gup.c 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *  Lockless get_user_pages_fast for s390
 *
 *  Copyright IBM Corp. 2010
 *  Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
 */
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/vmstat.h>
#include <linux/pagemap.h>
#include <linux/rwsem.h>
#include <asm/pgtable.h>

/*
 * The performance critical leaf functions are made noinline otherwise gcc
 * inlines everything into a single function which results in too much
 * register pressure.
 */
static inline int gup_pte_range(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
23
	unsigned long mask;
24 25 26
	pte_t *ptep, pte;
	struct page *page;

27
	mask = (write ? _PAGE_PROTECT : 0) | _PAGE_INVALID | _PAGE_SPECIAL;
28 29 30 31 32

	ptep = ((pte_t *) pmd_deref(pmd)) + pte_index(addr);
	do {
		pte = *ptep;
		barrier();
33 34 35
		/* Similar to the PMD case, NUMA hinting must take slow path */
		if (pte_protnone(pte))
			return 0;
36
		if ((pte_val(pte) & mask) != 0)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
			return 0;
		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);
		if (!page_cache_get_speculative(page))
			return 0;
		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
			put_page(page);
			return 0;
		}
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	return 1;
}

static inline int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask, result;
58
	struct page *head, *page, *tail;
59 60
	int refs;

61 62
	result = write ? 0 : _SEGMENT_ENTRY_PROTECT;
	mask = result | _SEGMENT_ENTRY_INVALID;
63 64 65 66 67 68 69
	if ((pmd_val(pmd) & mask) != result)
		return 0;
	VM_BUG_ON(!pfn_valid(pmd_val(pmd) >> PAGE_SHIFT));

	refs = 0;
	head = pmd_page(pmd);
	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
70
	tail = page;
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(pmd) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
88 89 90 91 92 93 94 95 96 97 98
		return 0;
	}

	/*
	 * Any tail page need their mapcount reference taken before we
	 * return.
	 */
	while (refs--) {
		if (PageTail(tail))
			get_huge_page_tail(tail);
		tail++;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	}

	return 1;
}


static inline int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp, pmd;

	pmdp = (pmd_t *) pudp;
	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
		pmdp = (pmd_t *) pud_deref(pud);
	pmdp += pmd_index(addr);
	do {
		pmd = *pmdp;
		barrier();
		next = pmd_addr_end(addr, end);
119 120 121 122 123 124 125 126 127 128
		/*
		 * The pmd_trans_splitting() check below explains why
		 * pmdp_splitting_flush() has to serialize with
		 * smp_call_function() against our disabled IRQs, to stop
		 * this gup-fast code from running while we set the
		 * splitting bit in the pmd. Returning zero will take
		 * the slow path that will call wait_split_huge_page()
		 * if the pmd is still in splitting state.
		 */
		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
129
			return 0;
130
		if (unlikely(pmd_large(pmd))) {
131 132 133 134 135 136 137
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
			if (pmd_protnone(pmd))
				return 0;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
			if (!gup_huge_pmd(pmdp, pmd, addr, next,
					  write, pages, nr))
				return 0;
		} else if (!gup_pte_range(pmdp, pmd, addr, next,
					  write, pages, nr))
			return 0;
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

static inline int gup_pud_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long next;
	pud_t *pudp, pud;

	pudp = (pud_t *) pgdp;
	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
		pudp = (pud_t *) pgd_deref(pgd);
	pudp += pud_index(addr);
	do {
		pud = *pudp;
		barrier();
		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
		if (!gup_pmd_range(pudp, pud, addr, next, write, pages, nr))
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 * back to the regular GUP.
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
	struct mm_struct *mm = current->mm;
	unsigned long addr, len, end;
	unsigned long next, flags;
	pgd_t *pgdp, pgd;
	int nr = 0;

	start &= PAGE_MASK;
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;
189
	if ((end <= start) || (end > TASK_SIZE))
190
		return 0;
191 192 193 194 195 196 197
	/*
	 * local_irq_save() doesn't prevent pagetable teardown, but does
	 * prevent the pagetables from being freed on s390.
	 *
	 * So long as we atomically load page table pointers versus teardown,
	 * we can follow the address down to the the page and take a ref on it.
	 */
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	local_irq_save(flags);
	pgdp = pgd_offset(mm, addr);
	do {
		pgd = *pgdp;
		barrier();
		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			break;
		if (!gup_pud_range(pgdp, pgd, addr, next, write, pages, &nr))
			break;
	} while (pgdp++, addr = next, addr != end);
	local_irq_restore(flags);

	return nr;
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @write:	whether pages will be written to
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
			struct page **pages)
{
	struct mm_struct *mm = current->mm;
234
	int nr, ret;
235 236

	start &= PAGE_MASK;
237 238 239 240 241 242 243
	nr = __get_user_pages_fast(start, nr_pages, write, pages);
	if (nr == nr_pages)
		return nr;

	/* Try to get the remaining pages with get_user_pages */
	start += nr << PAGE_SHIFT;
	pages += nr;
244 245
	ret = get_user_pages_unlocked(current, mm, start,
			     nr_pages - nr, write, 0, pages);
246 247 248 249
	/* Have to be a bit careful with return values */
	if (nr > 0)
		ret = (ret < 0) ? nr : ret + nr;
	return ret;
250
}