padlock-aes.c 14.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* 
 * Cryptographic API.
 *
 * Support for VIA PadLock hardware crypto engine.
 *
 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
 *
 * Key expansion routine taken from crypto/aes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ---------------------------------------------------------------------------
 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 * All rights reserved.
 *
 * LICENSE TERMS
 *
 * The free distribution and use of this software in both source and binary
 * form is allowed (with or without changes) provided that:
 *
 *   1. distributions of this source code include the above copyright
 *      notice, this list of conditions and the following disclaimer;
 *
 *   2. distributions in binary form include the above copyright
 *      notice, this list of conditions and the following disclaimer
 *      in the documentation and/or other associated materials;
 *
 *   3. the copyright holder's name is not used to endorse products
 *      built using this software without specific written permission.
 *
 * ALTERNATIVELY, provided that this notice is retained in full, this product
 * may be distributed under the terms of the GNU General Public License (GPL),
 * in which case the provisions of the GPL apply INSTEAD OF those given above.
 *
 * DISCLAIMER
 *
 * This software is provided 'as is' with no explicit or implied warranties
 * in respect of its properties, including, but not limited to, correctness
 * and/or fitness for purpose.
 * ---------------------------------------------------------------------------
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
52
#include <linux/kernel.h>
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60 61
#include <asm/byteorder.h>
#include "padlock.h"

#define AES_MIN_KEY_SIZE	16	/* in uint8_t units */
#define AES_MAX_KEY_SIZE	32	/* ditto */
#define AES_BLOCK_SIZE		16	/* ditto */
#define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
#define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))

62 63 64
/* Whenever making any changes to the following
 * structure *make sure* you keep E, d_data
 * and cword aligned on 16 Bytes boundaries!!! */
L
Linus Torvalds 已提交
65
struct aes_ctx {
66 67 68 69
	struct {
		struct cword encrypt;
		struct cword decrypt;
	} cword;
70
	u32 *D;
L
Linus Torvalds 已提交
71
	int key_length;
72 73 74 75
	u32 E[AES_EXTENDED_KEY_SIZE]
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
	u32 d_data[AES_EXTENDED_KEY_SIZE]
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
};

/* ====== Key management routines ====== */

static inline uint32_t
generic_rotr32 (const uint32_t x, const unsigned bits)
{
	const unsigned n = bits % 32;
	return (x >> n) | (x << (32 - n));
}

static inline uint32_t
generic_rotl32 (const uint32_t x, const unsigned bits)
{
	const unsigned n = bits % 32;
	return (x << n) | (x >> (32 - n));
}

#define rotl generic_rotl32
#define rotr generic_rotr32

/*
 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
 */
static inline uint8_t
byte(const uint32_t x, const unsigned n)
{
	return x >> (n << 3);
}

#define E_KEY ctx->E
#define D_KEY ctx->D

static uint8_t pow_tab[256];
static uint8_t log_tab[256];
static uint8_t sbx_tab[256];
static uint8_t isb_tab[256];
static uint32_t rco_tab[10];
static uint32_t ft_tab[4][256];
static uint32_t it_tab[4][256];

static uint32_t fl_tab[4][256];
static uint32_t il_tab[4][256];

static inline uint8_t
f_mult (uint8_t a, uint8_t b)
{
	uint8_t aa = log_tab[a], cc = aa + log_tab[b];

	return pow_tab[cc + (cc < aa ? 1 : 0)];
}

#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)

#define f_rn(bo, bi, n, k)					\
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rn(bo, bi, n, k)					\
    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

#define ls_box(x)				\
    ( fl_tab[0][byte(x, 0)] ^			\
      fl_tab[1][byte(x, 1)] ^			\
      fl_tab[2][byte(x, 2)] ^			\
      fl_tab[3][byte(x, 3)] )

#define f_rl(bo, bi, n, k)					\
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rl(bo, bi, n, k)					\
    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

static void
gen_tabs (void)
{
	uint32_t i, t;
	uint8_t p, q;

	/* log and power tables for GF(2**8) finite field with
	   0x011b as modular polynomial - the simplest prmitive
	   root is 0x03, used here to generate the tables */

	for (i = 0, p = 1; i < 256; ++i) {
		pow_tab[i] = (uint8_t) p;
		log_tab[p] = (uint8_t) i;

		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
	}

	log_tab[1] = 0;

	for (i = 0, p = 1; i < 10; ++i) {
		rco_tab[i] = p;

		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
	}

	for (i = 0; i < 256; ++i) {
		p = (i ? pow_tab[255 - log_tab[i]] : 0);
		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
		sbx_tab[i] = p;
		isb_tab[p] = (uint8_t) i;
	}

	for (i = 0; i < 256; ++i) {
		p = sbx_tab[i];

		t = p;
		fl_tab[0][i] = t;
		fl_tab[1][i] = rotl (t, 8);
		fl_tab[2][i] = rotl (t, 16);
		fl_tab[3][i] = rotl (t, 24);

		t = ((uint32_t) ff_mult (2, p)) |
		    ((uint32_t) p << 8) |
		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);

		ft_tab[0][i] = t;
		ft_tab[1][i] = rotl (t, 8);
		ft_tab[2][i] = rotl (t, 16);
		ft_tab[3][i] = rotl (t, 24);

		p = isb_tab[i];

		t = p;
		il_tab[0][i] = t;
		il_tab[1][i] = rotl (t, 8);
		il_tab[2][i] = rotl (t, 16);
		il_tab[3][i] = rotl (t, 24);

		t = ((uint32_t) ff_mult (14, p)) |
		    ((uint32_t) ff_mult (9, p) << 8) |
		    ((uint32_t) ff_mult (13, p) << 16) |
		    ((uint32_t) ff_mult (11, p) << 24);

		it_tab[0][i] = t;
		it_tab[1][i] = rotl (t, 8);
		it_tab[2][i] = rotl (t, 16);
		it_tab[3][i] = rotl (t, 24);
	}
}

#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)

#define imix_col(y,x)       \
    u   = star_x(x);        \
    v   = star_x(u);        \
    w   = star_x(v);        \
    t   = w ^ (x);          \
   (y)  = u ^ v ^ w;        \
   (y) ^= rotr(u ^ t,  8) ^ \
          rotr(v ^ t, 16) ^ \
          rotr(t,24)

/* initialise the key schedule from the user supplied key */

#define loop4(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
}

#define loop6(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
}

#define loop8(i)                                    \
{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
    E_KEY[8 * i + 12] = t;                \
    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
}

/* Tells whether the ACE is capable to generate
   the extended key for a given key_len. */
static inline int
aes_hw_extkey_available(uint8_t key_len)
{
	/* TODO: We should check the actual CPU model/stepping
	         as it's possible that the capability will be
	         added in the next CPU revisions. */
	if (key_len == 16)
		return 1;
	return 0;
}

289
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
290
{
291
	unsigned long addr = (unsigned long)crypto_tfm_ctx(tfm);
292 293 294 295
	unsigned long align = PADLOCK_ALIGNMENT;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
296
	return (struct aes_ctx *)ALIGN(addr, align);
297 298
}

299 300
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		       unsigned int key_len, u32 *flags)
L
Linus Torvalds 已提交
301
{
302
	struct aes_ctx *ctx = aes_ctx(tfm);
303
	const __le32 *key = (const __le32 *)in_key;
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312 313 314
	uint32_t i, t, u, v, w;
	uint32_t P[AES_EXTENDED_KEY_SIZE];
	uint32_t rounds;

	if (key_len != 16 && key_len != 24 && key_len != 32) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	ctx->key_length = key_len;

315 316 317 318 319
	/*
	 * If the hardware is capable of generating the extended key
	 * itself we must supply the plain key for both encryption
	 * and decryption.
	 */
320
	ctx->D = ctx->E;
L
Linus Torvalds 已提交
321

322 323 324 325
	E_KEY[0] = le32_to_cpu(key[0]);
	E_KEY[1] = le32_to_cpu(key[1]);
	E_KEY[2] = le32_to_cpu(key[2]);
	E_KEY[3] = le32_to_cpu(key[3]);
L
Linus Torvalds 已提交
326

327 328 329 330 331 332 333 334 335
	/* Prepare control words. */
	memset(&ctx->cword, 0, sizeof(ctx->cword));

	ctx->cword.decrypt.encdec = 1;
	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;

L
Linus Torvalds 已提交
336 337 338 339
	/* Don't generate extended keys if the hardware can do it. */
	if (aes_hw_extkey_available(key_len))
		return 0;

340 341 342 343
	ctx->D = ctx->d_data;
	ctx->cword.encrypt.keygen = 1;
	ctx->cword.decrypt.keygen = 1;

L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351
	switch (key_len) {
	case 16:
		t = E_KEY[3];
		for (i = 0; i < 10; ++i)
			loop4 (i);
		break;

	case 24:
352 353
		E_KEY[4] = le32_to_cpu(key[4]);
		t = E_KEY[5] = le32_to_cpu(key[5]);
L
Linus Torvalds 已提交
354 355 356 357 358
		for (i = 0; i < 8; ++i)
			loop6 (i);
		break;

	case 32:
359 360 361 362
		E_KEY[4] = le32_to_cpu(key[4]);
		E_KEY[5] = le32_to_cpu(key[5]);
		E_KEY[6] = le32_to_cpu(key[6]);
		t = E_KEY[7] = le32_to_cpu(key[7]);
L
Linus Torvalds 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		for (i = 0; i < 7; ++i)
			loop8 (i);
		break;
	}

	D_KEY[0] = E_KEY[0];
	D_KEY[1] = E_KEY[1];
	D_KEY[2] = E_KEY[2];
	D_KEY[3] = E_KEY[3];

	for (i = 4; i < key_len + 24; ++i) {
		imix_col (D_KEY[i], E_KEY[i]);
	}

	/* PadLock needs a different format of the decryption key. */
	rounds = 10 + (key_len - 16) / 4;

	for (i = 0; i < rounds; i++) {
		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
	}

	P[0] = E_KEY[(rounds * 4) + 0];
	P[1] = E_KEY[(rounds * 4) + 1];
	P[2] = E_KEY[(rounds * 4) + 2];
	P[3] = E_KEY[(rounds * 4) + 3];

	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);

	return 0;
}

/* ====== Encryption/decryption routines ====== */

399
/* These are the real call to PadLock. */
400 401
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
				      void *control_word, u32 count)
L
Linus Torvalds 已提交
402 403 404 405 406 407 408
{
	asm volatile ("pushfl; popfl");		/* enforce key reload. */
	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
		      : "+S"(input), "+D"(output)
		      : "d"(control_word), "b"(key), "c"(count));
}

409 410
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
				     u8 *iv, void *control_word, u32 count)
411 412 413 414 415 416 417
{
	/* Enforce key reload. */
	asm volatile ("pushfl; popfl");
	/* rep xcryptcbc */
	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
		      : "+S" (input), "+D" (output), "+a" (iv)
		      : "d" (control_word), "b" (key), "c" (count));
418
	return iv;
419 420
}

421
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
L
Linus Torvalds 已提交
422
{
423
	struct aes_ctx *ctx = aes_ctx(tfm);
424
	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
L
Linus Torvalds 已提交
425 426
}

427
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
L
Linus Torvalds 已提交
428
{
429
	struct aes_ctx *ctx = aes_ctx(tfm);
430
	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
L
Linus Torvalds 已提交
431 432
}

433 434 435
static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
				    const u8 *in, unsigned int nbytes)
{
436
	struct aes_ctx *ctx = aes_ctx(desc->tfm);
437 438 439 440 441 442 443 444
	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
			   nbytes / AES_BLOCK_SIZE);
	return nbytes & ~(AES_BLOCK_SIZE - 1);
}

static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
				    const u8 *in, unsigned int nbytes)
{
445
	struct aes_ctx *ctx = aes_ctx(desc->tfm);
446 447 448 449 450 451 452 453
	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
			   nbytes / AES_BLOCK_SIZE);
	return nbytes & ~(AES_BLOCK_SIZE - 1);
}

static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
				    const u8 *in, unsigned int nbytes)
{
454
	struct aes_ctx *ctx = aes_ctx(desc->tfm);
455 456 457 458 459 460
	u8 *iv;

	iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
				&ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
	memcpy(desc->info, iv, AES_BLOCK_SIZE);

461 462 463 464 465 466
	return nbytes & ~(AES_BLOCK_SIZE - 1);
}

static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
				    const u8 *in, unsigned int nbytes)
{
467
	struct aes_ctx *ctx = aes_ctx(desc->tfm);
468 469 470 471 472
	padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
			   nbytes / AES_BLOCK_SIZE);
	return nbytes & ~(AES_BLOCK_SIZE - 1);
}

L
Linus Torvalds 已提交
473 474
static struct crypto_alg aes_alg = {
	.cra_name		=	"aes",
475 476
	.cra_driver_name	=	"aes-padlock",
	.cra_priority		=	300,
L
Linus Torvalds 已提交
477 478
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
479
	.cra_ctxsize		=	sizeof(struct aes_ctx),
480
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
	.cra_u			=	{
		.cipher = {
			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
			.cia_setkey	   	= 	aes_set_key,
			.cia_encrypt	 	=	aes_encrypt,
489 490 491 492 493
			.cia_decrypt	  	=	aes_decrypt,
			.cia_encrypt_ecb 	=	aes_encrypt_ecb,
			.cia_decrypt_ecb  	=	aes_decrypt_ecb,
			.cia_encrypt_cbc 	=	aes_encrypt_cbc,
			.cia_decrypt_cbc  	=	aes_decrypt_cbc,
L
Linus Torvalds 已提交
494 495 496 497
		}
	}
};

498
static int __init padlock_init(void)
L
Linus Torvalds 已提交
499
{
500 501 502 503 504 505 506 507 508 509 510
	int ret;

	if (!cpu_has_xcrypt) {
		printk(KERN_ERR PFX "VIA PadLock not detected.\n");
		return -ENODEV;
	}

	if (!cpu_has_xcrypt_enabled) {
		printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
		return -ENODEV;
	}
L
Linus Torvalds 已提交
511 512

	gen_tabs();
513 514 515 516 517 518 519 520
	if ((ret = crypto_register_alg(&aes_alg))) {
		printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
		return ret;
	}

	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");

	return ret;
L
Linus Torvalds 已提交
521 522
}

523
static void __exit padlock_fini(void)
L
Linus Torvalds 已提交
524 525 526
{
	crypto_unregister_alg(&aes_alg);
}
527 528 529 530 531 532 533 534 535

module_init(padlock_init);
module_exit(padlock_fini);

MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");

MODULE_ALIAS("aes-padlock");
536 537 538

/* This module used to be called padlock. */
MODULE_ALIAS("padlock");