e500.c 14.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Author: Yu Liu, <yu.liu@freescale.com>
 *
 * Description:
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
16
#include <linux/slab.h>
17
#include <linux/err.h>
18
#include <linux/export.h>
19 20
#include <linux/module.h>
#include <linux/miscdevice.h>
21 22 23 24 25 26

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>

27
#include "../mm/mmu_decl.h"
28
#include "booke.h"
29
#include "e500.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct id {
	unsigned long val;
	struct id **pentry;
};

#define NUM_TIDS 256

/*
 * This table provide mappings from:
 * (guestAS,guestTID,guestPR) --> ID of physical cpu
 * guestAS	[0..1]
 * guestTID	[0..255]
 * guestPR	[0..1]
 * ID		[1..255]
 * Each vcpu keeps one vcpu_id_table.
 */
struct vcpu_id_table {
	struct id id[2][NUM_TIDS][2];
};

/*
 * This table provide reversed mappings of vcpu_id_table:
 * ID --> address of vcpu_id_table item.
 * Each physical core has one pcpu_id_table.
 */
struct pcpu_id_table {
	struct id *entry[NUM_TIDS];
};

static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);

/* This variable keeps last used shadow ID on local core.
 * The valid range of shadow ID is [1..255] */
static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);

/*
 * Allocate a free shadow id and setup a valid sid mapping in given entry.
 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
 *
 * The caller must have preemption disabled, and keep it that way until
 * it has finished with the returned shadow id (either written into the
 * TLB or arch.shadow_pid, or discarded).
 */
static inline int local_sid_setup_one(struct id *entry)
{
	unsigned long sid;
	int ret = -1;

79
	sid = __this_cpu_inc_return(pcpu_last_used_sid);
80
	if (sid < NUM_TIDS) {
81
		__this_cpu_write(pcpu_sids)entry[sid], entry);
82
		entry->val = sid;
83
		entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
		ret = sid;
	}

	/*
	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
	 * the caller will invalidate everything and start over.
	 *
	 * sid > NUM_TIDS indicates a race, which we disable preemption to
	 * avoid.
	 */
	WARN_ON(sid > NUM_TIDS);

	return ret;
}

/*
 * Check if given entry contain a valid shadow id mapping.
 * An ID mapping is considered valid only if
 * both vcpu and pcpu know this mapping.
 *
 * The caller must have preemption disabled, and keep it that way until
 * it has finished with the returned shadow id (either written into the
 * TLB or arch.shadow_pid, or discarded).
 */
static inline int local_sid_lookup(struct id *entry)
{
	if (entry && entry->val != 0 &&
111 112
	    __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
	    entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
113 114 115 116 117 118 119
		return entry->val;
	return -1;
}

/* Invalidate all id mappings on local core -- call with preempt disabled */
static inline void local_sid_destroy_all(void)
{
120 121
	__this_cpu_write(pcpu_last_used_sid, 0);
	memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
	return vcpu_e500->idt;
}

static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	kfree(vcpu_e500->idt);
	vcpu_e500->idt = NULL;
}

/* Map guest pid to shadow.
 * We use PID to keep shadow of current guest non-zero PID,
 * and use PID1 to keep shadow of guest zero PID.
 * So that guest tlbe with TID=0 can be accessed at any time */
static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	preempt_disable();
	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
			get_cur_as(&vcpu_e500->vcpu),
			get_cur_pid(&vcpu_e500->vcpu),
			get_cur_pr(&vcpu_e500->vcpu), 1);
	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
			get_cur_as(&vcpu_e500->vcpu), 0,
			get_cur_pr(&vcpu_e500->vcpu), 1);
	preempt_enable();
}

/* Invalidate all mappings on vcpu */
static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));

	/* Update shadow pid when mappings are changed */
	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}

/* Invalidate one ID mapping on vcpu */
static inline void kvmppc_e500_id_table_reset_one(
			       struct kvmppc_vcpu_e500 *vcpu_e500,
			       int as, int pid, int pr)
{
	struct vcpu_id_table *idt = vcpu_e500->idt;

	BUG_ON(as >= 2);
	BUG_ON(pid >= NUM_TIDS);
	BUG_ON(pr >= 2);

	idt->id[as][pid][pr].val = 0;
	idt->id[as][pid][pr].pentry = NULL;

	/* Update shadow pid when mappings are changed */
	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}

/*
 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
 * This function first lookup if a valid mapping exists,
 * if not, then creates a new one.
 *
 * The caller must have preemption disabled, and keep it that way until
 * it has finished with the returned shadow id (either written into the
 * TLB or arch.shadow_pid, or discarded).
 */
unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
				 unsigned int as, unsigned int gid,
				 unsigned int pr, int avoid_recursion)
{
	struct vcpu_id_table *idt = vcpu_e500->idt;
	int sid;

	BUG_ON(as >= 2);
	BUG_ON(gid >= NUM_TIDS);
	BUG_ON(pr >= 2);

	sid = local_sid_lookup(&idt->id[as][gid][pr]);

	while (sid <= 0) {
		/* No mapping yet */
		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
		if (sid <= 0) {
			_tlbil_all();
			local_sid_destroy_all();
		}

		/* Update shadow pid when mappings are changed */
		if (!avoid_recursion)
			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
	}

	return sid;
}

unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
				      struct kvm_book3e_206_tlb_entry *gtlbe)
{
	return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
				   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
}

void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	if (vcpu->arch.pid != pid) {
		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
	}
}

/* gtlbe must not be mapped by more than one host tlbe */
void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
                           struct kvm_book3e_206_tlb_entry *gtlbe)
{
	struct vcpu_id_table *idt = vcpu_e500->idt;
	unsigned int pr, tid, ts, pid;
	u32 val, eaddr;
	unsigned long flags;

	ts = get_tlb_ts(gtlbe);
	tid = get_tlb_tid(gtlbe);

	preempt_disable();

	/* One guest ID may be mapped to two shadow IDs */
	for (pr = 0; pr < 2; pr++) {
		/*
		 * The shadow PID can have a valid mapping on at most one
		 * host CPU.  In the common case, it will be valid on this
		 * CPU, in which case we do a local invalidation of the
		 * specific address.
		 *
		 * If the shadow PID is not valid on the current host CPU,
		 * we invalidate the entire shadow PID.
		 */
		pid = local_sid_lookup(&idt->id[ts][tid][pr]);
		if (pid <= 0) {
			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
			continue;
		}

		/*
		 * The guest is invalidating a 4K entry which is in a PID
		 * that has a valid shadow mapping on this host CPU.  We
		 * search host TLB to invalidate it's shadow TLB entry,
		 * similar to __tlbil_va except that we need to look in AS1.
		 */
		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
		eaddr = get_tlb_eaddr(gtlbe);

		local_irq_save(flags);

		mtspr(SPRN_MAS6, val);
		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
		val = mfspr(SPRN_MAS1);
		if (val & MAS1_VALID) {
			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
			asm volatile("tlbwe");
		}

		local_irq_restore(flags);
	}

	preempt_enable();
}

void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	kvmppc_e500_id_table_reset_all(vcpu_e500);
}

void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
{
	/* Recalc shadow pid since MSR changes */
	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
}

302 303 304 305 306 307 308 309
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}

void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}

310
static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
311
{
312
	kvmppc_booke_vcpu_load(vcpu, cpu);
313 314 315

	/* Shadow PID may be expired on local core */
	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
316 317
}

318
static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
319
{
320 321 322 323
#ifdef CONFIG_SPE
	if (vcpu->arch.shadow_msr & MSR_SPE)
		kvmppc_vcpu_disable_spe(vcpu);
#endif
324 325

	kvmppc_booke_vcpu_put(vcpu);
326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

int kvmppc_core_check_processor_compat(void)
{
	int r;

	if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
		r = 0;
	else
		r = -ENOTSUPP;

	return r;
}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	struct kvm_book3e_206_tlb_entry *tlbe;

	/* Insert large initial mapping for guest. */
	tlbe = get_entry(vcpu_e500, 1, 0);
	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
	tlbe->mas2 = 0;
	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;

	/* 4K map for serial output. Used by kernel wrapper. */
	tlbe = get_entry(vcpu_e500, 1, 1);
	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
}

357 358 359 360 361 362
int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	kvmppc_e500_tlb_setup(vcpu_e500);

L
Liu Yu 已提交
363 364
	/* Registers init */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
S
Scott Wood 已提交
365
	vcpu_e500->svr = mfspr(SPRN_SVR);
L
Liu Yu 已提交
366

367 368
	vcpu->arch.cpu_type = KVM_CPU_E500V2;

369 370 371
	return 0;
}

372 373
static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
				      struct kvm_sregs *sregs)
S
Scott Wood 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
	                       KVM_SREGS_E_PM;
	sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;

	sregs->u.e.impl.fsl.features = 0;
	sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
	sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
	sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;

	sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
	sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
	sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
	sregs->u.e.ivor_high[3] =
		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];

	kvmppc_get_sregs_ivor(vcpu, sregs);
393
	kvmppc_get_sregs_e500_tlb(vcpu, sregs);
394
	return 0;
S
Scott Wood 已提交
395 396
}

397 398
static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
				      struct kvm_sregs *sregs)
S
Scott Wood 已提交
399 400
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
401
	int ret;
S
Scott Wood 已提交
402 403 404 405 406 407 408

	if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
		vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
		vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
		vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
	}

409 410 411
	ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
	if (ret < 0)
		return ret;
S
Scott Wood 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
		return 0;

	if (sregs->u.e.features & KVM_SREGS_E_SPE) {
		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
			sregs->u.e.ivor_high[0];
		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
			sregs->u.e.ivor_high[1];
		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
			sregs->u.e.ivor_high[2];
	}

	if (sregs->u.e.features & KVM_SREGS_E_PM) {
		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
			sregs->u.e.ivor_high[3];
	}

	return kvmppc_set_sregs_ivor(vcpu, sregs);
}

433 434
static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
				   union kvmppc_one_reg *val)
435
{
436 437
	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
	return r;
438 439
}

440 441
static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
				   union kvmppc_one_reg *val)
442
{
443 444
	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
	return r;
445 446
}

447 448
static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
						     unsigned int id)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
{
	struct kvmppc_vcpu_e500 *vcpu_e500;
	struct kvm_vcpu *vcpu;
	int err;

	vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu_e500) {
		err = -ENOMEM;
		goto out;
	}

	vcpu = &vcpu_e500->vcpu;
	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

465 466 467
	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
		goto uninit_vcpu;

468 469
	err = kvmppc_e500_tlb_init(vcpu_e500);
	if (err)
470
		goto uninit_id;
471

A
Alexander Graf 已提交
472 473 474 475
	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!vcpu->arch.shared)
		goto uninit_tlb;

476 477
	return vcpu;

A
Alexander Graf 已提交
478 479
uninit_tlb:
	kvmppc_e500_tlb_uninit(vcpu_e500);
480 481
uninit_id:
	kvmppc_e500_id_table_free(vcpu_e500);
482 483 484 485 486 487 488 489
uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
out:
	return ERR_PTR(err);
}

490
static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
491 492 493
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

A
Alexander Graf 已提交
494
	free_page((unsigned long)vcpu->arch.shared);
495
	kvmppc_e500_tlb_uninit(vcpu_e500);
496 497
	kvmppc_e500_id_table_free(vcpu_e500);
	kvm_vcpu_uninit(vcpu);
498 499 500
	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
}

501
static int kvmppc_core_init_vm_e500(struct kvm *kvm)
502 503 504 505
{
	return 0;
}

506
static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
507 508 509
{
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
static struct kvmppc_ops kvm_ops_e500 = {
	.get_sregs = kvmppc_core_get_sregs_e500,
	.set_sregs = kvmppc_core_set_sregs_e500,
	.get_one_reg = kvmppc_get_one_reg_e500,
	.set_one_reg = kvmppc_set_one_reg_e500,
	.vcpu_load   = kvmppc_core_vcpu_load_e500,
	.vcpu_put    = kvmppc_core_vcpu_put_e500,
	.vcpu_create = kvmppc_core_vcpu_create_e500,
	.vcpu_free   = kvmppc_core_vcpu_free_e500,
	.mmu_destroy  = kvmppc_mmu_destroy_e500,
	.init_vm = kvmppc_core_init_vm_e500,
	.destroy_vm = kvmppc_core_destroy_vm_e500,
	.emulate_op = kvmppc_core_emulate_op_e500,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
};

527
static int __init kvmppc_e500_init(void)
528
{
529 530
	int r, i;
	unsigned long ivor[3];
531 532 533
	/* Process remaining handlers above the generic first 16 */
	unsigned long *handler = &kvmppc_booke_handler_addr[16];
	unsigned long handler_len;
534
	unsigned long max_ivor = 0;
535

536 537
	r = kvmppc_core_check_processor_compat();
	if (r)
538
		goto err_out;
539

540 541
	r = kvmppc_booke_init();
	if (r)
542
		goto err_out;
543

544 545 546 547 548
	/* copy extra E500 exception handlers */
	ivor[0] = mfspr(SPRN_IVOR32);
	ivor[1] = mfspr(SPRN_IVOR33);
	ivor[2] = mfspr(SPRN_IVOR34);
	for (i = 0; i < 3; i++) {
549 550
		if (ivor[i] > ivor[max_ivor])
			max_ivor = i;
551

552
		handler_len = handler[i + 1] - handler[i];
553
		memcpy((void *)kvmppc_booke_handlers + ivor[i],
554
		       (void *)handler[i], handler_len);
555
	}
556 557 558
	handler_len = handler[max_ivor + 1] - handler[max_ivor];
	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
			   ivor[max_ivor] + handler_len);
559

560 561 562 563 564 565
	r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
	if (r)
		goto err_out;
	kvm_ops_e500.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_e500;

566 567
err_out:
	return r;
568 569
}

570
static void __exit kvmppc_e500_exit(void)
571
{
572
	kvmppc_pr_ops = NULL;
573 574 575 576 577
	kvmppc_booke_exit();
}

module_init(kvmppc_e500_init);
module_exit(kvmppc_e500_exit);
578 579
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");