)
541
				return -EIO;
542
		} else {
543
			const u16 vblank = MT9T031_VERTICAL_BLANK;
544
			mt9t031->total_h = mt9t031->rect.height +
545
				mt9t031->y_skip_top + vblank;
546

547
			if (set_shutter(client, mt9t031->total_h) < 0)
548
				return -EIO;
549 550
		}
		return 0;
551 552
	default:
		return -EINVAL;
553 554 555 556
	}
	return 0;
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * Power Management:
 * This function does nothing for now but must be present for pm to work
 */
static int mt9t031_runtime_suspend(struct device *dev)
{
	return 0;
}

/*
 * Power Management:
 * COLUMN_ADDRESS_MODE and ROW_ADDRESS_MODE are not rewritten if unchanged
 * they are however changed at reset if the platform hook is present
 * thus we rewrite them with the values stored by the driver
 */
static int mt9t031_runtime_resume(struct device *dev)
{
	struct video_device *vdev = to_video_device(dev);
575
	struct v4l2_subdev *sd = soc_camera_vdev_to_subdev(vdev);
576
	struct i2c_client *client = v4l2_get_subdevdata(sd);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	struct mt9t031 *mt9t031 = to_mt9t031(client);

	int ret;
	u16 xbin, ybin;

	xbin = min(mt9t031->xskip, (u16)3);
	ybin = min(mt9t031->yskip, (u16)3);

	ret = reg_write(client, MT9T031_COLUMN_ADDRESS_MODE,
		((xbin - 1) << 4) | (mt9t031->xskip - 1));
	if (ret < 0)
		return ret;

	ret = reg_write(client, MT9T031_ROW_ADDRESS_MODE,
		((ybin - 1) << 4) | (mt9t031->yskip - 1));
	if (ret < 0)
		return ret;

	return 0;
}

static struct dev_pm_ops mt9t031_dev_pm_ops = {
	.runtime_suspend	= mt9t031_runtime_suspend,
	.runtime_resume		= mt9t031_runtime_resume,
};

static struct device_type mt9t031_dev_type = {
	.name	= "MT9T031",
	.pm	= &mt9t031_dev_pm_ops,
};

608 609 610
static int mt9t031_s_power(struct v4l2_subdev *sd, int on)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
611
	struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
612
	struct video_device *vdev = soc_camera_i2c_to_vdev(client);
613
	int ret;
614

615 616 617 618
	if (on) {
		ret = soc_camera_power_on(&client->dev, icl);
		if (ret < 0)
			return ret;
619
		vdev->dev.type = &mt9t031_dev_type;
620
	} else {
621
		vdev->dev.type = NULL;
622 623
		soc_camera_power_off(&client->dev, icl);
	}
624 625 626 627

	return 0;
}

628 629 630 631
/*
 * Interface active, can use i2c. If it fails, it can indeed mean, that
 * this wasn't our capture interface, so, we wait for the right one
 */
632
static int mt9t031_video_probe(struct i2c_client *client)
633
{
634
	struct mt9t031 *mt9t031 = to_mt9t031(client);
635
	s32 data;
636
	int ret;
637

638 639 640 641 642 643 644 645 646
	ret = mt9t031_s_power(&mt9t031->subdev, 1);
	if (ret < 0)
		return ret;

	ret = mt9t031_idle(client);
	if (ret < 0) {
		dev_err(&client->dev, "Failed to initialise the camera\n");
		goto done;
	}
647 648

	/* Read out the chip version register */
649
	data = reg_read(client, MT9T031_CHIP_VERSION);
650 651 652 653 654 655

	switch (data) {
	case 0x1621:
		mt9t031->model = V4L2_IDENT_MT9T031;
		break;
	default:
656
		dev_err(&client->dev,
657
			"No MT9T031 chip detected, register read %x\n", data);
658 659
		ret = -ENODEV;
		goto done;
660 661
	}

662
	dev_info(&client->dev, "Detected a MT9T031 chip ID %x\n", data);
663

664 665 666 667
	ret = v4l2_ctrl_handler_setup(&mt9t031->hdl);

done:
	mt9t031_s_power(&mt9t031->subdev, 0);
668

669
	return ret;
670 671
}

672 673
static int mt9t031_g_skip_top_lines(struct v4l2_subdev *sd, u32 *lines)
{
674
	struct i2c_client *client = v4l2_get_subdevdata(sd);
675 676 677 678 679 680 681
	struct mt9t031 *mt9t031 = to_mt9t031(client);

	*lines = mt9t031->y_skip_top;

	return 0;
}

682 683 684 685 686
static const struct v4l2_ctrl_ops mt9t031_ctrl_ops = {
	.g_volatile_ctrl = mt9t031_g_volatile_ctrl,
	.s_ctrl = mt9t031_s_ctrl,
};

687 688
static struct v4l2_subdev_core_ops mt9t031_subdev_core_ops = {
	.g_chip_ident	= mt9t031_g_chip_ident,
689
	.s_power	= mt9t031_s_power,
690 691 692 693 694 695
#ifdef CONFIG_VIDEO_ADV_DEBUG
	.g_register	= mt9t031_g_register,
	.s_register	= mt9t031_s_register,
#endif
};

696
static int mt9t031_enum_fmt(struct v4l2_subdev *sd, unsigned int index,
697 698 699 700 701 702 703 704 705
			    enum v4l2_mbus_pixelcode *code)
{
	if (index)
		return -EINVAL;

	*code = V4L2_MBUS_FMT_SBGGR10_1X10;
	return 0;
}

706 707 708 709
static int mt9t031_g_mbus_config(struct v4l2_subdev *sd,
				struct v4l2_mbus_config *cfg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
710
	struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
711 712 713 714 715 716 717 718 719 720 721 722 723 724

	cfg->flags = V4L2_MBUS_MASTER | V4L2_MBUS_PCLK_SAMPLE_RISING |
		V4L2_MBUS_PCLK_SAMPLE_FALLING | V4L2_MBUS_HSYNC_ACTIVE_HIGH |
		V4L2_MBUS_VSYNC_ACTIVE_HIGH | V4L2_MBUS_DATA_ACTIVE_HIGH;
	cfg->type = V4L2_MBUS_PARALLEL;
	cfg->flags = soc_camera_apply_board_flags(icl, cfg);

	return 0;
}

static int mt9t031_s_mbus_config(struct v4l2_subdev *sd,
				const struct v4l2_mbus_config *cfg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
725
	struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
726 727 728 729 730 731 732 733

	if (soc_camera_apply_board_flags(icl, cfg) &
	    V4L2_MBUS_PCLK_SAMPLE_FALLING)
		return reg_clear(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000);
	else
		return reg_set(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000);
}

734 735
static struct v4l2_subdev_video_ops mt9t031_subdev_video_ops = {
	.s_stream	= mt9t031_s_stream,
736 737 738
	.s_mbus_fmt	= mt9t031_s_fmt,
	.g_mbus_fmt	= mt9t031_g_fmt,
	.try_mbus_fmt	= mt9t031_try_fmt,
739
	.s_crop		= mt9t031_s_crop,
740 741
	.g_crop		= mt9t031_g_crop,
	.cropcap	= mt9t031_cropcap,
742
	.enum_mbus_fmt	= mt9t031_enum_fmt,
743 744
	.g_mbus_config	= mt9t031_g_mbus_config,
	.s_mbus_config	= mt9t031_s_mbus_config,
745 746
};

747 748 749 750
static struct v4l2_subdev_sensor_ops mt9t031_subdev_sensor_ops = {
	.g_skip_top_lines	= mt9t031_g_skip_top_lines,
};

751 752 753
static struct v4l2_subdev_ops mt9t031_subdev_ops = {
	.core	= &mt9t031_subdev_core_ops,
	.video	= &mt9t031_subdev_video_ops,
754
	.sensor	= &mt9t031_subdev_sensor_ops,
755 756
};

757 758 759 760
static int mt9t031_probe(struct i2c_client *client,
			 const struct i2c_device_id *did)
{
	struct mt9t031 *mt9t031;
761
	struct soc_camera_link *icl = soc_camera_i2c_to_link(client);
762 763 764
	struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
	int ret;

765 766 767
	if (!icl) {
		dev_err(&client->dev, "MT9T031 driver needs platform data\n");
		return -EINVAL;
768 769 770 771 772 773 774 775 776 777 778 779
	}

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
		dev_warn(&adapter->dev,
			 "I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n");
		return -EIO;
	}

	mt9t031 = kzalloc(sizeof(struct mt9t031), GFP_KERNEL);
	if (!mt9t031)
		return -ENOMEM;

780
	v4l2_i2c_subdev_init(&mt9t031->subdev, client, &mt9t031_subdev_ops);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	v4l2_ctrl_handler_init(&mt9t031->hdl, 5);
	v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
			V4L2_CID_VFLIP, 0, 1, 1, 0);
	v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
			V4L2_CID_HFLIP, 0, 1, 1, 0);
	v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
			V4L2_CID_GAIN, 0, 127, 1, 64);

	/*
	 * Simulated autoexposure. If enabled, we calculate shutter width
	 * ourselves in the driver based on vertical blanking and frame width
	 */
	mt9t031->autoexposure = v4l2_ctrl_new_std_menu(&mt9t031->hdl,
			&mt9t031_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0,
			V4L2_EXPOSURE_AUTO);
	mt9t031->exposure = v4l2_ctrl_new_std(&mt9t031->hdl, &mt9t031_ctrl_ops,
			V4L2_CID_EXPOSURE, 1, 255, 1, 255);

	mt9t031->subdev.ctrl_handler = &mt9t031->hdl;
	if (mt9t031->hdl.error) {
		int err = mt9t031->hdl.error;

		kfree(mt9t031);
		return err;
	}
	v4l2_ctrl_auto_cluster(2, &mt9t031->autoexposure,
				V4L2_EXPOSURE_MANUAL, true);
808

809
	mt9t031->y_skip_top	= 0;
810 811 812 813 814
	mt9t031->rect.left	= MT9T031_COLUMN_SKIP;
	mt9t031->rect.top	= MT9T031_ROW_SKIP;
	mt9t031->rect.width	= MT9T031_MAX_WIDTH;
	mt9t031->rect.height	= MT9T031_MAX_HEIGHT;

815 816 817
	mt9t031->xskip = 1;
	mt9t031->yskip = 1;

818
	ret = mt9t031_video_probe(client);
819
	if (ret) {
820
		v4l2_ctrl_handler_free(&mt9t031->hdl);
821 822
		kfree(mt9t031);
	}
823 824 825 826 827 828

	return ret;
}

static int mt9t031_remove(struct i2c_client *client)
{
829
	struct mt9t031 *mt9t031 = to_mt9t031(client);
830

831 832
	v4l2_device_unregister_subdev(&mt9t031->subdev);
	v4l2_ctrl_handler_free(&mt9t031->hdl);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	kfree(mt9t031);

	return 0;
}

static const struct i2c_device_id mt9t031_id[] = {
	{ "mt9t031", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, mt9t031_id);

static struct i2c_driver mt9t031_i2c_driver = {
	.driver = {
		.name = "mt9t031",
	},
	.probe		= mt9t031_probe,
	.remove		= mt9t031_remove,
	.id_table	= mt9t031_id,
};

853
module_i2c_driver(mt9t031_i2c_driver);
854 855 856 857

MODULE_DESCRIPTION("Micron MT9T031 Camera driver");
MODULE_AUTHOR("Guennadi Liakhovetski <lg@denx.de>");
MODULE_LICENSE("GPL v2");