vgic-v3.c 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
18
#include <kvm/arm_vgic.h>
19
#include <asm/kvm_hyp.h>
20 21
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
22 23 24

#include "vgic.h"

25
static bool group0_trap;
26
static bool group1_trap;
27
static bool common_trap;
28
static bool gicv4_enable;
29

30
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
31 32 33
{
	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;

34
	cpuif->vgic_hcr |= ICH_HCR_UIE;
35 36
}

37
static bool lr_signals_eoi_mi(u64 lr_val)
38
{
39 40
	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
	       !(lr_val & ICH_LR_HW);
41 42 43 44
}

void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
45 46
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47 48
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
	int lr;
49
	unsigned long flags;
50

51
	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
52

53
	for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
54
		u64 val = cpuif->vgic_lr[lr];
55
		u32 intid, cpuid;
56
		struct vgic_irq *irq;
57 58 59 60
		bool is_v2_sgi = false;

		cpuid = val & GICH_LR_PHYSID_CPUID;
		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
61

62
		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
63
			intid = val & ICH_LR_VIRTUAL_ID_MASK;
64
		} else {
65
			intid = val & GICH_LR_VIRTUALID;
66 67
			is_v2_sgi = vgic_irq_is_sgi(intid);
		}
68 69 70 71 72 73

		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
			kvm_notify_acked_irq(vcpu->kvm, 0,
					     intid - VGIC_NR_PRIVATE_IRQS);

74
		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
75 76
		if (!irq)	/* An LPI could have been unmapped. */
			continue;
77

78
		spin_lock_irqsave(&irq->irq_lock, flags);
79 80 81 82

		/* Always preserve the active bit */
		irq->active = !!(val & ICH_LR_ACTIVE_BIT);

83 84 85
		if (irq->active && is_v2_sgi)
			irq->active_source = cpuid;

86 87 88
		/* Edge is the only case where we preserve the pending bit */
		if (irq->config == VGIC_CONFIG_EDGE &&
		    (val & ICH_LR_PENDING_BIT)) {
89
			irq->pending_latch = true;
90

91
			if (is_v2_sgi)
92 93 94
				irq->source |= (1 << cpuid);
		}

95 96 97
		/*
		 * Clear soft pending state when level irqs have been acked.
		 */
98 99
		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
			irq->pending_latch = false;
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
		/*
		 * Level-triggered mapped IRQs are special because we only
		 * observe rising edges as input to the VGIC.
		 *
		 * If the guest never acked the interrupt we have to sample
		 * the physical line and set the line level, because the
		 * device state could have changed or we simply need to
		 * process the still pending interrupt later.
		 *
		 * If this causes us to lower the level, we have to also clear
		 * the physical active state, since we will otherwise never be
		 * told when the interrupt becomes asserted again.
		 */
		if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
			irq->line_level = vgic_get_phys_line_level(irq);

			if (!irq->line_level)
				vgic_irq_set_phys_active(irq, false);
		}

121
		spin_unlock_irqrestore(&irq->irq_lock, flags);
122
		vgic_put_irq(vcpu->kvm, irq);
123
	}
124 125

	vgic_cpu->used_lrs = 0;
126 127 128 129 130 131 132
}

/* Requires the irq to be locked already */
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
	u64 val = irq->intid;
133
	bool allow_pending = true, is_v2_sgi;
134

135 136 137 138
	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
		     model == KVM_DEV_TYPE_ARM_VGIC_V2);

	if (irq->active) {
139
		val |= ICH_LR_ACTIVE_BIT;
140 141 142 143 144 145 146
		if (is_v2_sgi)
			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
		if (vgic_irq_is_multi_sgi(irq)) {
			allow_pending = false;
			val |= ICH_LR_EOI;
		}
	}
147 148 149 150 151 152 153 154 155 156 157 158 159 160

	if (irq->hw) {
		val |= ICH_LR_HW;
		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
		/*
		 * Never set pending+active on a HW interrupt, as the
		 * pending state is kept at the physical distributor
		 * level.
		 */
		if (irq->active)
			allow_pending = false;
	} else {
		if (irq->config == VGIC_CONFIG_LEVEL) {
			val |= ICH_LR_EOI;
161

162 163 164 165 166 167 168 169 170 171
			/*
			 * Software resampling doesn't work very well
			 * if we allow P+A, so let's not do that.
			 */
			if (irq->active)
				allow_pending = false;
		}
	}

	if (allow_pending && irq_is_pending(irq)) {
172 173 174
		val |= ICH_LR_PENDING_BIT;

		if (irq->config == VGIC_CONFIG_EDGE)
175
			irq->pending_latch = false;
176 177 178 179 180 181 182 183

		if (vgic_irq_is_sgi(irq->intid) &&
		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
			u32 src = ffs(irq->source);

			BUG_ON(!src);
			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
			irq->source &= ~(1 << (src - 1));
184
			if (irq->source) {
185
				irq->pending_latch = true;
186 187
				val |= ICH_LR_EOI;
			}
188 189 190
		}
	}

191 192 193 194 195 196 197 198 199
	/*
	 * Level-triggered mapped IRQs are special because we only observe
	 * rising edges as input to the VGIC.  We therefore lower the line
	 * level here, so that we can take new virtual IRQs.  See
	 * vgic_v3_fold_lr_state for more info.
	 */
	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
		irq->line_level = false;

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	/*
	 * We currently only support Group1 interrupts, which is a
	 * known defect. This needs to be addressed at some point.
	 */
	if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
		val |= ICH_LR_GROUP;

	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;

	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
}

void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
216 217 218

void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
219
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
220
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
221 222
	u32 vmcr;

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
			ICH_VMCR_ACK_CTL_MASK;
		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
			ICH_VMCR_FIQ_EN_MASK;
	} else {
		/*
		 * When emulating GICv3 on GICv3 with SRE=1 on the
		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
		 */
		vmcr = ICH_VMCR_FIQ_EN_MASK;
	}

	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
238 239 240
	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
241 242
	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
243

244
	cpu_if->vgic_vmcr = vmcr;
245 246 247 248
}

void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
249
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
250
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
251 252 253
	u32 vmcr;

	vmcr = cpu_if->vgic_vmcr;
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
			ICH_VMCR_ACK_CTL_SHIFT;
		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
			ICH_VMCR_FIQ_EN_SHIFT;
	} else {
		/*
		 * When emulating GICv3 on GICv3 with SRE=1 on the
		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
		 */
		vmcrp->fiqen = 1;
		vmcrp->ackctl = 0;
	}

	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
271 272 273
	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
274 275
	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
276
}
277

278 279 280 281 282
#define INITIAL_PENDBASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))

283 284
void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
285 286 287 288 289 290 291 292 293 294 295 296
	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;

	/*
	 * By forcing VMCR to zero, the GIC will restore the binary
	 * points to their reset values. Anything else resets to zero
	 * anyway.
	 */
	vgic_v3->vgic_vmcr = 0;

	/*
	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
	 * way, so we force SRE to 1 to demonstrate this to the guest.
297
	 * Also, we don't support any form of IRQ/FIQ bypass.
298 299
	 * This goes with the spec allowing the value to be RAO/WI.
	 */
300
	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
301 302 303
		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
				     ICC_SRE_EL1_DFB |
				     ICC_SRE_EL1_SRE);
304 305
		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
	} else {
306
		vgic_v3->vgic_sre = 0;
307
	}
308

309 310 311 312 313 314 315
	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
					   ICH_VTR_ID_BITS_MASK) >>
					   ICH_VTR_ID_BITS_SHIFT;
	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
					    ICH_VTR_PRI_BITS_MASK) >>
					    ICH_VTR_PRI_BITS_SHIFT) + 1;

316 317
	/* Get the show on the road... */
	vgic_v3->vgic_hcr = ICH_HCR_EN;
318 319
	if (group0_trap)
		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
320 321
	if (group1_trap)
		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
322 323
	if (common_trap)
		vgic_v3->vgic_hcr |= ICH_HCR_TC;
324 325
}

326 327 328 329 330 331 332 333
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
{
	struct kvm_vcpu *vcpu;
	int byte_offset, bit_nr;
	gpa_t pendbase, ptr;
	bool status;
	u8 val;
	int ret;
334
	unsigned long flags;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

retry:
	vcpu = irq->target_vcpu;
	if (!vcpu)
		return 0;

	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);

	byte_offset = irq->intid / BITS_PER_BYTE;
	bit_nr = irq->intid % BITS_PER_BYTE;
	ptr = pendbase + byte_offset;

	ret = kvm_read_guest(kvm, ptr, &val, 1);
	if (ret)
		return ret;

	status = val & (1 << bit_nr);

353
	spin_lock_irqsave(&irq->irq_lock, flags);
354
	if (irq->target_vcpu != vcpu) {
355
		spin_unlock_irqrestore(&irq->irq_lock, flags);
356 357 358
		goto retry;
	}
	irq->pending_latch = status;
359
	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
360 361 362 363 364 365 366 367 368 369 370

	if (status) {
		/* clear consumed data */
		val &= ~(1 << bit_nr);
		ret = kvm_write_guest(kvm, ptr, &val, 1);
		if (ret)
			return ret;
	}
	return 0;
}

371 372 373 374 375 376 377 378 379 380
/**
 * vgic_its_save_pending_tables - Save the pending tables into guest RAM
 * kvm lock and all vcpu lock must be held
 */
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	int last_byte_offset = -1;
	struct vgic_irq *irq;
	int ret;
381
	u8 val;
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
		int byte_offset, bit_nr;
		struct kvm_vcpu *vcpu;
		gpa_t pendbase, ptr;
		bool stored;

		vcpu = irq->target_vcpu;
		if (!vcpu)
			continue;

		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);

		byte_offset = irq->intid / BITS_PER_BYTE;
		bit_nr = irq->intid % BITS_PER_BYTE;
		ptr = pendbase + byte_offset;

		if (byte_offset != last_byte_offset) {
			ret = kvm_read_guest(kvm, ptr, &val, 1);
			if (ret)
				return ret;
			last_byte_offset = byte_offset;
		}

		stored = val & (1U << bit_nr);
		if (stored == irq->pending_latch)
			continue;

		if (irq->pending_latch)
			val |= 1 << bit_nr;
		else
			val &= ~(1 << bit_nr);

		ret = kvm_write_guest(kvm, ptr, &val, 1);
		if (ret)
			return ret;
	}
	return 0;
}

422 423 424 425 426
/*
 * Check for overlapping regions and for regions crossing the end of memory
 * for base addresses which have already been set.
 */
bool vgic_v3_check_base(struct kvm *kvm)
427 428 429
{
	struct vgic_dist *d = &kvm->arch.vgic;
	gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE;
430 431 432
	struct vgic_redist_region *rdreg =
		list_first_entry(&d->rd_regions,
				 struct vgic_redist_region, list);
433 434 435

	redist_size *= atomic_read(&kvm->online_vcpus);

436 437
	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
438
		return false;
439

440
	if (rdreg && (rdreg->base + redist_size < rdreg->base))
441 442
		return false;

443
	/* Both base addresses must be set to check if they overlap */
444
	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) || !rdreg)
445 446
		return true;

447
	if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= rdreg->base)
448
		return true;
449 450

	if (rdreg->base + redist_size <= d->vgic_dist_base)
451 452 453 454 455 456 457 458 459
		return true;

	return false;
}

int vgic_v3_map_resources(struct kvm *kvm)
{
	int ret = 0;
	struct vgic_dist *dist = &kvm->arch.vgic;
460 461 462
	struct vgic_redist_region *rdreg =
		list_first_entry(&dist->rd_regions,
				 struct vgic_redist_region, list);
463 464 465 466

	if (vgic_ready(kvm))
		goto out;

467
	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || !rdreg) {
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		kvm_err("Need to set vgic distributor addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	if (!vgic_v3_check_base(kvm)) {
		kvm_err("VGIC redist and dist frames overlap\n");
		ret = -EINVAL;
		goto out;
	}

	/*
	 * For a VGICv3 we require the userland to explicitly initialize
	 * the VGIC before we need to use it.
	 */
	if (!vgic_initialized(kvm)) {
		ret = -EBUSY;
		goto out;
	}

	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
	if (ret) {
		kvm_err("Unable to register VGICv3 dist MMIO regions\n");
		goto out;
	}

	dist->ready = true;

out:
	return ret;
}

500 501
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);

502 503 504 505 506 507
static int __init early_group0_trap_cfg(char *buf)
{
	return strtobool(buf, &group0_trap);
}
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);

508 509 510 511 512 513
static int __init early_group1_trap_cfg(char *buf)
{
	return strtobool(buf, &group1_trap);
}
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);

514 515 516 517 518 519
static int __init early_common_trap_cfg(char *buf)
{
	return strtobool(buf, &common_trap);
}
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);

520 521 522 523 524 525
static int __init early_gicv4_enable(char *buf)
{
	return strtobool(buf, &gicv4_enable);
}
early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);

526 527 528 529 530 531 532 533 534
/**
 * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
 * @node:	pointer to the DT node
 *
 * Returns 0 if a GICv3 has been found, returns an error code otherwise
 */
int vgic_v3_probe(const struct gic_kvm_info *info)
{
	u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
535
	int ret;
536 537 538 539 540 541 542

	/*
	 * The ListRegs field is 5 bits, but there is a architectural
	 * maximum of 16 list registers. Just ignore bit 4...
	 */
	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
	kvm_vgic_global_state.can_emulate_gicv2 = false;
543
	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
544

545 546 547 548 549 550 551
	/* GICv4 support? */
	if (info->has_v4) {
		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
		kvm_info("GICv4 support %sabled\n",
			 gicv4_enable ? "en" : "dis");
	}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	if (!info->vcpu.start) {
		kvm_info("GICv3: no GICV resource entry\n");
		kvm_vgic_global_state.vcpu_base = 0;
	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
		pr_warn("GICV physical address 0x%llx not page aligned\n",
			(unsigned long long)info->vcpu.start);
		kvm_vgic_global_state.vcpu_base = 0;
	} else if (!PAGE_ALIGNED(resource_size(&info->vcpu))) {
		pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n",
			(unsigned long long)resource_size(&info->vcpu),
			PAGE_SIZE);
		kvm_vgic_global_state.vcpu_base = 0;
	} else {
		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
		kvm_vgic_global_state.can_emulate_gicv2 = true;
567 568 569 570 571
		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
		if (ret) {
			kvm_err("Cannot register GICv2 KVM device.\n");
			return ret;
		}
572 573
		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
	}
574 575 576 577 578 579 580
	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
	if (ret) {
		kvm_err("Cannot register GICv3 KVM device.\n");
		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
		return ret;
	}

581 582 583
	if (kvm_vgic_global_state.vcpu_base == 0)
		kvm_info("disabling GICv2 emulation\n");

584 585 586 587 588 589 590
#ifdef CONFIG_ARM64
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
		group0_trap = true;
		group1_trap = true;
	}
#endif

591
	if (group0_trap || group1_trap || common_trap) {
592 593 594 595
		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
			 group0_trap ? "G0" : "",
			 group1_trap ? "G1" : "",
			 common_trap ? "C"  : "");
596 597 598
		static_branch_enable(&vgic_v3_cpuif_trap);
	}

599 600 601 602 603 604
	kvm_vgic_global_state.vctrl_base = NULL;
	kvm_vgic_global_state.type = VGIC_V3;
	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;

	return 0;
}
605 606 607 608 609

void vgic_v3_load(struct kvm_vcpu *vcpu)
{
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;

610 611 612 613 614 615 616
	/*
	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
	 * VMCR_EL2 save/restore in the world switch.
	 */
	if (likely(cpu_if->vgic_sre))
		kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
617 618

	kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
619 620 621

	if (has_vhe())
		__vgic_v3_activate_traps(vcpu);
622 623 624 625 626 627
}

void vgic_v3_put(struct kvm_vcpu *vcpu)
{
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;

628 629
	if (likely(cpu_if->vgic_sre))
		cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
630 631

	kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
632 633 634

	if (has_vhe())
		__vgic_v3_deactivate_traps(vcpu);
635
}