igb_ptp.c 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

/*
30 31 32
 * The 82580 timesync updates the system timer every 8ns by 8ns,
 * and this update value cannot be reprogrammed.
 *
33 34 35 36 37 38 39 40 41 42 43
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
 * counts nanoseconds, but the upper 24 bits are not availible. The
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
44 45 46 47 48 49 50 51
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

#define IGB_OVERFLOW_PERIOD	(HZ * 60 * 9)
#define INCPERIOD_82576		(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK	((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576		(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580		40

/*
 * SYSTIM read access for the 82576
 */

static cycle_t igb_82576_systim_read(const struct cyclecounter *cc)
{
	u64 val;
	u32 lo, hi;
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

/*
 * SYSTIM read access for the 82580
 */

static cycle_t igb_82580_systim_read(const struct cyclecounter *cc)
{
	u64 val;
	u32 lo, hi, jk;
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;

109 110 111 112 113
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	jk = rd32(E1000_SYSTIMR);
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

/*
 * PTP clock operations
 */

static int ptp_82576_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	u64 rate;
	u32 incvalue;
	int neg_adj = 0;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);
	struct e1000_hw *hw = &igb->hw;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

static int ptp_82580_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	u64 rate;
	u32 inca;
	int neg_adj = 0;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);
	struct e1000_hw *hw = &igb->hw;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

static int igb_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	s64 now;
	unsigned long flags;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	now = timecounter_read(&igb->tc);
	now += delta;
	timecounter_init(&igb->tc, &igb->cc, now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
	u64 ns;
	u32 remainder;
	unsigned long flags;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

static int igb_settime(struct ptp_clock_info *ptp, const struct timespec *ts)
{
	u64 ns;
	unsigned long flags;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int ptp_82576_enable(struct ptp_clock_info *ptp,
			    struct ptp_clock_request *rq, int on)
{
	return -EOPNOTSUPP;
}

static int ptp_82580_enable(struct ptp_clock_info *ptp,
			    struct ptp_clock_request *rq, int on)
{
	return -EOPNOTSUPP;
}

static void igb_overflow_check(struct work_struct *work)
{
	struct timespec ts;
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, overflow_work.work);

	igb_gettime(&igb->caps, &ts);

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->overflow_work, IGB_OVERFLOW_PERIOD);
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
	case e1000_i350:
	case e1000_82580:
		adapter->caps.owner	= THIS_MODULE;
		strcpy(adapter->caps.name, "igb-82580");
		adapter->caps.max_adj	= 62499999;
		adapter->caps.n_ext_ts	= 0;
		adapter->caps.pps	= 0;
		adapter->caps.adjfreq	= ptp_82580_adjfreq;
		adapter->caps.adjtime	= igb_adjtime;
		adapter->caps.gettime	= igb_gettime;
		adapter->caps.settime	= igb_settime;
		adapter->caps.enable	= ptp_82580_enable;
		adapter->cc.read	= igb_82580_systim_read;
		adapter->cc.mask	= CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult	= 1;
		adapter->cc.shift	= 0;
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;

	case e1000_82576:
		adapter->caps.owner	= THIS_MODULE;
		strcpy(adapter->caps.name, "igb-82576");
		adapter->caps.max_adj	= 1000000000;
		adapter->caps.n_ext_ts	= 0;
		adapter->caps.pps	= 0;
		adapter->caps.adjfreq	= ptp_82576_adjfreq;
		adapter->caps.adjtime	= igb_adjtime;
		adapter->caps.gettime	= igb_gettime;
		adapter->caps.settime	= igb_settime;
		adapter->caps.enable	= ptp_82576_enable;
		adapter->cc.read	= igb_82576_systim_read;
		adapter->cc.mask	= CLOCKSOURCE_MASK(64);
		adapter->cc.mult	= 1;
		adapter->cc.shift	= IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;

	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

	timecounter_init(&adapter->tc, &adapter->cc,
			 ktime_to_ns(ktime_get_real()));

	INIT_DELAYED_WORK(&adapter->overflow_work, igb_overflow_check);

	spin_lock_init(&adapter->tmreg_lock);

	schedule_delayed_work(&adapter->overflow_work, IGB_OVERFLOW_PERIOD);

	adapter->ptp_clock = ptp_clock_register(&adapter->caps);
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
	} else
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
}

void igb_ptp_remove(struct igb_adapter *adapter)
{
	cancel_delayed_work_sync(&adapter->overflow_work);

	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
	}
}
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

/**
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
			    struct skb_shared_hwtstamps *hwtstamps,
			    u64 systim)
{
	u64 ns;
	unsigned long flags;

	switch (adapter->hw.mac.type) {
	case e1000_i350:
	case e1000_82580:
	case e1000_82576:
		break;
	default:
		return;
	}

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	ns = timecounter_cyc2time(&adapter->tc, systim);

	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	memset(hwtstamps, 0, sizeof(*hwtstamps));
	hwtstamps->hwtstamp = ns_to_ktime(ns);
}