sdma_v4_0.c 59.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_trace.h"

30 31 32 33
#include "sdma0/sdma0_4_2_offset.h"
#include "sdma0/sdma0_4_2_sh_mask.h"
#include "sdma1/sdma1_4_2_offset.h"
#include "sdma1/sdma1_4_2_sh_mask.h"
34
#include "hdp/hdp_4_0_offset.h"
35
#include "sdma0/sdma0_4_1_default.h"
36 37 38 39 40

#include "soc15_common.h"
#include "soc15.h"
#include "vega10_sdma_pkt_open.h"

41 42 43
#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"

44 45
MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 47
MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 49
MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50
MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51
MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52
MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
53

54 55 56
#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L

57 58 59 60 61
static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);

62 63 64 65 66 67 68 69 70 71 72 73 74
static const struct soc15_reg_golden golden_settings_sdma_4[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
75
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
76 77 78 79 80 81 82 83 84 85 86
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
87 88
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
89 90
};

91 92 93 94 95
static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
96 97
};

98
static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
99 100 101 102
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
103 104
};

105
static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
106 107 108 109 110 111 112 113 114
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 116
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
117 118
};

119 120 121 122 123
static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
};

static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
124 125 126 127 128
{
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
129
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
130
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
131
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
132
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
133 134
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
135
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
136
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
137
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 139 140 141 142 143 144 145 146 147 148 149
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
151
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000),
152 153 154
};

static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
155 156 157 158
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 164 165 166
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 169 170 171 172 173 174 175 176 177 178 179 180
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000),
182 183
};

184
static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
185
{
186 187
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
188 189
};

190 191 192 193 194 195
static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
{
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
};

196 197
static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
		u32 instance, u32 offset)
198
{
199 200
	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
201 202 203 204 205 206
}

static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
{
	switch (adev->asic_type) {
	case CHIP_VEGA10:
207
		soc15_program_register_sequence(adev,
208
						 golden_settings_sdma_4,
209
						 ARRAY_SIZE(golden_settings_sdma_4));
210
		soc15_program_register_sequence(adev,
211
						 golden_settings_sdma_vg10,
212
						 ARRAY_SIZE(golden_settings_sdma_vg10));
213
		break;
214
	case CHIP_VEGA12:
215 216 217 218 219 220
		soc15_program_register_sequence(adev,
						golden_settings_sdma_4,
						ARRAY_SIZE(golden_settings_sdma_4));
		soc15_program_register_sequence(adev,
						golden_settings_sdma_vg12,
						ARRAY_SIZE(golden_settings_sdma_vg12));
221
		break;
222 223
	case CHIP_VEGA20:
		soc15_program_register_sequence(adev,
224 225 226 227 228 229 230 231
						golden_settings_sdma0_4_2_init,
						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
		soc15_program_register_sequence(adev,
						golden_settings_sdma0_4_2,
						ARRAY_SIZE(golden_settings_sdma0_4_2));
		soc15_program_register_sequence(adev,
						golden_settings_sdma1_4_2,
						ARRAY_SIZE(golden_settings_sdma1_4_2));
232
		break;
233
	case CHIP_RAVEN:
234
		soc15_program_register_sequence(adev,
235 236 237 238 239 240 241 242 243 244
						golden_settings_sdma_4_1,
						ARRAY_SIZE(golden_settings_sdma_4_1));
		if (adev->rev_id >= 8)
			soc15_program_register_sequence(adev,
							golden_settings_sdma_rv2,
							ARRAY_SIZE(golden_settings_sdma_rv2));
		else
			soc15_program_register_sequence(adev,
							golden_settings_sdma_rv1,
							ARRAY_SIZE(golden_settings_sdma_rv1));
245
		break;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	default:
		break;
	}
}

/**
 * sdma_v4_0_init_microcode - load ucode images from disk
 *
 * @adev: amdgpu_device pointer
 *
 * Use the firmware interface to load the ucode images into
 * the driver (not loaded into hw).
 * Returns 0 on success, error on failure.
 */

// emulation only, won't work on real chip
// vega10 real chip need to use PSP to load firmware
static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
{
	const char *chip_name;
	char fw_name[30];
	int err = 0, i;
	struct amdgpu_firmware_info *info = NULL;
	const struct common_firmware_header *header = NULL;
	const struct sdma_firmware_header_v1_0 *hdr;

	DRM_DEBUG("\n");

	switch (adev->asic_type) {
	case CHIP_VEGA10:
		chip_name = "vega10";
		break;
278 279 280
	case CHIP_VEGA12:
		chip_name = "vega12";
		break;
281 282 283
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
284
	case CHIP_RAVEN:
285 286
		if (adev->rev_id >= 8)
			chip_name = "raven2";
287 288
		else if (adev->pdev->device == 0x15d8)
			chip_name = "picasso";
289 290
		else
			chip_name = "raven";
291
		break;
292 293
	default:
		BUG();
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		if (i == 0)
			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
		else
			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
		if (err)
			goto out;
		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
		if (err)
			goto out;
		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
		if (adev->sdma.instance[i].feature_version >= 20)
			adev->sdma.instance[i].burst_nop = true;
		DRM_DEBUG("psp_load == '%s'\n",
313
				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
314 315 316 317 318 319 320 321 322 323 324 325

		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
			info->fw = adev->sdma.instance[i].fw;
			header = (const struct common_firmware_header *)info->fw->data;
			adev->firmware.fw_size +=
				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
		}
	}
out:
	if (err) {
326
		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
		for (i = 0; i < adev->sdma.num_instances; i++) {
			release_firmware(adev->sdma.instance[i].fw);
			adev->sdma.instance[i].fw = NULL;
		}
	}
	return err;
}

/**
 * sdma_v4_0_ring_get_rptr - get the current read pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current rptr from the hardware (VEGA10+).
 */
static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
{
344
	u64 *rptr;
345 346

	/* XXX check if swapping is necessary on BE */
347
	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
	return ((*rptr) >> 2);
}

/**
 * sdma_v4_0_ring_get_wptr - get the current write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current wptr from the hardware (VEGA10+).
 */
static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
363
	u64 wptr;
364 365 366

	if (ring->use_doorbell) {
		/* XXX check if swapping is necessary on BE */
367 368
		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
369 370
	} else {
		u32 lowbit, highbit;
371

372 373
		lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
		highbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
374 375

		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
376
				ring->me, highbit, lowbit);
377 378 379
		wptr = highbit;
		wptr = wptr << 32;
		wptr |= lowbit;
380 381
	}

382
	return wptr >> 2;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

/**
 * sdma_v4_0_ring_set_wptr - commit the write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Write the wptr back to the hardware (VEGA10+).
 */
static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	DRM_DEBUG("Setting write pointer\n");
	if (ring->use_doorbell) {
398 399
		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];

400 401 402 403 404 405 406 407
		DRM_DEBUG("Using doorbell -- "
				"wptr_offs == 0x%08x "
				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
				ring->wptr_offs,
				lower_32_bits(ring->wptr << 2),
				upper_32_bits(ring->wptr << 2));
		/* XXX check if swapping is necessary on BE */
408
		WRITE_ONCE(*wb, (ring->wptr << 2));
409 410 411 412 413 414
		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
				ring->doorbell_index, ring->wptr << 2);
		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
	} else {
		DRM_DEBUG("Not using doorbell -- "
				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
415
				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
416
				ring->me,
417
				lower_32_bits(ring->wptr << 2),
418
				ring->me,
419
				upper_32_bits(ring->wptr << 2));
420 421
		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	}
}

static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
	int i;

	for (i = 0; i < count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			amdgpu_ring_write(ring, ring->funcs->nop |
				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
		else
			amdgpu_ring_write(ring, ring->funcs->nop);
}

/**
 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 *
 * @ring: amdgpu ring pointer
 * @ib: IB object to schedule
 *
 * Schedule an IB in the DMA ring (VEGA10).
 */
static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
447
					struct amdgpu_ib *ib,
448
					unsigned vmid, bool ctx_switch)
449
{
450 451
	/* IB packet must end on a 8 DW boundary */
	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
452

453
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
454
			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
455 456 457 458 459 460
	/* base must be 32 byte aligned */
	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, ib->length_dw);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, 0);
461 462 463

}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
				   int mem_space, int hdp,
				   uint32_t addr0, uint32_t addr1,
				   uint32_t ref, uint32_t mask,
				   uint32_t inv)
{
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
	if (mem_space) {
		/* memory */
		amdgpu_ring_write(ring, addr0);
		amdgpu_ring_write(ring, addr1);
	} else {
		/* registers */
		amdgpu_ring_write(ring, addr0 << 2);
		amdgpu_ring_write(ring, addr1 << 2);
	}
	amdgpu_ring_write(ring, ref); /* reference */
	amdgpu_ring_write(ring, mask); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
}

489 490 491 492 493 494 495 496 497
/**
 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 *
 * @ring: amdgpu ring pointer
 *
 * Emit an hdp flush packet on the requested DMA ring.
 */
static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
498
	struct amdgpu_device *adev = ring->adev;
499
	u32 ref_and_mask = 0;
500
	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
501

502
	if (ring->me == 0)
503 504 505 506
		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
	else
		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;

507 508 509 510
	sdma_v4_0_wait_reg_mem(ring, 0, 1,
			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
			       ref_and_mask, ref_and_mask, 10);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
}

/**
 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 *
 * @ring: amdgpu ring pointer
 * @fence: amdgpu fence object
 *
 * Add a DMA fence packet to the ring to write
 * the fence seq number and DMA trap packet to generate
 * an interrupt if needed (VEGA10).
 */
static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
				      unsigned flags)
{
	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
	/* write the fence */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
	/* zero in first two bits */
	BUG_ON(addr & 0x3);
	amdgpu_ring_write(ring, lower_32_bits(addr));
	amdgpu_ring_write(ring, upper_32_bits(addr));
	amdgpu_ring_write(ring, lower_32_bits(seq));

	/* optionally write high bits as well */
	if (write64bit) {
		addr += 4;
		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
		/* zero in first two bits */
		BUG_ON(addr & 0x3);
		amdgpu_ring_write(ring, lower_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(seq));
	}

	/* generate an interrupt */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
}


/**
 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the gfx async dma ring buffers (VEGA10).
 */
static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
{
	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
	u32 rb_cntl, ib_cntl;
	int i;

	if ((adev->mman.buffer_funcs_ring == sdma0) ||
	    (adev->mman.buffer_funcs_ring == sdma1))
568
			amdgpu_ttm_set_buffer_funcs_status(adev, false);
569 570

	for (i = 0; i < adev->sdma.num_instances; i++) {
571
		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
572
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
573 574
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
575
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
576
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	}

	sdma0->ready = false;
	sdma1->ready = false;
}

/**
 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the compute async dma queues (VEGA10).
 */
static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
{
	/* XXX todo */
}

/**
 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs context switch.
 *
 * Halt or unhalt the async dma engines context switch (VEGA10).
 */
static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
{
605
	u32 f32_cntl, phase_quantum = 0;
606 607
	int i;

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	if (amdgpu_sdma_phase_quantum) {
		unsigned value = amdgpu_sdma_phase_quantum;
		unsigned unit = 0;

		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
			value = (value + 1) >> 1;
			unit++;
		}
		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
			WARN_ONCE(1,
			"clamping sdma_phase_quantum to %uK clock cycles\n",
				  value << unit);
		}
		phase_quantum =
			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
	}

632
	for (i = 0; i < adev->sdma.num_instances; i++) {
633
		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
634 635
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
636
		if (enable && amdgpu_sdma_phase_quantum) {
637
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
638
			       phase_quantum);
639
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
640
			       phase_quantum);
641
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
642 643
			       phase_quantum);
		}
644
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	}

}

/**
 * sdma_v4_0_enable - stop the async dma engines
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines (VEGA10).
 */
static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
{
	u32 f32_cntl;
	int i;

	if (enable == false) {
		sdma_v4_0_gfx_stop(adev);
		sdma_v4_0_rlc_stop(adev);
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
668
		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
669
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
670
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
671 672 673 674 675 676 677 678 679 680 681 682 683 684
	}
}

/**
 * sdma_v4_0_gfx_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the gfx DMA ring buffers and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
685
	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
686
	u32 rb_bufsz;
687
	u32 wb_offset;
688 689
	u32 doorbell;
	u32 doorbell_offset;
690
	u32 temp;
691
	u64 wptr_gpu_addr;
692
	int i, r;
693 694 695 696 697

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		wb_offset = (ring->rptr_offs * 4);

698
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
699 700 701

		/* Set ring buffer size in dwords */
		rb_bufsz = order_base_2(ring->ring_size / 4);
702
		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
703 704 705 706 707 708
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
#ifdef __BIG_ENDIAN
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
					RPTR_WRITEBACK_SWAP_ENABLE, 1);
#endif
709
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
710 711

		/* Initialize the ring buffer's read and write pointers */
712 713 714 715
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
716 717

		/* set the wb address whether it's enabled or not */
718
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
719
		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
720
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
721 722 723 724
		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);

		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);

725 726
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
727 728

		ring->wptr = 0;
729 730

		/* before programing wptr to a less value, need set minor_ptr_update first */
731
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
732 733

		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
734 735
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
736
		}
737

738 739
		doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
		doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
740

741
		if (ring->use_doorbell) {
742 743 744 745 746 747
			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
					OFFSET, ring->doorbell_index);
		} else {
			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
		}
748 749
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
750 751
		adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
						      ring->doorbell_index);
752

753 754 755 756
		if (amdgpu_sriov_vf(adev))
			sdma_v4_0_ring_set_wptr(ring);

		/* set minor_ptr_update to 0 after wptr programed */
757
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
758

759
		/* set utc l1 enable flag always to 1 */
760
		temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
761
		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
762
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
763

764 765
		if (!amdgpu_sriov_vf(adev)) {
			/* unhalt engine */
766
			temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
767
			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
768
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
769
		}
770

771 772
		/* setup the wptr shadow polling */
		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
773
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
774
		       lower_32_bits(wptr_gpu_addr));
775
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
776
		       upper_32_bits(wptr_gpu_addr));
777
		wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
778 779 780 781
		if (amdgpu_sriov_vf(adev))
			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
		else
			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
782
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
783

784 785
		/* enable DMA RB */
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
786
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
787

788
		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
789 790 791 792 793
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
#ifdef __BIG_ENDIAN
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
#endif
		/* enable DMA IBs */
794
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
795 796 797

		ring->ready = true;

798 799 800 801 802
		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
			sdma_v4_0_ctx_switch_enable(adev, true);
			sdma_v4_0_enable(adev, true);
		}

803 804 805 806 807 808 809
		r = amdgpu_ring_test_ring(ring);
		if (r) {
			ring->ready = false;
			return r;
		}

		if (adev->mman.buffer_funcs_ring == ring)
810
			amdgpu_ttm_set_buffer_funcs_status(adev, true);
811

812 813 814 815 816
	}

	return 0;
}

817 818 819 820 821 822
static void
sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
{
	uint32_t def, data;

	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
823
		/* enable idle interrupt */
824 825 826 827 828 829 830 831 832 833 834 835 836 837
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;

		if (data != def)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
	} else {
		/* disable idle interrupt */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
		if (data != def)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
	}
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
{
	uint32_t def, data;

	/* Enable HW based PG. */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
	if (data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);

	/* enable interrupt */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
	if (data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);

	/* Configure hold time to filter in-valid power on/off request. Use default right now */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
	/* Configure switch time for hysteresis purpose. Use default right now */
	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
	if(data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
}

static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
{
	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
		return;

	switch (adev->asic_type) {
	case CHIP_RAVEN:
		sdma_v4_1_init_power_gating(adev);
873
		sdma_v4_1_update_power_gating(adev, true);
874 875 876 877 878 879
		break;
	default:
		break;
	}
}

880 881 882 883 884 885 886 887 888 889
/**
 * sdma_v4_0_rlc_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the compute DMA queues and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
{
890 891
	sdma_v4_0_init_pg(adev);

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	return 0;
}

/**
 * sdma_v4_0_load_microcode - load the sDMA ME ucode
 *
 * @adev: amdgpu_device pointer
 *
 * Loads the sDMA0/1 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
{
	const struct sdma_firmware_header_v1_0 *hdr;
	const __le32 *fw_data;
	u32 fw_size;
	int i, j;

	/* halt the MEs */
	sdma_v4_0_enable(adev, false);

	for (i = 0; i < adev->sdma.num_instances; i++) {
		if (!adev->sdma.instance[i].fw)
			return -EINVAL;

		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
		amdgpu_ucode_print_sdma_hdr(&hdr->header);
		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;

		fw_data = (const __le32 *)
			(adev->sdma.instance[i].fw->data +
				le32_to_cpu(hdr->header.ucode_array_offset_bytes));

925
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
926 927

		for (j = 0; j < fw_size; j++)
928
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
929

930
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	}

	return 0;
}

/**
 * sdma_v4_0_start - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the DMA engines and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_start(struct amdgpu_device *adev)
{
946
	int r = 0;
947

948
	if (amdgpu_sriov_vf(adev)) {
949
		sdma_v4_0_ctx_switch_enable(adev, false);
950 951 952 953 954 955 956
		sdma_v4_0_enable(adev, false);

		/* set RB registers */
		r = sdma_v4_0_gfx_resume(adev);
		return r;
	}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		r = sdma_v4_0_load_microcode(adev);
		if (r)
			return r;
	}

	/* unhalt the MEs */
	sdma_v4_0_enable(adev, true);
	/* enable sdma ring preemption */
	sdma_v4_0_ctx_switch_enable(adev, true);

	/* start the gfx rings and rlc compute queues */
	r = sdma_v4_0_gfx_resume(adev);
	if (r)
		return r;
	r = sdma_v4_0_rlc_resume(adev);

974
	return r;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
}

/**
 * sdma_v4_0_ring_test_ring - simple async dma engine test
 *
 * @ring: amdgpu_ring structure holding ring information
 *
 * Test the DMA engine by writing using it to write an
 * value to memory. (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	unsigned i;
	unsigned index;
	int r;
	u32 tmp;
	u64 gpu_addr;

995
	r = amdgpu_device_wb_get(adev, &index);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	if (r) {
		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);

	r = amdgpu_ring_alloc(ring, 5);
	if (r) {
		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1008
		amdgpu_device_wb_free(adev, index);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		return r;
	}

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
	amdgpu_ring_write(ring, 0xDEADBEEF);
	amdgpu_ring_commit(ring);

	for (i = 0; i < adev->usec_timeout; i++) {
		tmp = le32_to_cpu(adev->wb.wb[index]);
1022
		if (tmp == 0xDEADBEEF)
1023 1024 1025 1026 1027
			break;
		DRM_UDELAY(1);
	}

	if (i < adev->usec_timeout) {
1028
		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
1029 1030 1031 1032 1033
	} else {
		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
			  ring->idx, tmp);
		r = -EINVAL;
	}
1034
	amdgpu_device_wb_free(adev, index);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	return r;
}

/**
 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 *
 * Test a simple IB in the DMA ring (VEGA10).
 * Returns 0 on success, error on failure.
 */
static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
	struct amdgpu_device *adev = ring->adev;
	struct amdgpu_ib ib;
	struct dma_fence *f = NULL;
	unsigned index;
	long r;
	u32 tmp = 0;
	u64 gpu_addr;

1057
	r = amdgpu_device_wb_get(adev, &index);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	if (r) {
		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);
	memset(&ib, 0, sizeof(ib));
	r = amdgpu_ib_get(adev, NULL, 256, &ib);
	if (r) {
		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
		goto err0;
	}

	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib.ptr[1] = lower_32_bits(gpu_addr);
	ib.ptr[2] = upper_32_bits(gpu_addr);
	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
	ib.ptr[4] = 0xDEADBEEF;
	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.length_dw = 8;

	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
	if (r)
		goto err1;

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	r = dma_fence_wait_timeout(f, false, timeout);
	if (r == 0) {
		DRM_ERROR("amdgpu: IB test timed out\n");
		r = -ETIMEDOUT;
		goto err1;
	} else if (r < 0) {
		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
		goto err1;
	}
	tmp = le32_to_cpu(adev->wb.wb[index]);
	if (tmp == 0xDEADBEEF) {
1099
		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
1100 1101 1102 1103 1104
		r = 0;
	} else {
		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
		r = -EINVAL;
	}
1105
err1:
1106 1107
	amdgpu_ib_free(adev, &ib, NULL);
	dma_fence_put(f);
1108
err0:
1109
	amdgpu_device_wb_free(adev, index);
1110
	return r;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
}


/**
 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @src: src addr to copy from
 * @count: number of page entries to update
 *
 * Update PTEs by copying them from the GART using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
				  uint64_t pe, uint64_t src,
				  unsigned count)
{
	unsigned bytes = count * 8;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
	ib->ptr[ib->length_dw++] = bytes - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src);
	ib->ptr[ib->length_dw++] = upper_32_bits(src);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);

}

/**
 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update PTEs by writing them manually using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
				   uint64_t value, unsigned count,
				   uint32_t incr)
{
	unsigned ndw = count * 2;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
	ib->ptr[ib->length_dw++] = ndw - 1;
	for (; ndw > 0; ndw -= 2) {
		ib->ptr[ib->length_dw++] = lower_32_bits(value);
		ib->ptr[ib->length_dw++] = upper_32_bits(value);
		value += incr;
	}
}

/**
 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update the page tables using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
				     uint64_t pe,
				     uint64_t addr, unsigned count,
				     uint32_t incr, uint64_t flags)
{
	/* for physically contiguous pages (vram) */
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1192 1193
	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
	ib->ptr[ib->length_dw++] = incr; /* increment size */
	ib->ptr[ib->length_dw++] = 0;
	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
}

/**
 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
 *
 * @ib: indirect buffer to fill with padding
 *
 */
static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
	u32 pad_count;
	int i;

	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
	for (i = 0; i < pad_count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
		else
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
}


/**
 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
 *
 * @ring: amdgpu_ring pointer
 *
 * Make sure all previous operations are completed (CIK).
 */
static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
	uint32_t seq = ring->fence_drv.sync_seq;
	uint64_t addr = ring->fence_drv.gpu_addr;

	/* wait for idle */
1238 1239 1240 1241
	sdma_v4_0_wait_reg_mem(ring, 1, 0,
			       addr & 0xfffffffc,
			       upper_32_bits(addr) & 0xffffffff,
			       seq, 0xffffffff, 4);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
}


/**
 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
 *
 * @ring: amdgpu_ring pointer
 * @vm: amdgpu_vm pointer
 *
 * Update the page table base and flush the VM TLB
 * using sDMA (VEGA10).
 */
static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1255
					 unsigned vmid, uint64_t pd_addr)
1256
{
1257
	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1258 1259
}

1260 1261 1262 1263 1264 1265 1266 1267 1268
static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
				     uint32_t reg, uint32_t val)
{
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
	amdgpu_ring_write(ring, reg);
	amdgpu_ring_write(ring, val);
}

1269 1270 1271
static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
					 uint32_t val, uint32_t mask)
{
1272
	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1273 1274
}

1275 1276 1277 1278
static int sdma_v4_0_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1279
	if (adev->asic_type == CHIP_RAVEN)
1280 1281 1282
		adev->sdma.num_instances = 1;
	else
		adev->sdma.num_instances = 2;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	sdma_v4_0_set_ring_funcs(adev);
	sdma_v4_0_set_buffer_funcs(adev);
	sdma_v4_0_set_vm_pte_funcs(adev);
	sdma_v4_0_set_irq_funcs(adev);

	return 0;
}


static int sdma_v4_0_sw_init(void *handle)
{
	struct amdgpu_ring *ring;
	int r, i;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	/* SDMA trap event */
1300
	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1301 1302 1303 1304 1305
			      &adev->sdma.trap_irq);
	if (r)
		return r;

	/* SDMA trap event */
1306
	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
			      &adev->sdma.trap_irq);
	if (r)
		return r;

	r = sdma_v4_0_init_microcode(adev);
	if (r) {
		DRM_ERROR("Failed to load sdma firmware!\n");
		return r;
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		ring->ring_obj = NULL;
		ring->use_doorbell = true;

		DRM_INFO("use_doorbell being set to: [%s]\n",
				ring->use_doorbell?"true":"false");

1325 1326 1327 1328 1329 1330 1331 1332 1333
		if (adev->asic_type == CHIP_VEGA10)
			ring->doorbell_index = (i == 0) ?
				(AMDGPU_VEGA10_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
				: (AMDGPU_VEGA10_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
		else
			ring->doorbell_index = (i == 0) ?
				(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
				: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

		sprintf(ring->name, "sdma%d", i);
		r = amdgpu_ring_init(adev, ring, 1024,
				     &adev->sdma.trap_irq,
				     (i == 0) ?
				     AMDGPU_SDMA_IRQ_TRAP0 :
				     AMDGPU_SDMA_IRQ_TRAP1);
		if (r)
			return r;
	}

	return r;
}

static int sdma_v4_0_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int i;

1353
	for (i = 0; i < adev->sdma.num_instances; i++)
1354 1355
		amdgpu_ring_fini(&adev->sdma.instance[i].ring);

1356 1357 1358 1359 1360
	for (i = 0; i < adev->sdma.num_instances; i++) {
		release_firmware(adev->sdma.instance[i].fw);
		adev->sdma.instance[i].fw = NULL;
	}

1361 1362 1363 1364 1365 1366 1367 1368
	return 0;
}

static int sdma_v4_0_hw_init(void *handle)
{
	int r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1369 1370 1371
	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs->set_powergating_by_smu)
		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	sdma_v4_0_init_golden_registers(adev);

	r = sdma_v4_0_start(adev);

	return r;
}

static int sdma_v4_0_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1383 1384 1385
	if (amdgpu_sriov_vf(adev))
		return 0;

1386 1387 1388
	sdma_v4_0_ctx_switch_enable(adev, false);
	sdma_v4_0_enable(adev, false);

1389 1390 1391
	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs->set_powergating_by_smu)
		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	return 0;
}

static int sdma_v4_0_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v4_0_hw_fini(adev);
}

static int sdma_v4_0_resume(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v4_0_hw_init(adev);
}

static bool sdma_v4_0_is_idle(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 i;
1413

1414
	for (i = 0; i < adev->sdma.num_instances; i++) {
1415
		u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1416

1417
		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1418
			return false;
1419 1420 1421 1422 1423 1424 1425 1426
	}

	return true;
}

static int sdma_v4_0_wait_for_idle(void *handle)
{
	unsigned i;
1427
	u32 sdma0, sdma1;
1428
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1429

1430
	for (i = 0; i < adev->usec_timeout; i++) {
1431 1432
		sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
		sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
}

static int sdma_v4_0_soft_reset(void *handle)
{
	/* todo */

	return 0;
}

static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
					struct amdgpu_irq_src *source,
					unsigned type,
					enum amdgpu_interrupt_state state)
{
	u32 sdma_cntl;

	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
1456 1457
		sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
		sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	sdma_cntl = RREG32(reg_offset);
	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
	WREG32(reg_offset, sdma_cntl);

	return 0;
}

static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
				      struct amdgpu_irq_src *source,
				      struct amdgpu_iv_entry *entry)
{
	DRM_DEBUG("IH: SDMA trap\n");
	switch (entry->client_id) {
1473
	case SOC15_IH_CLIENTID_SDMA0:
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[0].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
1489
	case SOC15_IH_CLIENTID_SDMA1:
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[1].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
	}
	return 0;
}

static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
					      struct amdgpu_irq_src *source,
					      struct amdgpu_iv_entry *entry)
{
	DRM_ERROR("Illegal instruction in SDMA command stream\n");
	schedule_work(&adev->reset_work);
	return 0;
}


static void sdma_v4_0_update_medium_grain_clock_gating(
		struct amdgpu_device *adev,
		bool enable)
{
	uint32_t data, def;

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
		/* enable sdma0 clock gating */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);

1539
		if (adev->sdma.num_instances > 1) {
1540 1541 1542 1543 1544 1545 1546 1547 1548
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1549
			if (def != data)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
		}
	} else {
		/* disable sdma0 clock gating */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);

		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);

1567
		if (adev->sdma.num_instances > 1) {
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
		}
	}
}


static void sdma_v4_0_update_medium_grain_light_sleep(
		struct amdgpu_device *adev,
		bool enable)
{
	uint32_t data, def;

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
		/* 1-not override: enable sdma0 mem light sleep */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);

		/* 1-not override: enable sdma1 mem light sleep */
1598
		if (adev->sdma.num_instances > 1) {
1599 1600 1601 1602
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1603 1604 1605 1606 1607 1608
		}
	} else {
		/* 0-override:disable sdma0 mem light sleep */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
		if (def != data)
1609
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1610 1611

		/* 0-override:disable sdma1 mem light sleep */
1612
		if (adev->sdma.num_instances > 1) {
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
		}
	}
}

static int sdma_v4_0_set_clockgating_state(void *handle,
					  enum amd_clockgating_state state)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1626 1627 1628
	if (amdgpu_sriov_vf(adev))
		return 0;

1629 1630
	switch (adev->asic_type) {
	case CHIP_VEGA10:
1631
	case CHIP_VEGA12:
1632
	case CHIP_VEGA20:
1633
	case CHIP_RAVEN:
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		sdma_v4_0_update_medium_grain_clock_gating(adev,
				state == AMD_CG_STATE_GATE ? true : false);
		sdma_v4_0_update_medium_grain_light_sleep(adev,
				state == AMD_CG_STATE_GATE ? true : false);
		break;
	default:
		break;
	}
	return 0;
}

static int sdma_v4_0_set_powergating_state(void *handle,
					  enum amd_powergating_state state)
{
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	switch (adev->asic_type) {
	case CHIP_RAVEN:
		sdma_v4_1_update_power_gating(adev,
				state == AMD_PG_STATE_GATE ? true : false);
		break;
	default:
		break;
	}

1659 1660 1661
	return 0;
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int data;

	if (amdgpu_sriov_vf(adev))
		*flags = 0;

	/* AMD_CG_SUPPORT_SDMA_MGCG */
	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;

	/* AMD_CG_SUPPORT_SDMA_LS */
	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
		*flags |= AMD_CG_SUPPORT_SDMA_LS;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
	.name = "sdma_v4_0",
	.early_init = sdma_v4_0_early_init,
	.late_init = NULL,
	.sw_init = sdma_v4_0_sw_init,
	.sw_fini = sdma_v4_0_sw_fini,
	.hw_init = sdma_v4_0_hw_init,
	.hw_fini = sdma_v4_0_hw_fini,
	.suspend = sdma_v4_0_suspend,
	.resume = sdma_v4_0_resume,
	.is_idle = sdma_v4_0_is_idle,
	.wait_for_idle = sdma_v4_0_wait_for_idle,
	.soft_reset = sdma_v4_0_soft_reset,
	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
	.set_powergating_state = sdma_v4_0_set_powergating_state,
1696
	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1697 1698 1699 1700 1701 1702 1703
};

static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
	.type = AMDGPU_RING_TYPE_SDMA,
	.align_mask = 0xf,
	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
	.support_64bit_ptrs = true,
1704
	.vmhub = AMDGPU_MMHUB,
1705 1706 1707 1708 1709
	.get_rptr = sdma_v4_0_ring_get_rptr,
	.get_wptr = sdma_v4_0_ring_get_wptr,
	.set_wptr = sdma_v4_0_ring_set_wptr,
	.emit_frame_size =
		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1710
		3 + /* hdp invalidate */
1711
		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1712 1713 1714
		/* sdma_v4_0_ring_emit_vm_flush */
		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
	.emit_ib = sdma_v4_0_ring_emit_ib,
	.emit_fence = sdma_v4_0_ring_emit_fence,
	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
	.test_ring = sdma_v4_0_ring_test_ring,
	.test_ib = sdma_v4_0_ring_test_ib,
	.insert_nop = sdma_v4_0_ring_insert_nop,
	.pad_ib = sdma_v4_0_ring_pad_ib,
1726
	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1727
	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1728
	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1729 1730 1731 1732 1733 1734
};

static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
{
	int i;

1735
	for (i = 0; i < adev->sdma.num_instances; i++) {
1736
		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1737 1738
		adev->sdma.instance[i].ring.me = i;
	}
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
}

static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
	.set = sdma_v4_0_set_trap_irq_state,
	.process = sdma_v4_0_process_trap_irq,
};

static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
	.process = sdma_v4_0_process_illegal_inst_irq,
};

static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
{
	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
}

/**
 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 * @src_offset: src GPU address
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
 *
1765
 * Copy GPU buffers using the DMA engine (VEGA10/12).
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
 * Used by the amdgpu ttm implementation to move pages if
 * registered as the asic copy callback.
 */
static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
				       uint64_t src_offset,
				       uint64_t dst_offset,
				       uint32_t byte_count)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
	ib->ptr[ib->length_dw++] = byte_count - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
}

/**
 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 * @src_data: value to write to buffer
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
 *
1792
 * Fill GPU buffers using the DMA engine (VEGA10/12).
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
 */
static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
				       uint32_t src_data,
				       uint64_t dst_offset,
				       uint32_t byte_count)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = src_data;
	ib->ptr[ib->length_dw++] = byte_count - 1;
}

static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
	.copy_max_bytes = 0x400000,
	.copy_num_dw = 7,
	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,

	.fill_max_bytes = 0x400000,
	.fill_num_dw = 5,
	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
};

static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
{
1818 1819
	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1820 1821 1822
}

static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
1823
	.copy_pte_num_dw = 7,
1824
	.copy_pte = sdma_v4_0_vm_copy_pte,
1825

1826 1827 1828 1829 1830 1831
	.write_pte = sdma_v4_0_vm_write_pte,
	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
};

static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
{
1832
	struct drm_gpu_scheduler *sched;
1833 1834
	unsigned i;

1835 1836 1837 1838 1839
	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
	for (i = 0; i < adev->sdma.num_instances; i++) {
		sched = &adev->sdma.instance[i].ring.sched;
		adev->vm_manager.vm_pte_rqs[i] =
			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1840
	}
1841
	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
1842 1843
}

1844
const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
1845 1846 1847 1848 1849 1850
	.type = AMD_IP_BLOCK_TYPE_SDMA,
	.major = 4,
	.minor = 0,
	.rev = 0,
	.funcs = &sdma_v4_0_ip_funcs,
};