core-card.c 18.9 KB
Newer Older
1 2
/*
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

S
Stefan Richter 已提交
19
#include <linux/bug.h>
20 21
#include <linux/completion.h>
#include <linux/crc-itu-t.h>
22
#include <linux/device.h>
23
#include <linux/errno.h>
24 25
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
26 27
#include <linux/jiffies.h>
#include <linux/kernel.h>
28
#include <linux/kref.h>
S
Stefan Richter 已提交
29
#include <linux/list.h>
30
#include <linux/module.h>
31
#include <linux/mutex.h>
S
Stefan Richter 已提交
32 33 34 35 36
#include <linux/spinlock.h>
#include <linux/workqueue.h>

#include <asm/atomic.h>
#include <asm/byteorder.h>
37

38
#include "core.h"
39

40
int fw_compute_block_crc(__be32 *block)
41 42 43 44 45 46 47 48 49 50 51
{
	int length;
	u16 crc;

	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
	*block |= cpu_to_be32(crc);

	return length;
}

52
static DEFINE_MUTEX(card_mutex);
53 54 55 56 57
static LIST_HEAD(card_list);

static LIST_HEAD(descriptor_list);
static int descriptor_count;

58
static __be32 tmp_config_rom[256];
59 60
/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
static size_t config_rom_length = 1 + 4 + 1 + 1;
61

62 63 64
#define BIB_CRC(v)		((v) <<  0)
#define BIB_CRC_LENGTH(v)	((v) << 16)
#define BIB_INFO_LENGTH(v)	((v) << 24)
65
#define BIB_BUS_NAME		0x31333934 /* "1394" */
66 67 68 69 70 71 72 73 74
#define BIB_LINK_SPEED(v)	((v) <<  0)
#define BIB_GENERATION(v)	((v) <<  4)
#define BIB_MAX_ROM(v)		((v) <<  8)
#define BIB_MAX_RECEIVE(v)	((v) << 12)
#define BIB_CYC_CLK_ACC(v)	((v) << 16)
#define BIB_PMC			((1) << 27)
#define BIB_BMC			((1) << 28)
#define BIB_ISC			((1) << 29)
#define BIB_CMC			((1) << 30)
75 76
#define BIB_IRMC		((1) << 31)
#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
77

78 79 80 81 82 83 84
/*
 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
 * but we have to make it longer because there are many devices whose firmware
 * is just too slow for that.
 */
#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)

85 86
#define CANON_OUI		0x000085

87
static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
88 89
{
	struct fw_descriptor *desc;
90
	int i, j, k, length;
91

92 93
	/*
	 * Initialize contents of config rom buffer.  On the OHCI
94 95 96
	 * controller, block reads to the config rom accesses the host
	 * memory, but quadlet read access the hardware bus info block
	 * registers.  That's just crack, but it means we should make
J
Jay Fenlason 已提交
97
	 * sure the contents of bus info block in host memory matches
98 99
	 * the version stored in the OHCI registers.
	 */
100

101 102
	config_rom[0] = cpu_to_be32(
		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
103
	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
104
	config_rom[2] = cpu_to_be32(
105 106 107 108
		BIB_LINK_SPEED(card->link_speed) |
		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
		BIB_MAX_ROM(2) |
		BIB_MAX_RECEIVE(card->max_receive) |
109
		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
110 111
	config_rom[3] = cpu_to_be32(card->guid >> 32);
	config_rom[4] = cpu_to_be32(card->guid);
112 113

	/* Generate root directory. */
114
	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
115 116
	i = 7;
	j = 7 + descriptor_count;
117 118 119

	/* Generate root directory entries for descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
120
		if (desc->immediate > 0)
121 122
			config_rom[i++] = cpu_to_be32(desc->immediate);
		config_rom[i] = cpu_to_be32(desc->key | (j - i));
123 124 125 126 127
		i++;
		j += desc->length;
	}

	/* Update root directory length. */
128
	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
129 130 131

	/* End of root directory, now copy in descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
132 133
		for (k = 0; k < desc->length; k++)
			config_rom[i + k] = cpu_to_be32(desc->data[k]);
134 135 136 137 138 139 140
		i += desc->length;
	}

	/* Calculate CRCs for all blocks in the config rom.  This
	 * assumes that CRC length and info length are identical for
	 * the bus info block, which is always the case for this
	 * implementation. */
141
	for (i = 0; i < j; i += length + 1)
142
		length = fw_compute_block_crc(config_rom + i);
143

144
	WARN_ON(j != config_rom_length);
145 146
}

147
static void update_config_roms(void)
148 149 150 151
{
	struct fw_card *card;

	list_for_each_entry (card, &card_list, link) {
152 153 154
		generate_config_rom(card, tmp_config_rom);
		card->driver->set_config_rom(card, tmp_config_rom,
					     config_rom_length);
155 156 157
	}
}

158 159 160 161 162 163
static size_t required_space(struct fw_descriptor *desc)
{
	/* descriptor + entry into root dir + optional immediate entry */
	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
}

164
int fw_core_add_descriptor(struct fw_descriptor *desc)
165 166
{
	size_t i;
167
	int ret;
168

169 170
	/*
	 * Check descriptor is valid; the length of all blocks in the
171
	 * descriptor has to add up to exactly the length of the
172 173
	 * block.
	 */
174 175 176 177 178
	i = 0;
	while (i < desc->length)
		i += (desc->data[i] >> 16) + 1;

	if (i != desc->length)
179
		return -EINVAL;
180

181
	mutex_lock(&card_mutex);
182

183 184 185 186 187
	if (config_rom_length + required_space(desc) > 256) {
		ret = -EBUSY;
	} else {
		list_add_tail(&desc->link, &descriptor_list);
		config_rom_length += required_space(desc);
188
		descriptor_count++;
189 190 191 192 193
		if (desc->immediate > 0)
			descriptor_count++;
		update_config_roms();
		ret = 0;
	}
194

195
	mutex_unlock(&card_mutex);
196

197
	return ret;
198
}
J
Jay Fenlason 已提交
199
EXPORT_SYMBOL(fw_core_add_descriptor);
200

201
void fw_core_remove_descriptor(struct fw_descriptor *desc)
202
{
203
	mutex_lock(&card_mutex);
204 205

	list_del(&desc->link);
206
	config_rom_length -= required_space(desc);
207
	descriptor_count--;
208 209
	if (desc->immediate > 0)
		descriptor_count--;
210 211
	update_config_roms();

212
	mutex_unlock(&card_mutex);
213
}
J
Jay Fenlason 已提交
214
EXPORT_SYMBOL(fw_core_remove_descriptor);
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static int reset_bus(struct fw_card *card, bool short_reset)
{
	int reg = short_reset ? 5 : 1;
	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;

	return card->driver->update_phy_reg(card, reg, 0, bit);
}

void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
{
	/* We don't try hard to sort out requests of long vs. short resets. */
	card->br_short = short_reset;

	/* Use an arbitrary short delay to combine multiple reset requests. */
	fw_card_get(card);
231
	if (!queue_delayed_work(fw_workqueue, &card->br_work,
232
				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
233 234 235 236 237 238 239 240 241 242
		fw_card_put(card);
}
EXPORT_SYMBOL(fw_schedule_bus_reset);

static void br_work(struct work_struct *work)
{
	struct fw_card *card = container_of(work, struct fw_card, br_work.work);

	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
	if (card->reset_jiffies != 0 &&
243
	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
244
		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
245 246 247 248 249 250 251 252 253 254
			fw_card_put(card);
		return;
	}

	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
	reset_bus(card, card->br_short);
	fw_card_put(card);
}

255
static void allocate_broadcast_channel(struct fw_card *card, int generation)
256
{
257 258
	int channel, bandwidth = 0;

259 260
	if (!card->broadcast_channel_allocated) {
		fw_iso_resource_manage(card, generation, 1ULL << 31,
261
				       &channel, &bandwidth, true);
262 263 264 265
		if (channel != 31) {
			fw_notify("failed to allocate broadcast channel\n");
			return;
		}
266
		card->broadcast_channel_allocated = true;
267
	}
268 269 270

	device_for_each_child(card->device, (void *)(long)generation,
			      fw_device_set_broadcast_channel);
271 272
}

273 274 275 276
static const char gap_count_table[] = {
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};

277
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
278 279
{
	fw_card_get(card);
280
	if (!schedule_delayed_work(&card->bm_work, delay))
281 282 283
		fw_card_put(card);
}

284
static void bm_work(struct work_struct *work)
285
{
286
	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
287
	struct fw_device *root_device, *irm_device;
288
	struct fw_node *root_node;
289
	int root_id, new_root_id, irm_id, bm_id, local_id;
290
	int gap_count, generation, grace, rcode;
291
	bool do_reset = false;
292 293
	bool root_device_is_running;
	bool root_device_is_cmc;
294
	bool irm_is_1394_1995_only;
295
	bool keep_this_irm;
296
	__be32 transaction_data[2];
297

298
	spin_lock_irq(&card->lock);
299

300
	if (card->local_node == NULL) {
301
		spin_unlock_irq(&card->lock);
302
		goto out_put_card;
303
	}
304 305

	generation = card->generation;
306

307 308
	root_node = card->root_node;
	fw_node_get(root_node);
309
	root_device = root_node->data;
310 311 312
	root_device_is_running = root_device &&
			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
	root_device_is_cmc = root_device && root_device->cmc;
313 314 315 316 317

	irm_device = card->irm_node->data;
	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
			(irm_device->config_rom[2] & 0x000000f0) == 0;

318 319 320 321
	/* Canon MV5i works unreliably if it is not root node. */
	keep_this_irm = irm_device && irm_device->config_rom &&
			irm_device->config_rom[3] >> 8 == CANON_OUI;

322 323 324
	root_id  = root_node->node_id;
	irm_id   = card->irm_node->node_id;
	local_id = card->local_node->node_id;
325

326 327
	grace = time_after64(get_jiffies_64(),
			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
328

329 330
	if ((is_next_generation(generation, card->bm_generation) &&
	     !card->bm_abdicate) ||
331
	    (card->bm_generation != generation && grace)) {
332 333
		/*
		 * This first step is to figure out who is IRM and
334 335 336 337 338 339 340
		 * then try to become bus manager.  If the IRM is not
		 * well defined (e.g. does not have an active link
		 * layer or does not responds to our lock request, we
		 * will have to do a little vigilante bus management.
		 * In that case, we do a goto into the gap count logic
		 * so that when we do the reset, we still optimize the
		 * gap count.  That could well save a reset in the
341 342
		 * next generation.
		 */
343

344 345
		if (!card->irm_node->link_on) {
			new_root_id = local_id;
346 347 348 349 350
			fw_notify("%s, making local node (%02x) root.\n",
				  "IRM has link off", new_root_id);
			goto pick_me;
		}

351
		if (irm_is_1394_1995_only && !keep_this_irm) {
352 353 354
			new_root_id = local_id;
			fw_notify("%s, making local node (%02x) root.\n",
				  "IRM is not 1394a compliant", new_root_id);
355 356 357
			goto pick_me;
		}

358 359
		transaction_data[0] = cpu_to_be32(0x3f);
		transaction_data[1] = cpu_to_be32(local_id);
360

361
		spin_unlock_irq(&card->lock);
362

J
Jay Fenlason 已提交
363 364 365
		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
366
				transaction_data, 8);
367

J
Jay Fenlason 已提交
368 369
		if (rcode == RCODE_GENERATION)
			/* Another bus reset, BM work has been rescheduled. */
370
			goto out;
371

372
		bm_id = be32_to_cpu(transaction_data[0]);
373

374 375 376 377 378
		spin_lock_irq(&card->lock);
		if (rcode == RCODE_COMPLETE && generation == card->generation)
			card->bm_node_id =
			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
		spin_unlock_irq(&card->lock);
379

380
		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
381 382 383 384
			/* Somebody else is BM.  Only act as IRM. */
			if (local_id == irm_id)
				allocate_broadcast_channel(card, generation);

385
			goto out;
386
		}
387

388 389 390 391 392 393 394 395 396 397
		if (rcode == RCODE_SEND_ERROR) {
			/*
			 * We have been unable to send the lock request due to
			 * some local problem.  Let's try again later and hope
			 * that the problem has gone away by then.
			 */
			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
			goto out;
		}

398
		spin_lock_irq(&card->lock);
J
Jay Fenlason 已提交
399

400
		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
401 402
			/*
			 * The lock request failed, maybe the IRM
403 404
			 * isn't really IRM capable after all. Let's
			 * do a bus reset and pick the local node as
405 406
			 * root, and thus, IRM.
			 */
407
			new_root_id = local_id;
408 409
			fw_notify("%s, making local node (%02x) root.\n",
				  "BM lock failed", new_root_id);
410 411 412
			goto pick_me;
		}
	} else if (card->bm_generation != generation) {
413
		/*
414 415
		 * We weren't BM in the last generation, and the last
		 * bus reset is less than 125ms ago.  Reschedule this job.
416
		 */
417
		spin_unlock_irq(&card->lock);
418
		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
419
		goto out;
420 421
	}

422 423
	/*
	 * We're bus manager for this generation, so next step is to
424
	 * make sure we have an active cycle master and do gap count
425 426
	 * optimization.
	 */
427
	card->bm_generation = generation;
428

429
	if (root_device == NULL) {
430 431 432 433
		/*
		 * Either link_on is false, or we failed to read the
		 * config rom.  In either case, pick another root.
		 */
434
		new_root_id = local_id;
435
	} else if (!root_device_is_running) {
436 437 438 439
		/*
		 * If we haven't probed this device yet, bail out now
		 * and let's try again once that's done.
		 */
440
		spin_unlock_irq(&card->lock);
441
		goto out;
442
	} else if (root_device_is_cmc) {
443
		/*
444 445
		 * We will send out a force root packet for this
		 * node as part of the gap count optimization.
446
		 */
447
		new_root_id = root_id;
448
	} else {
449 450
		/*
		 * Current root has an active link layer and we
451
		 * successfully read the config rom, but it's not
452 453
		 * cycle master capable.
		 */
454
		new_root_id = local_id;
455 456
	}

457
 pick_me:
458 459 460 461 462
	/*
	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
	 * the typically much larger 1394b beta repeater delays though.
	 */
	if (!card->beta_repeaters_present &&
463 464
	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
		gap_count = gap_count_table[root_node->max_hops];
465 466 467
	else
		gap_count = 63;

468
	/*
469 470
	 * Finally, figure out if we should do a reset or not.  If we have
	 * done less than 5 resets with the same physical topology and we
471 472
	 * have either a new root or a new gap count setting, let's do it.
	 */
473

474 475
	if (card->bm_retries++ < 5 &&
	    (card->gap_count != gap_count || new_root_id != root_id))
476
		do_reset = true;
477

478
	spin_unlock_irq(&card->lock);
479

480 481
	if (do_reset) {
		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
482 483
			  card->index, new_root_id, gap_count);
		fw_send_phy_config(card, new_root_id, generation, gap_count);
484
		reset_bus(card, true);
485
		/* Will allocate broadcast channel after the reset. */
486
		goto out;
487
	}
488

489 490 491 492
	if (root_device_is_cmc) {
		/*
		 * Make sure that the cycle master sends cycle start packets.
		 */
493
		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
494 495 496
		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				root_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_STATE_SET,
497
				transaction_data, 4);
498 499
		if (rcode == RCODE_GENERATION)
			goto out;
500
	}
501

502 503 504
	if (local_id == irm_id)
		allocate_broadcast_channel(card, generation);

505 506
 out:
	fw_node_put(root_node);
507 508
 out_put_card:
	fw_card_put(card);
509 510
}

511 512 513
void fw_card_initialize(struct fw_card *card,
			const struct fw_card_driver *driver,
			struct device *device)
514
{
515
	static atomic_t index = ATOMIC_INIT(-1);
516

517
	card->index = atomic_inc_return(&index);
518
	card->driver = driver;
519
	card->device = device;
520 521
	card->current_tlabel = 0;
	card->tlabel_mask = 0;
522 523 524 525 526
	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
	card->split_timeout_jiffies =
			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
527
	card->color = 0;
528
	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
529

530 531
	kref_init(&card->kref);
	init_completion(&card->done);
532
	INIT_LIST_HEAD(&card->transaction_list);
533
	INIT_LIST_HEAD(&card->phy_receiver_list);
534 535 536 537
	spin_lock_init(&card->lock);

	card->local_node = NULL;

538 539
	INIT_DELAYED_WORK(&card->br_work, br_work);
	INIT_DELAYED_WORK(&card->bm_work, bm_work);
540 541 542
}
EXPORT_SYMBOL(fw_card_initialize);

543 544
int fw_card_add(struct fw_card *card,
		u32 max_receive, u32 link_speed, u64 guid)
545
{
546
	int ret;
547 548 549 550 551

	card->max_receive = max_receive;
	card->link_speed = link_speed;
	card->guid = guid;

552
	mutex_lock(&card_mutex);
553

554 555
	generate_config_rom(card, tmp_config_rom);
	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
556 557 558 559
	if (ret == 0)
		list_add_tail(&card->link, &card_list);

	mutex_unlock(&card_mutex);
560 561

	return ret;
562 563 564
}
EXPORT_SYMBOL(fw_card_add);

565
/*
566 567 568 569 570
 * The next few functions implement a dummy driver that is used once a card
 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
 * as all IO to the card will be handled (and failed) by the dummy driver
 * instead of calling into the module.  Only functions for iso context
 * shutdown still need to be provided by the card driver.
571 572 573 574 575
 *
 * .read/write_csr() should never be called anymore after the dummy driver
 * was bound since they are only used within request handler context.
 * .set_config_rom() is never called since the card is taken out of card_list
 * before switching to the dummy driver.
576
 */
577

578
static int dummy_read_phy_reg(struct fw_card *card, int address)
579
{
580
	return -ENODEV;
581 582
}

583 584
static int dummy_update_phy_reg(struct fw_card *card, int address,
				int clear_bits, int set_bits)
585 586 587 588
{
	return -ENODEV;
}

589
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
590
{
591
	packet->callback(packet, card, RCODE_CANCELLED);
592 593
}

594
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
595
{
596
	packet->callback(packet, card, RCODE_CANCELLED);
597 598
}

599
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
600 601 602 603
{
	return -ENOENT;
}

604 605
static int dummy_enable_phys_dma(struct fw_card *card,
				 int node_id, int generation)
606 607 608 609
{
	return -ENODEV;
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
				int type, int channel, size_t header_size)
{
	return ERR_PTR(-ENODEV);
}

static int dummy_start_iso(struct fw_iso_context *ctx,
			   s32 cycle, u32 sync, u32 tags)
{
	return -ENODEV;
}

static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
{
	return -ENODEV;
}

static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
			   struct fw_iso_buffer *buffer, unsigned long payload)
{
	return -ENODEV;
}

633 634 635 636
static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
{
}

637
static const struct fw_card_driver dummy_driver_template = {
638 639 640 641 642 643 644 645 646 647
	.read_phy_reg		= dummy_read_phy_reg,
	.update_phy_reg		= dummy_update_phy_reg,
	.send_request		= dummy_send_request,
	.send_response		= dummy_send_response,
	.cancel_packet		= dummy_cancel_packet,
	.enable_phys_dma	= dummy_enable_phys_dma,
	.allocate_iso_context	= dummy_allocate_iso_context,
	.start_iso		= dummy_start_iso,
	.set_iso_channels	= dummy_set_iso_channels,
	.queue_iso		= dummy_queue_iso,
648
	.flush_queue_iso	= dummy_flush_queue_iso,
649 650
};

651
void fw_card_release(struct kref *kref)
652 653 654 655 656 657
{
	struct fw_card *card = container_of(kref, struct fw_card, kref);

	complete(&card->done);
}

658
void fw_core_remove_card(struct fw_card *card)
659
{
660 661
	struct fw_card_driver dummy_driver = dummy_driver_template;

662 663
	card->driver->update_phy_reg(card, 4,
				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
664
	fw_schedule_bus_reset(card, false, true);
665

666
	mutex_lock(&card_mutex);
667
	list_del_init(&card->link);
668
	mutex_unlock(&card_mutex);
669

670 671 672
	/* Switch off most of the card driver interface. */
	dummy_driver.free_iso_context	= card->driver->free_iso_context;
	dummy_driver.stop_iso		= card->driver->stop_iso;
673 674 675
	card->driver = &dummy_driver;

	fw_destroy_nodes(card);
676 677 678 679

	/* Wait for all users, especially device workqueue jobs, to finish. */
	fw_card_put(card);
	wait_for_completion(&card->done);
680

681
	WARN_ON(!list_empty(&card->transaction_list));
682 683
}
EXPORT_SYMBOL(fw_core_remove_card);