sym_fw2.h 47.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
/*
 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
 * of PCI-SCSI IO processors.
 *
 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
 *
 * This driver is derived from the Linux sym53c8xx driver.
 * Copyright (C) 1998-2000  Gerard Roudier
 *
 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
 * a port of the FreeBSD ncr driver to Linux-1.2.13.
 *
 * The original ncr driver has been written for 386bsd and FreeBSD by
 *         Wolfgang Stanglmeier        <wolf@cologne.de>
 *         Stefan Esser                <se@mi.Uni-Koeln.de>
 * Copyright (C) 1994  Wolfgang Stanglmeier
 *
 * Other major contributions:
 *
 * NVRAM detection and reading.
 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
 *
 *-----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/*
 *  Scripts for SYMBIOS-Processor
 *
 *  We have to know the offsets of all labels before we reach 
 *  them (for forward jumps). Therefore we declare a struct 
 *  here. If you make changes inside the script,
 *
 *  DONT FORGET TO CHANGE THE LENGTHS HERE!
 */

/*
 *  Script fragments which are loaded into the on-chip RAM 
 *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
 *  Must not exceed 4K bytes.
 */
struct SYM_FWA_SCR {
	u32 start		[ 14];
	u32 getjob_begin	[  4];
	u32 getjob_end		[  4];
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
	u32 select		[  6];
#else
	u32 select		[  4];
#endif
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
	u32 is_dmap_dirty	[  4];
#endif
	u32 wf_sel_done		[  2];
	u32 sel_done		[  2];
	u32 send_ident		[  2];
#ifdef SYM_CONF_IARB_SUPPORT
	u32 select2		[  8];
#else
	u32 select2		[  2];
#endif
	u32 command		[  2];
	u32 dispatch		[ 28];
	u32 sel_no_cmd		[ 10];
	u32 init		[  6];
	u32 clrack		[  4];
	u32 datai_done		[ 10];
	u32 datai_done_wsr	[ 20];
	u32 datao_done		[ 10];
	u32 datao_done_wss	[  6];
	u32 datai_phase		[  4];
	u32 datao_phase		[  6];
	u32 msg_in		[  2];
	u32 msg_in2		[ 10];
#ifdef SYM_CONF_IARB_SUPPORT
	u32 status		[ 14];
#else
	u32 status		[ 10];
#endif
	u32 complete		[  6];
	u32 complete2		[ 12];
	u32 done		[ 14];
	u32 done_end		[  2];
	u32 complete_error	[  4];
	u32 save_dp		[ 12];
	u32 restore_dp		[  8];
	u32 disconnect		[ 12];
#ifdef SYM_CONF_IARB_SUPPORT
	u32 idle		[  4];
#else
	u32 idle		[  2];
#endif
#ifdef SYM_CONF_IARB_SUPPORT
	u32 ungetjob		[  6];
#else
	u32 ungetjob		[  4];
#endif
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
	u32 reselect		[  4];
#else
	u32 reselect		[  2];
#endif
	u32 reselected		[ 22];
	u32 resel_scntl4	[ 20];
	u32 resel_lun0		[  6];
#if   SYM_CONF_MAX_TASK*4 > 512
	u32 resel_tag		[ 26];
#elif SYM_CONF_MAX_TASK*4 > 256
	u32 resel_tag		[ 20];
#else
	u32 resel_tag		[ 16];
#endif
	u32 resel_dsa		[  2];
	u32 resel_dsa1		[  4];
	u32 resel_no_tag	[  6];
	u32 data_in		[SYM_CONF_MAX_SG * 2];
	u32 data_in2		[  4];
	u32 data_out		[SYM_CONF_MAX_SG * 2];
	u32 data_out2		[  4];
	u32 pm0_data		[ 12];
	u32 pm0_data_out	[  6];
	u32 pm0_data_end	[  6];
	u32 pm1_data		[ 12];
	u32 pm1_data_out	[  6];
	u32 pm1_data_end	[  6];
};

/*
 *  Script fragments which stay in main memory for all chips 
 *  except for chips that support 8K on-chip RAM.
 */
struct SYM_FWB_SCR {
	u32 start64		[  2];
	u32 no_data		[  2];
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
	u32 sel_for_abort	[ 18];
#else
	u32 sel_for_abort	[ 16];
#endif
	u32 sel_for_abort_1	[  2];
	u32 msg_in_etc		[ 12];
	u32 msg_received	[  4];
	u32 msg_weird_seen	[  4];
	u32 msg_extended	[ 20];
	u32 msg_bad		[  6];
	u32 msg_weird		[  4];
	u32 msg_weird1		[  8];

	u32 wdtr_resp		[  6];
	u32 send_wdtr		[  4];
	u32 sdtr_resp		[  6];
	u32 send_sdtr		[  4];
	u32 ppr_resp		[  6];
	u32 send_ppr		[  4];
	u32 nego_bad_phase	[  4];
	u32 msg_out		[  4];
	u32 msg_out_done	[  4];
	u32 data_ovrun		[  2];
	u32 data_ovrun1		[ 22];
	u32 data_ovrun2		[  8];
	u32 abort_resel		[ 16];
	u32 resend_ident	[  4];
	u32 ident_break		[  4];
	u32 ident_break_atn	[  4];
	u32 sdata_in		[  6];
	u32 resel_bad_lun	[  4];
	u32 bad_i_t_l		[  4];
	u32 bad_i_t_l_q		[  4];
	u32 bad_status		[  6];
	u32 pm_handle		[ 20];
	u32 pm_handle1		[  4];
	u32 pm_save		[  4];
	u32 pm0_save		[ 12];
	u32 pm_save_end		[  4];
	u32 pm1_save		[ 14];

	/* WSR handling */
	u32 pm_wsr_handle	[ 38];
	u32 wsr_ma_helper	[  4];

	/* Data area */
	u32 zero		[  1];
	u32 scratch		[  1];
	u32 pm0_data_addr	[  1];
	u32 pm1_data_addr	[  1];
	u32 done_pos		[  1];
	u32 startpos		[  1];
	u32 targtbl		[  1];
};

/*
 *  Script fragments used at initialisations.
 *  Only runs out of main memory.
 */
struct SYM_FWZ_SCR {
	u32 snooptest		[  6];
	u32 snoopend		[  2];
};

static struct SYM_FWA_SCR SYM_FWA_SCR = {
/*--------------------------< START >----------------------------*/ {
	/*
	 *  Switch the LED on.
	 *  Will be patched with a NO_OP if LED
	 *  not needed or not desired.
	 */
	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
		0,
	/*
	 *      Clear SIGP.
	 */
	SCR_FROM_REG (ctest2),
		0,
	/*
	 *  Stop here if the C code wants to perform 
	 *  some error recovery procedure manually.
	 *  (Indicate this by setting SEM in ISTAT)
	 */
	SCR_FROM_REG (istat),
		0,
	/*
	 *  Report to the C code the next position in 
	 *  the start queue the SCRIPTS will schedule.
	 *  The C code must not change SCRATCHA.
	 */
	SCR_LOAD_ABS (scratcha, 4),
		PADDR_B (startpos),
	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
		SIR_SCRIPT_STOPPED,
	/*
	 *  Start the next job.
	 *
	 *  @DSA     = start point for this job.
	 *  SCRATCHA = address of this job in the start queue.
	 *
	 *  We will restore startpos with SCRATCHA if we fails the 
	 *  arbitration or if it is the idle job.
	 *
	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS 
	 *  is a critical path. If it is partially executed, it then 
	 *  may happen that the job address is not yet in the DSA 
	 *  and the next queue position points to the next JOB.
	 */
	SCR_LOAD_ABS (dsa, 4),
		PADDR_B (startpos),
	SCR_LOAD_REL (temp, 4),
		4,
}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
	SCR_STORE_ABS (temp, 4),
		PADDR_B (startpos),
	SCR_LOAD_REL (dsa, 4),
		0,
}/*-------------------------< GETJOB_END >-----------------------*/,{
	SCR_LOAD_REL (temp, 4),
		0,
	SCR_RETURN,
		0,
}/*-------------------------< SELECT >---------------------------*/,{
	/*
	 *  DSA	contains the address of a scheduled
	 *  	data structure.
	 *
	 *  SCRATCHA contains the address of the start queue  
	 *  	entry which points to the next job.
	 *
	 *  Set Initiator mode.
	 *
	 *  (Target mode is left as an exercise for the reader)
	 */
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
	SCR_CLR (SCR_TRG),
		0,
#endif
	/*
	 *      And try to select this target.
	 */
	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
		PADDR_A (ungetjob),
	/*
	 *  Now there are 4 possibilities:
	 *
	 *  (1) The chip loses arbitration.
	 *  This is ok, because it will try again,
	 *  when the bus becomes idle.
	 *  (But beware of the timeout function!)
	 *
	 *  (2) The chip is reselected.
	 *  Then the script processor takes the jump
	 *  to the RESELECT label.
	 *
	 *  (3) The chip wins arbitration.
	 *  Then it will execute SCRIPTS instruction until 
	 *  the next instruction that checks SCSI phase.
	 *  Then will stop and wait for selection to be 
	 *  complete or selection time-out to occur.
	 *
	 *  After having won arbitration, the SCRIPTS  
	 *  processor is able to execute instructions while 
	 *  the SCSI core is performing SCSI selection.
	 */
	/*
	 *      Initialize the status registers
	 */
	SCR_LOAD_REL (scr0, 4),
		offsetof (struct sym_ccb, phys.head.status),
	/*
	 *  We may need help from CPU if the DMA segment 
	 *  registers aren't up-to-date for this IO.
	 *  Patched with NOOP for chips that donnot 
	 *  support DAC addressing.
	 */
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
	SCR_FROM_REG (HX_REG),
		0,
	SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
		SIR_DMAP_DIRTY,
#endif
}/*-------------------------< WF_SEL_DONE >----------------------*/,{
	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
		SIR_SEL_ATN_NO_MSG_OUT,
}/*-------------------------< SEL_DONE >-------------------------*/,{
	/*
	 *  C1010-33 errata work-around.
	 *  Due to a race, the SCSI core may not have 
	 *  loaded SCNTL3 on SEL_TBL instruction.
	 *  We reload it once phase is stable.
	 *  Patched with a NOOP for other chips.
	 */
	SCR_LOAD_REL (scntl3, 1),
		offsetof(struct sym_dsb, select.sel_scntl3),
}/*-------------------------< SEND_IDENT >-----------------------*/,{
	/*
	 *  Selection complete.
	 *  Send the IDENTIFY and possibly the TAG message 
	 *  and negotiation message if present.
	 */
	SCR_MOVE_TBL ^ SCR_MSG_OUT,
		offsetof (struct sym_dsb, smsg),
}/*-------------------------< SELECT2 >--------------------------*/,{
#ifdef SYM_CONF_IARB_SUPPORT
	/*
	 *  Set IMMEDIATE ARBITRATION if we have been given 
	 *  a hint to do so. (Some job to do after this one).
	 */
	SCR_FROM_REG (HF_REG),
		0,
	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
		8,
	SCR_REG_REG (scntl1, SCR_OR, IARB),
		0,
#endif
	/*
	 *  Anticipate the COMMAND phase.
	 *  This is the PHASE we expect at this point.
	 */
	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
		PADDR_A (sel_no_cmd),
}/*-------------------------< COMMAND >--------------------------*/,{
	/*
	 *  ... and send the command
	 */
	SCR_MOVE_TBL ^ SCR_COMMAND,
		offsetof (struct sym_dsb, cmd),
}/*-------------------------< DISPATCH >-------------------------*/,{
	/*
	 *  MSG_IN is the only phase that shall be 
	 *  entered at least once for each (re)selection.
	 *  So we test it first.
	 */
	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
		PADDR_A (msg_in),
	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
		PADDR_A (datao_phase),
	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
		PADDR_A (datai_phase),
	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
		PADDR_A (status),
	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
		PADDR_A (command),
	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
		PADDR_B (msg_out),
	/*
	 *  Discard as many illegal phases as 
	 *  required and tell the C code about.
	 */
	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
		16,
	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
		HADDR_1 (scratch),
	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
		-16,
	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
		16,
	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
		HADDR_1 (scratch),
	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
		-16,
	SCR_INT,
		SIR_BAD_PHASE,
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
	/*
	 *  The target does not switch to command 
	 *  phase after IDENTIFY has been sent.
	 *
	 *  If it stays in MSG OUT phase send it 
	 *  the IDENTIFY again.
	 */
	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
		PADDR_B (resend_ident),
	/*
	 *  If target does not switch to MSG IN phase 
	 *  and we sent a negotiation, assert the 
	 *  failure immediately.
	 */
	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
		PADDR_A (dispatch),
	SCR_FROM_REG (HS_REG),
		0,
	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
		SIR_NEGO_FAILED,
	/*
	 *  Jump to dispatcher.
	 */
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< INIT >-----------------------------*/,{
	/*
	 *  Wait for the SCSI RESET signal to be 
	 *  inactive before restarting operations, 
	 *  since the chip may hang on SEL_ATN 
	 *  if SCSI RESET is active.
	 */
	SCR_FROM_REG (sstat0),
		0,
	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
		-16,
	SCR_JUMP,
		PADDR_A (start),
}/*-------------------------< CLRACK >---------------------------*/,{
	/*
	 *  Terminate possible pending message phase.
	 */
	SCR_CLR (SCR_ACK),
		0,
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< DATAI_DONE >-----------------------*/,{
	/*
	 *  Save current pointer to LASTP.
	 */
	SCR_STORE_REL (temp, 4),
		offsetof (struct sym_ccb, phys.head.lastp),
	/*
	 *  If the SWIDE is not full, jump to dispatcher.
	 *  We anticipate a STATUS phase.
	 */
	SCR_FROM_REG (scntl2),
		0,
	SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
		PADDR_A (datai_done_wsr),
	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
		PADDR_A (status),
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
	/*
	 *  The SWIDE is full.
	 *  Clear this condition.
	 */
	SCR_REG_REG (scntl2, SCR_OR, WSR),
		0,
	/*
	 *  We are expecting an IGNORE RESIDUE message 
	 *  from the device, otherwise we are in data 
	 *  overrun condition. Check against MSG_IN phase.
	 */
	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
		SIR_SWIDE_OVERRUN,
	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
		PADDR_A (dispatch),
	/*
	 *  We are in MSG_IN phase,
	 *  Read the first byte of the message.
	 *  If it is not an IGNORE RESIDUE message,
	 *  signal overrun and jump to message 
	 *  processing.
	 */
	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
		HADDR_1 (msgin[0]),
	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
		SIR_SWIDE_OVERRUN,
	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
		PADDR_A (msg_in2),
	/*
	 *  We got the message we expected.
	 *  Read the 2nd byte, and jump to dispatcher.
	 */
	SCR_CLR (SCR_ACK),
		0,
	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
		HADDR_1 (msgin[1]),
	SCR_CLR (SCR_ACK),
		0,
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< DATAO_DONE >-----------------------*/,{
	/*
	 *  Save current pointer to LASTP.
	 */
	SCR_STORE_REL (temp, 4),
		offsetof (struct sym_ccb, phys.head.lastp),
	/*
	 *  If the SODL is not full jump to dispatcher.
	 *  We anticipate a STATUS phase.
	 */
	SCR_FROM_REG (scntl2),
		0,
	SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
		PADDR_A (datao_done_wss),
	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
		PADDR_A (status),
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
	/*
	 *  The SODL is full, clear this condition.
	 */
	SCR_REG_REG (scntl2, SCR_OR, WSS),
		0,
	/*
	 *  And signal a DATA UNDERRUN condition 
	 *  to the C code.
	 */
	SCR_INT,
		SIR_SODL_UNDERRUN,
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< DATAI_PHASE >----------------------*/,{
	/*
	 *  Jump to current pointer.
	 */
	SCR_LOAD_REL (temp, 4),
		offsetof (struct sym_ccb, phys.head.lastp),
	SCR_RETURN,
		0,
}/*-------------------------< DATAO_PHASE >----------------------*/,{
	/*
	 *  C1010-66 errata work-around.
	 *  Extra clocks of data hold must be inserted 
	 *  in DATA OUT phase on 33 MHz PCI BUS.
	 *  Patched with a NOOP for other chips.
	 */
	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
		0,
	/*
	 *  Jump to current pointer.
	 */
	SCR_LOAD_REL (temp, 4),
		offsetof (struct sym_ccb, phys.head.lastp),
	SCR_RETURN,
		0,
}/*-------------------------< MSG_IN >---------------------------*/,{
	/*
	 *  Get the first byte of the message.
	 *
	 *  The script processor doesn't negate the
	 *  ACK signal after this transfer.
	 */
	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
		HADDR_1 (msgin[0]),
}/*-------------------------< MSG_IN2 >--------------------------*/,{
	/*
	 *  Check first against 1 byte messages 
	 *  that we handle from SCRIPTS.
	 */
	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
		PADDR_A (complete),
	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
		PADDR_A (disconnect),
	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
		PADDR_A (save_dp),
	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
		PADDR_A (restore_dp),
	/*
	 *  We handle all other messages from the 
	 *  C code, so no need to waste on-chip RAM 
	 *  for those ones.
	 */
	SCR_JUMP,
		PADDR_B (msg_in_etc),
}/*-------------------------< STATUS >---------------------------*/,{
	/*
	 *  get the status
	 */
	SCR_MOVE_ABS (1) ^ SCR_STATUS,
		HADDR_1 (scratch),
#ifdef SYM_CONF_IARB_SUPPORT
	/*
	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, 
	 *  since we may have to tamper the start queue from 
	 *  the C code.
	 */
	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
		8,
	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
		0,
#endif
	/*
	 *  save status to scsi_status.
	 *  mark as complete.
	 */
	SCR_TO_REG (SS_REG),
		0,
	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
		0,
	/*
	 *  Anticipate the MESSAGE PHASE for 
	 *  the TASK COMPLETE message.
	 */
	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
		PADDR_A (msg_in),
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< COMPLETE >-------------------------*/,{
	/*
	 *  Complete message.
	 *
	 *  When we terminate the cycle by clearing ACK,
	 *  the target may disconnect immediately.
	 *
	 *  We don't want to be told of an "unexpected disconnect",
	 *  so we disable this feature.
	 */
	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
		0,
	/*
	 *  Terminate cycle ...
	 */
	SCR_CLR (SCR_ACK|SCR_ATN),
		0,
	/*
	 *  ... and wait for the disconnect.
	 */
	SCR_WAIT_DISC,
		0,
}/*-------------------------< COMPLETE2 >------------------------*/,{
	/*
	 *  Save host status.
	 */
	SCR_STORE_REL (scr0, 4),
		offsetof (struct sym_ccb, phys.head.status),
	/*
	 *  Some bridges may reorder DMA writes to memory.
	 *  We donnot want the CPU to deal with completions  
	 *  without all the posted write having been flushed 
	 *  to memory. This DUMMY READ should flush posted 
	 *  buffers prior to the CPU having to deal with 
	 *  completions.
	 */
	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
		offsetof (struct sym_ccb, phys.head.status),

	/*
	 *  If command resulted in not GOOD status,
	 *  call the C code if needed.
	 */
	SCR_FROM_REG (SS_REG),
		0,
	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
		PADDR_B (bad_status),
	/*
	 *  If we performed an auto-sense, call 
	 *  the C code to synchronyze task aborts 
	 *  with UNIT ATTENTION conditions.
	 */
	SCR_FROM_REG (HF_REG),
		0,
	SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
		PADDR_A (complete_error),
}/*-------------------------< DONE >-----------------------------*/,{
	/*
	 *  Copy the DSA to the DONE QUEUE and 
	 *  signal completion to the host.
	 *  If we are interrupted between DONE 
	 *  and DONE_END, we must reset, otherwise 
	 *  the completed CCB may be lost.
	 */
	SCR_STORE_ABS (dsa, 4),
		PADDR_B (scratch),
	SCR_LOAD_ABS (dsa, 4),
		PADDR_B (done_pos),
	SCR_LOAD_ABS (scratcha, 4),
		PADDR_B (scratch),
	SCR_STORE_REL (scratcha, 4),
		0,
	/*
	 *  The instruction below reads the DONE QUEUE next 
	 *  free position from memory.
	 *  In addition it ensures that all PCI posted writes  
	 *  are flushed and so the DSA value of the done 
	 *  CCB is visible by the CPU before INTFLY is raised.
	 */
	SCR_LOAD_REL (scratcha, 4),
		4,
	SCR_INT_FLY,
		0,
	SCR_STORE_ABS (scratcha, 4),
		PADDR_B (done_pos),
}/*-------------------------< DONE_END >-------------------------*/,{
	SCR_JUMP,
		PADDR_A (start),
}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
	SCR_LOAD_ABS (scratcha, 4),
		PADDR_B (startpos),
	SCR_INT,
		SIR_COMPLETE_ERROR,
}/*-------------------------< SAVE_DP >--------------------------*/,{
	/*
	 *  Clear ACK immediately.
	 *  No need to delay it.
	 */
	SCR_CLR (SCR_ACK),
		0,
	/*
	 *  Keep track we received a SAVE DP, so 
	 *  we will switch to the other PM context 
	 *  on the next PM since the DP may point 
	 *  to the current PM context.
	 */
	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
		0,
	/*
	 *  SAVE_DP message:
	 *  Copy LASTP to SAVEP.
	 */
	SCR_LOAD_REL (scratcha, 4),
		offsetof (struct sym_ccb, phys.head.lastp),
	SCR_STORE_REL (scratcha, 4),
		offsetof (struct sym_ccb, phys.head.savep),
	/*
	 *  Anticipate the MESSAGE PHASE for 
	 *  the DISCONNECT message.
	 */
	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
		PADDR_A (msg_in),
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< RESTORE_DP >-----------------------*/,{
	/*
	 *  Clear ACK immediately.
	 *  No need to delay it.
	 */
	SCR_CLR (SCR_ACK),
		0,
	/*
	 *  Copy SAVEP to LASTP.
	 */
	SCR_LOAD_REL  (scratcha, 4),
		offsetof (struct sym_ccb, phys.head.savep),
	SCR_STORE_REL (scratcha, 4),
		offsetof (struct sym_ccb, phys.head.lastp),
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< DISCONNECT >-----------------------*/,{
	/*
	 *  DISCONNECTing  ...
	 *
	 *  disable the "unexpected disconnect" feature,
	 *  and remove the ACK signal.
	 */
	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
		0,
	SCR_CLR (SCR_ACK|SCR_ATN),
		0,
	/*
	 *  Wait for the disconnect.
	 */
	SCR_WAIT_DISC,
		0,
	/*
	 *  Status is: DISCONNECTED.
	 */
	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
		0,
	/*
	 *  Save host status.
	 */
	SCR_STORE_REL (scr0, 4),
		offsetof (struct sym_ccb, phys.head.status),
	SCR_JUMP,
		PADDR_A (start),
}/*-------------------------< IDLE >-----------------------------*/,{
	/*
	 *  Nothing to do?
	 *  Switch the LED off and wait for reselect.
	 *  Will be patched with a NO_OP if LED
	 *  not needed or not desired.
	 */
	SCR_REG_REG (gpreg, SCR_OR, 0x01),
		0,
#ifdef SYM_CONF_IARB_SUPPORT
	SCR_JUMPR,
		8,
#endif
}/*-------------------------< UNGETJOB >-------------------------*/,{
#ifdef SYM_CONF_IARB_SUPPORT
	/*
	 *  Set IMMEDIATE ARBITRATION, for the next time.
	 *  This will give us better chance to win arbitration 
	 *  for the job we just wanted to do.
	 */
	SCR_REG_REG (scntl1, SCR_OR, IARB),
		0,
#endif
	/*
	 *  We are not able to restart the SCRIPTS if we are 
	 *  interrupted and these instruction haven't been 
	 *  all executed. BTW, this is very unlikely to 
	 *  happen, but we check that from the C code.
	 */
	SCR_LOAD_REG (dsa, 0xff),
		0,
	SCR_STORE_ABS (scratcha, 4),
		PADDR_B (startpos),
}/*-------------------------< RESELECT >-------------------------*/,{
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
	/*
	 *  Make sure we are in initiator mode.
	 */
	SCR_CLR (SCR_TRG),
		0,
#endif
	/*
	 *  Sleep waiting for a reselection.
	 */
	SCR_WAIT_RESEL,
		PADDR_A(start),
}/*-------------------------< RESELECTED >-----------------------*/,{
	/*
	 *  Switch the LED on.
	 *  Will be patched with a NO_OP if LED
	 *  not needed or not desired.
	 */
	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
		0,
	/*
	 *  load the target id into the sdid
	 */
	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
		0,
	SCR_TO_REG (sdid),
		0,
	/*
	 *  Load the target control block address
	 */
	SCR_LOAD_ABS (dsa, 4),
		PADDR_B (targtbl),
	SCR_SFBR_REG (dsa, SCR_SHL, 0),
		0,
	SCR_REG_REG (dsa, SCR_SHL, 0),
		0,
	SCR_REG_REG (dsa, SCR_AND, 0x3c),
		0,
	SCR_LOAD_REL (dsa, 4),
		0,
	/*
	 *  We expect MESSAGE IN phase.
	 *  If not, get help from the C code.
	 */
	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
		SIR_RESEL_NO_MSG_IN,
	/*
	 *  Load the legacy synchronous transfer registers.
	 */
	SCR_LOAD_REL (scntl3, 1),
		offsetof(struct sym_tcb, head.wval),
	SCR_LOAD_REL (sxfer, 1),
		offsetof(struct sym_tcb, head.sval),
}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
	/*
	 *  The C1010 uses a new synchronous timing scheme.
	 *  Will be patched with a NO_OP if not a C1010.
	 */
	SCR_LOAD_REL (scntl4, 1),
		offsetof(struct sym_tcb, head.uval),
	/*
	 *  Get the IDENTIFY message.
	 */
	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
		HADDR_1 (msgin),
	/*
	 *  If IDENTIFY LUN #0, use a faster path 
	 *  to find the LCB structure.
	 */
	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
		PADDR_A (resel_lun0),
	/*
	 *  If message isn't an IDENTIFY, 
	 *  tell the C code about.
	 */
	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
		SIR_RESEL_NO_IDENTIFY,
	/*
	 *  It is an IDENTIFY message,
	 *  Load the LUN control block address.
	 */
	SCR_LOAD_REL (dsa, 4),
		offsetof(struct sym_tcb, head.luntbl_sa),
	SCR_SFBR_REG (dsa, SCR_SHL, 0),
		0,
	SCR_REG_REG (dsa, SCR_SHL, 0),
		0,
	SCR_REG_REG (dsa, SCR_AND, 0xfc),
		0,
	SCR_LOAD_REL (dsa, 4),
		0,
	SCR_JUMPR,
		8,
}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
	/*
	 *  LUN 0 special case (but usual one :))
	 */
	SCR_LOAD_REL (dsa, 4),
		offsetof(struct sym_tcb, head.lun0_sa),
	/*
	 *  Jump indirectly to the reselect action for this LUN.
	 */
	SCR_LOAD_REL (temp, 4),
		offsetof(struct sym_lcb, head.resel_sa),
	SCR_RETURN,
		0,
	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
}/*-------------------------< RESEL_TAG >------------------------*/,{
	/*
	 *  ACK the IDENTIFY previously received.
	 */
	SCR_CLR (SCR_ACK),
		0,
	/*
	 *  It shall be a tagged command.
	 *  Read SIMPLE+TAG.
	 *  The C code will deal with errors.
959
	 *  Aggressive optimization, isn't it? :)
L
Linus Torvalds 已提交
960 961 962 963 964 965 966 967 968 969 970
	 */
	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
		HADDR_1 (msgin),
	/*
	 *  Load the pointer to the tagged task 
	 *  table for this LUN.
	 */
	SCR_LOAD_REL (dsa, 4),
		offsetof(struct sym_lcb, head.itlq_tbl_sa),
	/*
	 *  The SIDL still contains the TAG value.
971
	 *  Aggressive optimization, isn't it? :):)
L
Linus Torvalds 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	 */
	SCR_REG_SFBR (sidl, SCR_SHL, 0),
		0,
#if SYM_CONF_MAX_TASK*4 > 512
	SCR_JUMPR ^ IFFALSE (CARRYSET),
		8,
	SCR_REG_REG (dsa1, SCR_OR, 2),
		0,
	SCR_REG_REG (sfbr, SCR_SHL, 0),
		0,
	SCR_JUMPR ^ IFFALSE (CARRYSET),
		8,
	SCR_REG_REG (dsa1, SCR_OR, 1),
		0,
#elif SYM_CONF_MAX_TASK*4 > 256
	SCR_JUMPR ^ IFFALSE (CARRYSET),
		8,
	SCR_REG_REG (dsa1, SCR_OR, 1),
		0,
#endif
	/*
	 *  Retrieve the DSA of this task.
	 *  JUMP indirectly to the restart point of the CCB.
	 */
	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
		0,
	SCR_LOAD_REL (dsa, 4),
		0,
	SCR_LOAD_REL (temp, 4),
		offsetof(struct sym_ccb, phys.head.go.restart),
	SCR_RETURN,
		0,
	/* In normal situations we branch to RESEL_DSA */
}/*-------------------------< RESEL_DSA >------------------------*/,{
	/*
	 *  ACK the IDENTIFY or TAG previously received.
	 */
	SCR_CLR (SCR_ACK),
		0,
}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
	/*
	 *      Initialize the status registers
	 */
	SCR_LOAD_REL (scr0, 4),
		offsetof (struct sym_ccb, phys.head.status),
	/*
	 *  Jump to dispatcher.
	 */
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
	/*
	 *  Load the DSA with the unique ITL task.
	 */
	SCR_LOAD_REL (dsa, 4),
		offsetof(struct sym_lcb, head.itl_task_sa),
	/*
	 *  JUMP indirectly to the restart point of the CCB.
	 */
	SCR_LOAD_REL (temp, 4),
		offsetof(struct sym_ccb, phys.head.go.restart),
	SCR_RETURN,
		0,
	/* In normal situations we branch to RESEL_DSA */
}/*-------------------------< DATA_IN >--------------------------*/,{
/*
 *  Because the size depends on the
 *  #define SYM_CONF_MAX_SG parameter,
 *  it is filled in at runtime.
 *
 *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
 *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
 *  ||		offsetof (struct sym_dsb, data[ i]),
 *  ##==========================================
 */
0
}/*-------------------------< DATA_IN2 >-------------------------*/,{
	SCR_CALL,
		PADDR_A (datai_done),
	SCR_JUMP,
		PADDR_B (data_ovrun),
}/*-------------------------< DATA_OUT >-------------------------*/,{
/*
 *  Because the size depends on the
 *  #define SYM_CONF_MAX_SG parameter,
 *  it is filled in at runtime.
 *
 *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
 *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
 *  ||		offsetof (struct sym_dsb, data[ i]),
 *  ##==========================================
 */
0
}/*-------------------------< DATA_OUT2 >------------------------*/,{
	SCR_CALL,
		PADDR_A (datao_done),
	SCR_JUMP,
		PADDR_B (data_ovrun),
}/*-------------------------< PM0_DATA >-------------------------*/,{
	/*
	 *  Read our host flags to SFBR, so we will be able 
	 *  to check against the data direction we expect.
	 */
	SCR_FROM_REG (HF_REG),
		0,
	/*
	 *  Check against actual DATA PHASE.
	 */
	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
		PADDR_A (pm0_data_out),
	/*
	 *  Actual phase is DATA IN.
	 *  Check against expected direction.
	 */
	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
		PADDR_B (data_ovrun),
	/*
	 *  Keep track we are moving data from the 
	 *  PM0 DATA mini-script.
	 */
	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
		0,
	/*
	 *  Move the data to memory.
	 */
	SCR_CHMOV_TBL ^ SCR_DATA_IN,
		offsetof (struct sym_ccb, phys.pm0.sg),
	SCR_JUMP,
		PADDR_A (pm0_data_end),
}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
	/*
	 *  Actual phase is DATA OUT.
	 *  Check against expected direction.
	 */
	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
		PADDR_B (data_ovrun),
	/*
	 *  Keep track we are moving data from the 
	 *  PM0 DATA mini-script.
	 */
	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
		0,
	/*
	 *  Move the data from memory.
	 */
	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
		offsetof (struct sym_ccb, phys.pm0.sg),
}/*-------------------------< PM0_DATA_END >---------------------*/,{
	/*
	 *  Clear the flag that told we were moving  
	 *  data from the PM0 DATA mini-script.
	 */
	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
		0,
	/*
	 *  Return to the previous DATA script which 
	 *  is guaranteed by design (if no bug) to be 
	 *  the main DATA script for this transfer.
	 */
	SCR_LOAD_REL (temp, 4),
		offsetof (struct sym_ccb, phys.pm0.ret),
	SCR_RETURN,
		0,
}/*-------------------------< PM1_DATA >-------------------------*/,{
	/*
	 *  Read our host flags to SFBR, so we will be able 
	 *  to check against the data direction we expect.
	 */
	SCR_FROM_REG (HF_REG),
		0,
	/*
	 *  Check against actual DATA PHASE.
	 */
	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
		PADDR_A (pm1_data_out),
	/*
	 *  Actual phase is DATA IN.
	 *  Check against expected direction.
	 */
	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
		PADDR_B (data_ovrun),
	/*
	 *  Keep track we are moving data from the 
	 *  PM1 DATA mini-script.
	 */
	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
		0,
	/*
	 *  Move the data to memory.
	 */
	SCR_CHMOV_TBL ^ SCR_DATA_IN,
		offsetof (struct sym_ccb, phys.pm1.sg),
	SCR_JUMP,
		PADDR_A (pm1_data_end),
}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
	/*
	 *  Actual phase is DATA OUT.
	 *  Check against expected direction.
	 */
	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
		PADDR_B (data_ovrun),
	/*
	 *  Keep track we are moving data from the 
	 *  PM1 DATA mini-script.
	 */
	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
		0,
	/*
	 *  Move the data from memory.
	 */
	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
		offsetof (struct sym_ccb, phys.pm1.sg),
}/*-------------------------< PM1_DATA_END >---------------------*/,{
	/*
	 *  Clear the flag that told we were moving  
	 *  data from the PM1 DATA mini-script.
	 */
	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
		0,
	/*
	 *  Return to the previous DATA script which 
	 *  is guaranteed by design (if no bug) to be 
	 *  the main DATA script for this transfer.
	 */
	SCR_LOAD_REL (temp, 4),
		offsetof (struct sym_ccb, phys.pm1.ret),
	SCR_RETURN,
		0,
}/*-------------------------<>-----------------------------------*/
};

static struct SYM_FWB_SCR SYM_FWB_SCR = {
/*--------------------------< START64 >--------------------------*/ {
	/*
	 *  SCRIPT entry point for the 895A, 896 and 1010.
	 *  For now, there is no specific stuff for those 
	 *  chips at this point, but this may come.
	 */
	SCR_JUMP,
		PADDR_A (init),
}/*-------------------------< NO_DATA >--------------------------*/,{
	SCR_JUMP,
		PADDR_B (data_ovrun),
}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
	/*
	 *  We are jumped here by the C code, if we have 
	 *  some target to reset or some disconnected 
	 *  job to abort. Since error recovery is a serious 
	 *  busyness, we will really reset the SCSI BUS, if 
	 *  case of a SCSI interrupt occurring in this path.
	 */
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
	/*
	 *  Set initiator mode.
	 */
	SCR_CLR (SCR_TRG),
		0,
#endif
	/*
	 *      And try to select this target.
	 */
	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
		PADDR_A (reselect),
	/*
	 *  Wait for the selection to complete or 
	 *  the selection to time out.
	 */
	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
		-8,
	/*
	 *  Call the C code.
	 */
	SCR_INT,
		SIR_TARGET_SELECTED,
	/*
	 *  The C code should let us continue here. 
	 *  Send the 'kiss of death' message.
	 *  We expect an immediate disconnect once 
	 *  the target has eaten the message.
	 */
	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
		0,
	SCR_MOVE_TBL ^ SCR_MSG_OUT,
		offsetof (struct sym_hcb, abrt_tbl),
	SCR_CLR (SCR_ACK|SCR_ATN),
		0,
	SCR_WAIT_DISC,
		0,
	/*
	 *  Tell the C code that we are done.
	 */
	SCR_INT,
		SIR_ABORT_SENT,
}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
	/*
	 *  Jump at scheduler.
	 */
	SCR_JUMP,
		PADDR_A (start),
}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
	/*
	 *  If it is an EXTENDED (variable size message)
	 *  Handle it.
	 */
	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
		PADDR_B (msg_extended),
	/*
	 *  Let the C code handle any other 
	 *  1 byte message.
	 */
	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
		PADDR_B (msg_received),
	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
		PADDR_B (msg_received),
	/*
	 *  We donnot handle 2 bytes messages from SCRIPTS.
	 *  So, let the C code deal with these ones too.
	 */
	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
		PADDR_B (msg_weird_seen),
	SCR_CLR (SCR_ACK),
		0,
	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
		HADDR_1 (msgin[1]),
}/*-------------------------< MSG_RECEIVED >---------------------*/,{
	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
		0,
	SCR_INT,
		SIR_MSG_RECEIVED,
}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
		0,
	SCR_INT,
		SIR_MSG_WEIRD,
}/*-------------------------< MSG_EXTENDED >---------------------*/,{
	/*
	 *  Clear ACK and get the next byte 
	 *  assumed to be the message length.
	 */
	SCR_CLR (SCR_ACK),
		0,
	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
		HADDR_1 (msgin[1]),
	/*
	 *  Try to catch some unlikely situations as 0 length 
	 *  or too large the length.
	 */
	SCR_JUMP ^ IFTRUE (DATA (0)),
		PADDR_B (msg_weird_seen),
	SCR_TO_REG (scratcha),
		0,
	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
		0,
	SCR_JUMP ^ IFTRUE (CARRYSET),
		PADDR_B (msg_weird_seen),
	/*
	 *  We donnot handle extended messages from SCRIPTS.
	 *  Read the amount of data correponding to the 
	 *  message length and call the C code.
	 */
	SCR_STORE_REL (scratcha, 1),
		offsetof (struct sym_dsb, smsg_ext.size),
	SCR_CLR (SCR_ACK),
		0,
	SCR_MOVE_TBL ^ SCR_MSG_IN,
		offsetof (struct sym_dsb, smsg_ext),
	SCR_JUMP,
		PADDR_B (msg_received),
}/*-------------------------< MSG_BAD >--------------------------*/,{
	/*
	 *  unimplemented message - reject it.
	 */
	SCR_INT,
		SIR_REJECT_TO_SEND,
	SCR_SET (SCR_ATN),
		0,
	SCR_JUMP,
		PADDR_A (clrack),
}/*-------------------------< MSG_WEIRD >------------------------*/,{
	/*
	 *  weird message received
	 *  ignore all MSG IN phases and reject it.
	 */
	SCR_INT,
		SIR_REJECT_TO_SEND,
	SCR_SET (SCR_ATN),
		0,
}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
	SCR_CLR (SCR_ACK),
		0,
	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
		PADDR_A (dispatch),
	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
		HADDR_1 (scratch),
	SCR_JUMP,
		PADDR_B (msg_weird1),
}/*-------------------------< WDTR_RESP >------------------------*/,{
	/*
	 *  let the target fetch our answer.
	 */
	SCR_SET (SCR_ATN),
		0,
	SCR_CLR (SCR_ACK),
		0,
	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
		PADDR_B (nego_bad_phase),
}/*-------------------------< SEND_WDTR >------------------------*/,{
	/*
	 *  Send the M_X_WIDE_REQ
	 */
	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
		HADDR_1 (msgout),
	SCR_JUMP,
		PADDR_B (msg_out_done),
}/*-------------------------< SDTR_RESP >------------------------*/,{
	/*
	 *  let the target fetch our answer.
	 */
	SCR_SET (SCR_ATN),
		0,
	SCR_CLR (SCR_ACK),
		0,
	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
		PADDR_B (nego_bad_phase),
}/*-------------------------< SEND_SDTR >------------------------*/,{
	/*
	 *  Send the M_X_SYNC_REQ
	 */
	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
		HADDR_1 (msgout),
	SCR_JUMP,
		PADDR_B (msg_out_done),
}/*-------------------------< PPR_RESP >-------------------------*/,{
	/*
	 *  let the target fetch our answer.
	 */
	SCR_SET (SCR_ATN),
		0,
	SCR_CLR (SCR_ACK),
		0,
	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
		PADDR_B (nego_bad_phase),
}/*-------------------------< SEND_PPR >-------------------------*/,{
	/*
	 *  Send the M_X_PPR_REQ
	 */
	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
		HADDR_1 (msgout),
	SCR_JUMP,
		PADDR_B (msg_out_done),
}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
	SCR_INT,
		SIR_NEGO_PROTO,
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< MSG_OUT >--------------------------*/,{
	/*
	 *  The target requests a message.
	 *  We donnot send messages that may 
	 *  require the device to go to bus free.
	 */
	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
		HADDR_1 (msgout),
	/*
	 *  ... wait for the next phase
	 *  if it's a message out, send it again, ...
	 */
	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
		PADDR_B (msg_out),
}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
	/*
	 *  Let the C code be aware of the 
	 *  sent message and clear the message.
	 */
	SCR_INT,
		SIR_MSG_OUT_DONE,
	/*
	 *  ... and process the next phase
	 */
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< DATA_OVRUN >-----------------------*/,{
	/*
	 *  Use scratcha to count the extra bytes.
	 */
	SCR_LOAD_ABS (scratcha, 4),
		PADDR_B (zero),
}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
	/*
	 *  The target may want to transfer too much data.
	 *
	 *  If phase is DATA OUT write 1 byte and count it.
	 */
	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
		16,
	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
		HADDR_1 (scratch),
	SCR_JUMP,
		PADDR_B (data_ovrun2),
	/*
	 *  If WSR is set, clear this condition, and 
	 *  count this byte.
	 */
	SCR_FROM_REG (scntl2),
		0,
	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
		16,
	SCR_REG_REG (scntl2, SCR_OR, WSR),
		0,
	SCR_JUMP,
		PADDR_B (data_ovrun2),
	/*
	 *  Finally check against DATA IN phase.
	 *  Signal data overrun to the C code 
	 *  and jump to dispatcher if not so.
	 *  Read 1 byte otherwise and count it.
	 */
	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
		16,
	SCR_INT,
		SIR_DATA_OVERRUN,
	SCR_JUMP,
		PADDR_A (dispatch),
	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
		HADDR_1 (scratch),
}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
	/*
	 *  Count this byte.
	 *  This will allow to return a negative 
	 *  residual to user.
	 */
	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
		0,
	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
		0,
	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
		0,
	/*
	 *  .. and repeat as required.
	 */
	SCR_JUMP,
		PADDR_B (data_ovrun1),
}/*-------------------------< ABORT_RESEL >----------------------*/,{
	SCR_SET (SCR_ATN),
		0,
	SCR_CLR (SCR_ACK),
		0,
	/*
	 *  send the abort/abortag/reset message
	 *  we expect an immediate disconnect
	 */
	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
		0,
	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
		HADDR_1 (msgout),
	SCR_CLR (SCR_ACK|SCR_ATN),
		0,
	SCR_WAIT_DISC,
		0,
	SCR_INT,
		SIR_RESEL_ABORTED,
	SCR_JUMP,
		PADDR_A (start),
}/*-------------------------< RESEND_IDENT >---------------------*/,{
	/*
	 *  The target stays in MSG OUT phase after having acked 
	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
	 *  behave this way on parity error.
	 *  We must send it again all the messages.
	 */
	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
	SCR_JUMP,
		PADDR_A (send_ident),
}/*-------------------------< IDENT_BREAK >----------------------*/,{
	SCR_CLR (SCR_ATN),
		0,
	SCR_JUMP,
		PADDR_A (select2),
}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
	SCR_SET (SCR_ATN),
		0,
	SCR_JUMP,
		PADDR_A (select2),
}/*-------------------------< SDATA_IN >-------------------------*/,{
	SCR_CHMOV_TBL ^ SCR_DATA_IN,
		offsetof (struct sym_dsb, sense),
	SCR_CALL,
		PADDR_A (datai_done),
	SCR_JUMP,
		PADDR_B (data_ovrun),
}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
	/*
	 *  Message is an IDENTIFY, but lun is unknown.
	 *  Signal problem to C code for logging the event.
	 *  Send a M_ABORT to clear all pending tasks.
	 */
	SCR_INT,
		SIR_RESEL_BAD_LUN,
	SCR_JUMP,
		PADDR_B (abort_resel),
}/*-------------------------< BAD_I_T_L >------------------------*/,{
	/*
	 *  We donnot have a task for that I_T_L.
	 *  Signal problem to C code for logging the event.
	 *  Send a M_ABORT message.
	 */
	SCR_INT,
		SIR_RESEL_BAD_I_T_L,
	SCR_JUMP,
		PADDR_B (abort_resel),
}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
	/*
	 *  We donnot have a task that matches the tag.
	 *  Signal problem to C code for logging the event.
	 *  Send a M_ABORTTAG message.
	 */
	SCR_INT,
		SIR_RESEL_BAD_I_T_L_Q,
	SCR_JUMP,
		PADDR_B (abort_resel),
}/*-------------------------< BAD_STATUS >-----------------------*/,{
	/*
	 *  Anything different from INTERMEDIATE 
	 *  CONDITION MET should be a bad SCSI status, 
	 *  given that GOOD status has already been tested.
	 *  Call the C code.
	 */
	SCR_LOAD_ABS (scratcha, 4),
		PADDR_B (startpos),
	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
		SIR_BAD_SCSI_STATUS,
	SCR_RETURN,
		0,
}/*-------------------------< PM_HANDLE >------------------------*/,{
	/*
	 *  Phase mismatch handling.
	 *
	 *  Since we have to deal with 2 SCSI data pointers  
	 *  (current and saved), we need at least 2 contexts.
	 *  Each context (pm0 and pm1) has a saved area, a 
	 *  SAVE mini-script and a DATA phase mini-script.
	 */
	/*
	 *  Get the PM handling flags.
	 */
	SCR_FROM_REG (HF_REG),
		0,
	/*
	 *  If no flags (1rst PM for example), avoid 
	 *  all the below heavy flags testing.
	 *  This makes the normal case a bit faster.
	 */
	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
		PADDR_B (pm_handle1),
	/*
	 *  If we received a SAVE DP, switch to the 
	 *  other PM context since the savep may point 
	 *  to the current PM context.
	 */
	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
		8,
	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
		0,
	/*
	 *  If we have been interrupt in a PM DATA mini-script,
	 *  we take the return address from the corresponding 
	 *  saved area.
	 *  This ensure the return address always points to the 
	 *  main DATA script for this transfer.
	 */
	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
		PADDR_B (pm_handle1),
	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
		16,
	SCR_LOAD_REL (ia, 4),
		offsetof(struct sym_ccb, phys.pm0.ret),
	SCR_JUMP,
		PADDR_B (pm_save),
	SCR_LOAD_REL (ia, 4),
		offsetof(struct sym_ccb, phys.pm1.ret),
	SCR_JUMP,
		PADDR_B (pm_save),
}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
	/*
	 *  Normal case.
	 *  Update the return address so that it 
	 *  will point after the interrupted MOVE.
	 */
	SCR_REG_REG (ia, SCR_ADD, 8),
		0,
	SCR_REG_REG (ia1, SCR_ADDC, 0),
		0,
}/*-------------------------< PM_SAVE >--------------------------*/,{
	/*
	 *  Clear all the flags that told us if we were 
	 *  interrupted in a PM DATA mini-script and/or 
	 *  we received a SAVE DP.
	 */
	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
		0,
	/*
	 *  Choose the current PM context.
	 */
	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
		PADDR_B (pm1_save),
}/*-------------------------< PM0_SAVE >-------------------------*/,{
	SCR_STORE_REL (ia, 4),
		offsetof(struct sym_ccb, phys.pm0.ret),
	/*
	 *  If WSR bit is set, either UA and RBC may 
	 *  have to be changed whether the device wants 
	 *  to ignore this residue or not.
	 */
	SCR_FROM_REG (scntl2),
		0,
	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
		PADDR_B (pm_wsr_handle),
	/*
	 *  Save the remaining byte count, the updated 
	 *  address and the return address.
	 */
	SCR_STORE_REL (rbc, 4),
		offsetof(struct sym_ccb, phys.pm0.sg.size),
	SCR_STORE_REL (ua, 4),
		offsetof(struct sym_ccb, phys.pm0.sg.addr),
	/*
	 *  Set the current pointer at the PM0 DATA mini-script.
	 */
	SCR_LOAD_ABS (ia, 4),
		PADDR_B (pm0_data_addr),
}/*-------------------------< PM_SAVE_END >----------------------*/,{
	SCR_STORE_REL (ia, 4),
		offsetof(struct sym_ccb, phys.head.lastp),
	SCR_JUMP,
		PADDR_A (dispatch),
}/*-------------------------< PM1_SAVE >-------------------------*/,{
	SCR_STORE_REL (ia, 4),
		offsetof(struct sym_ccb, phys.pm1.ret),
	/*
	 *  If WSR bit is set, either UA and RBC may 
	 *  have to be changed whether the device wants 
	 *  to ignore this residue or not.
	 */
	SCR_FROM_REG (scntl2),
		0,
	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
		PADDR_B (pm_wsr_handle),
	/*
	 *  Save the remaining byte count, the updated 
	 *  address and the return address.
	 */
	SCR_STORE_REL (rbc, 4),
		offsetof(struct sym_ccb, phys.pm1.sg.size),
	SCR_STORE_REL (ua, 4),
		offsetof(struct sym_ccb, phys.pm1.sg.addr),
	/*
	 *  Set the current pointer at the PM1 DATA mini-script.
	 */
	SCR_LOAD_ABS (ia, 4),
		PADDR_B (pm1_data_addr),
	SCR_JUMP,
		PADDR_B (pm_save_end),
}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
	/*
	 *  Phase mismatch handling from SCRIPT with WSR set.
	 *  Such a condition can occur if the chip wants to 
	 *  execute a CHMOV(size > 1) when the WSR bit is 
	 *  set and the target changes PHASE.
	 *
	 *  We must move the residual byte to memory.
	 *
	 *  UA contains bit 0..31 of the address to 
	 *  move the residual byte.
	 *  Move it to the table indirect.
	 */
	SCR_STORE_REL (ua, 4),
		offsetof (struct sym_ccb, phys.wresid.addr),
	/*
	 *  Increment UA (move address to next position).
	 */
	SCR_REG_REG (ua, SCR_ADD, 1),
		0,
	SCR_REG_REG (ua1, SCR_ADDC, 0),
		0,
	SCR_REG_REG (ua2, SCR_ADDC, 0),
		0,
	SCR_REG_REG (ua3, SCR_ADDC, 0),
		0,
	/*
	 *  Compute SCRATCHA as:
	 *  - size to transfer = 1 byte.
	 *  - bit 24..31 = high address bit [32...39].
	 */
	SCR_LOAD_ABS (scratcha, 4),
		PADDR_B (zero),
	SCR_REG_REG (scratcha, SCR_OR, 1),
		0,
	SCR_FROM_REG (rbc3),
		0,
	SCR_TO_REG (scratcha3),
		0,
	/*
	 *  Move this value to the table indirect.
	 */
	SCR_STORE_REL (scratcha, 4),
		offsetof (struct sym_ccb, phys.wresid.size),
	/*
	 *  Wait for a valid phase.
	 *  While testing with bogus QUANTUM drives, the C1010 
	 *  sometimes raised a spurious phase mismatch with 
	 *  WSR and the CHMOV(1) triggered another PM.
	 *  Waiting explicitely for the PHASE seemed to avoid 
	 *  the nested phase mismatch. Btw, this didn't happen 
	 *  using my IBM drives.
	 */
	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
		0,
	/*
	 *  Perform the move of the residual byte.
	 */
	SCR_CHMOV_TBL ^ SCR_DATA_IN,
		offsetof (struct sym_ccb, phys.wresid),
	/*
	 *  We can now handle the phase mismatch with UA fixed.
	 *  RBC[0..23]=0 is a special case that does not require 
	 *  a PM context. The C code also checks against this.
	 */
	SCR_FROM_REG (rbc),
		0,
	SCR_RETURN ^ IFFALSE (DATA (0)),
		0,
	SCR_FROM_REG (rbc1),
		0,
	SCR_RETURN ^ IFFALSE (DATA (0)),
		0,
	SCR_FROM_REG (rbc2),
		0,
	SCR_RETURN ^ IFFALSE (DATA (0)),
		0,
	/*
	 *  RBC[0..23]=0.
	 *  Not only we donnot need a PM context, but this would 
	 *  lead to a bogus CHMOV(0). This condition means that 
	 *  the residual was the last byte to move from this CHMOV.
	 *  So, we just have to move the current data script pointer 
	 *  (i.e. TEMP) to the SCRIPTS address following the 
	 *  interrupted CHMOV and jump to dispatcher.
	 *  IA contains the data pointer to save.
	 */
	SCR_JUMP,
		PADDR_B (pm_save_end),
}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
	/*
	 *  Helper for the C code when WSR bit is set.
	 *  Perform the move of the residual byte.
	 */
	SCR_CHMOV_TBL ^ SCR_DATA_IN,
		offsetof (struct sym_ccb, phys.wresid),
	SCR_JUMP,
		PADDR_A (dispatch),

}/*-------------------------< ZERO >-----------------------------*/,{
	SCR_DATA_ZERO,
}/*-------------------------< SCRATCH >--------------------------*/,{
	SCR_DATA_ZERO,
}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
	SCR_DATA_ZERO,
}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
	SCR_DATA_ZERO,
}/*-------------------------< DONE_POS >-------------------------*/,{
	SCR_DATA_ZERO,
}/*-------------------------< STARTPOS >-------------------------*/,{
	SCR_DATA_ZERO,
}/*-------------------------< TARGTBL >--------------------------*/,{
	SCR_DATA_ZERO,
}/*-------------------------<>-----------------------------------*/
};

static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
 /*-------------------------< SNOOPTEST >------------------------*/{
	/*
	 *  Read the variable from memory.
	 */
	SCR_LOAD_REL (scratcha, 4),
		offsetof(struct sym_hcb, scratch),
	/*
	 *  Write the variable to memory.
	 */
	SCR_STORE_REL (temp, 4),
		offsetof(struct sym_hcb, scratch),
	/*
	 *  Read back the variable from memory.
	 */
	SCR_LOAD_REL (temp, 4),
		offsetof(struct sym_hcb, scratch),
}/*-------------------------< SNOOPEND >-------------------------*/,{
	/*
	 *  And stop.
	 */
	SCR_INT,
		99,
}/*-------------------------<>-----------------------------------*/
};