spi-bfin-v3.c 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/*
 * Analog Devices SPI3 controller driver
 *
 * Copyright (c) 2013 Analog Devices Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/types.h>

#include <asm/bfin_spi3.h>
#include <asm/cacheflush.h>
#include <asm/dma.h>
#include <asm/portmux.h>

enum bfin_spi_state {
	START_STATE,
	RUNNING_STATE,
	DONE_STATE,
	ERROR_STATE
};

struct bfin_spi_master;

struct bfin_spi_transfer_ops {
	void (*write) (struct bfin_spi_master *);
	void (*read) (struct bfin_spi_master *);
	void (*duplex) (struct bfin_spi_master *);
};

/* runtime info for spi master */
struct bfin_spi_master {
	/* SPI framework hookup */
	struct spi_master *master;

	/* Regs base of SPI controller */
	struct bfin_spi_regs __iomem *regs;

	/* Pin request list */
	u16 *pin_req;

	/* Message Transfer pump */
	struct tasklet_struct pump_transfers;

	/* Current message transfer state info */
	struct spi_message *cur_msg;
	struct spi_transfer *cur_transfer;
	struct bfin_spi_device *cur_chip;
	unsigned transfer_len;

	/* transfer buffer */
	void *tx;
	void *tx_end;
	void *rx;
	void *rx_end;

	/* dma info */
	unsigned int tx_dma;
	unsigned int rx_dma;
	dma_addr_t tx_dma_addr;
	dma_addr_t rx_dma_addr;
	unsigned long dummy_buffer; /* used in unidirectional transfer */
	unsigned long tx_dma_size;
	unsigned long rx_dma_size;
	int tx_num;
	int rx_num;

	/* store register value for suspend/resume */
	u32 control;
	u32 ssel;

	unsigned long sclk;
	enum bfin_spi_state state;

	const struct bfin_spi_transfer_ops *ops;
};

struct bfin_spi_device {
	u32 control;
	u32 clock;
	u32 ssel;

	u8 cs;
	u16 cs_chg_udelay; /* Some devices require > 255usec delay */
	u32 cs_gpio;
	u32 tx_dummy_val; /* tx value for rx only transfer */
	bool enable_dma;
	const struct bfin_spi_transfer_ops *ops;
};

static void bfin_spi_enable(struct bfin_spi_master *drv_data)
{
	bfin_write_or(&drv_data->regs->control, SPI_CTL_EN);
}

static void bfin_spi_disable(struct bfin_spi_master *drv_data)
{
	bfin_write_and(&drv_data->regs->control, ~SPI_CTL_EN);
}

/* Caculate the SPI_CLOCK register value based on input HZ */
static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
{
	u32 spi_clock = sclk / speed_hz;

	if (spi_clock)
		spi_clock--;
	return spi_clock;
}

static int bfin_spi_flush(struct bfin_spi_master *drv_data)
{
	unsigned long limit = loops_per_jiffy << 1;

	/* wait for stop and clear stat */
	while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
		cpu_relax();

	bfin_write(&drv_data->regs->status, 0xFFFFFFFF);

	return limit;
}

/* Chip select operation functions for cs_change flag */
static void bfin_spi_cs_active(struct bfin_spi_master *drv_data, struct bfin_spi_device *chip)
{
	if (likely(chip->cs < MAX_CTRL_CS))
		bfin_write_and(&drv_data->regs->ssel, ~chip->ssel);
	else
		gpio_set_value(chip->cs_gpio, 0);
}

static void bfin_spi_cs_deactive(struct bfin_spi_master *drv_data,
				struct bfin_spi_device *chip)
{
	if (likely(chip->cs < MAX_CTRL_CS))
		bfin_write_or(&drv_data->regs->ssel, chip->ssel);
	else
		gpio_set_value(chip->cs_gpio, 1);

	/* Move delay here for consistency */
	if (chip->cs_chg_udelay)
		udelay(chip->cs_chg_udelay);
}

/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
static inline void bfin_spi_cs_enable(struct bfin_spi_master *drv_data,
					struct bfin_spi_device *chip)
{
	if (chip->cs < MAX_CTRL_CS)
		bfin_write_or(&drv_data->regs->ssel, chip->ssel >> 8);
}

static inline void bfin_spi_cs_disable(struct bfin_spi_master *drv_data,
					struct bfin_spi_device *chip)
{
	if (chip->cs < MAX_CTRL_CS)
		bfin_write_and(&drv_data->regs->ssel, ~(chip->ssel >> 8));
}

/* stop controller and re-config current chip*/
static void bfin_spi_restore_state(struct bfin_spi_master *drv_data)
{
	struct bfin_spi_device *chip = drv_data->cur_chip;

	/* Clear status and disable clock */
	bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
	bfin_write(&drv_data->regs->rx_control, 0x0);
	bfin_write(&drv_data->regs->tx_control, 0x0);
	bfin_spi_disable(drv_data);

	SSYNC();

	/* Load the registers */
	bfin_write(&drv_data->regs->control, chip->control);
	bfin_write(&drv_data->regs->clock, chip->clock);

	bfin_spi_enable(drv_data);
	drv_data->tx_num = drv_data->rx_num = 0;
	/* we always choose tx transfer initiate */
	bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN);
	bfin_write(&drv_data->regs->tx_control,
			SPI_TXCTL_TEN | SPI_TXCTL_TTI);
	bfin_spi_cs_active(drv_data, chip);
}

/* discard invalid rx data and empty rfifo */
static inline void dummy_read(struct bfin_spi_master *drv_data)
{
	while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_RFE))
		bfin_read(&drv_data->regs->rfifo);
}

static void bfin_spi_u8_write(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->tx < drv_data->tx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u8_read(struct bfin_spi_master *drv_data)
{
	u32 tx_val = drv_data->cur_chip->tx_dummy_val;

	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, tx_val);
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u8_duplex(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
	}
}

static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
	.write  = bfin_spi_u8_write,
	.read   = bfin_spi_u8_read,
	.duplex = bfin_spi_u8_duplex,
};

static void bfin_spi_u16_write(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->tx < drv_data->tx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
		drv_data->tx += 2;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u16_read(struct bfin_spi_master *drv_data)
{
	u32 tx_val = drv_data->cur_chip->tx_dummy_val;

	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, tx_val);
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 2;
	}
}

static void bfin_spi_u16_duplex(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
		drv_data->tx += 2;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 2;
	}
}

static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
	.write  = bfin_spi_u16_write,
	.read   = bfin_spi_u16_read,
	.duplex = bfin_spi_u16_duplex,
};

static void bfin_spi_u32_write(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->tx < drv_data->tx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
		drv_data->tx += 4;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u32_read(struct bfin_spi_master *drv_data)
{
	u32 tx_val = drv_data->cur_chip->tx_dummy_val;

	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, tx_val);
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 4;
	}
}

static void bfin_spi_u32_duplex(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
		drv_data->tx += 4;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 4;
	}
}

static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u32 = {
	.write  = bfin_spi_u32_write,
	.read   = bfin_spi_u32_read,
	.duplex = bfin_spi_u32_duplex,
};


/* test if there is more transfer to be done */
static void bfin_spi_next_transfer(struct bfin_spi_master *drv)
{
	struct spi_message *msg = drv->cur_msg;
	struct spi_transfer *t = drv->cur_transfer;

	/* Move to next transfer */
	if (t->transfer_list.next != &msg->transfers) {
		drv->cur_transfer = list_entry(t->transfer_list.next,
			       struct spi_transfer, transfer_list);
		drv->state = RUNNING_STATE;
	} else {
		drv->state = DONE_STATE;
		drv->cur_transfer = NULL;
	}
}

static void bfin_spi_giveback(struct bfin_spi_master *drv_data)
{
	struct bfin_spi_device *chip = drv_data->cur_chip;

	bfin_spi_cs_deactive(drv_data, chip);
	spi_finalize_current_message(drv_data->master);
}

static int bfin_spi_setup_transfer(struct bfin_spi_master *drv)
{
	struct spi_transfer *t = drv->cur_transfer;
	u32 cr, cr_width;

	if (t->tx_buf) {
		drv->tx = (void *)t->tx_buf;
		drv->tx_end = drv->tx + t->len;
	} else {
		drv->tx = NULL;
	}

	if (t->rx_buf) {
		drv->rx = t->rx_buf;
		drv->rx_end = drv->rx + t->len;
	} else {
		drv->rx = NULL;
	}

	drv->transfer_len = t->len;

	/* bits per word setup */
	switch (t->bits_per_word) {
	case 8:
		cr_width = SPI_CTL_SIZE08;
		drv->ops = &bfin_bfin_spi_transfer_ops_u8;
		break;
	case 16:
		cr_width = SPI_CTL_SIZE16;
		drv->ops = &bfin_bfin_spi_transfer_ops_u16;
		break;
	case 32:
		cr_width = SPI_CTL_SIZE32;
		drv->ops = &bfin_bfin_spi_transfer_ops_u32;
		break;
	default:
		return -EINVAL;
	}
	cr = bfin_read(&drv->regs->control) & ~SPI_CTL_SIZE;
	cr |= cr_width;
	bfin_write(&drv->regs->control, cr);

	/* speed setup */
	bfin_write(&drv->regs->clock,
			hz_to_spi_clock(drv->sclk, t->speed_hz));
	return 0;
}

static int bfin_spi_dma_xfer(struct bfin_spi_master *drv_data)
{
	struct spi_transfer *t = drv_data->cur_transfer;
	struct spi_message *msg = drv_data->cur_msg;
	struct bfin_spi_device *chip = drv_data->cur_chip;
	u32 dma_config;
	unsigned long word_count, word_size;
	void *tx_buf, *rx_buf;

	switch (t->bits_per_word) {
	case 8:
		dma_config = WDSIZE_8 | PSIZE_8;
		word_count = drv_data->transfer_len;
		word_size = 1;
		break;
	case 16:
		dma_config = WDSIZE_16 | PSIZE_16;
		word_count = drv_data->transfer_len / 2;
		word_size = 2;
		break;
	default:
		dma_config = WDSIZE_32 | PSIZE_32;
		word_count = drv_data->transfer_len / 4;
		word_size = 4;
		break;
	}

	if (!drv_data->rx) {
		tx_buf = drv_data->tx;
		rx_buf = &drv_data->dummy_buffer;
		drv_data->tx_dma_size = drv_data->transfer_len;
		drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
		set_dma_x_modify(drv_data->tx_dma, word_size);
		set_dma_x_modify(drv_data->rx_dma, 0);
	} else if (!drv_data->tx) {
		drv_data->dummy_buffer = chip->tx_dummy_val;
		tx_buf = &drv_data->dummy_buffer;
		rx_buf = drv_data->rx;
		drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
		drv_data->rx_dma_size = drv_data->transfer_len;
		set_dma_x_modify(drv_data->tx_dma, 0);
		set_dma_x_modify(drv_data->rx_dma, word_size);
	} else {
		tx_buf = drv_data->tx;
		rx_buf = drv_data->rx;
		drv_data->tx_dma_size = drv_data->rx_dma_size
					= drv_data->transfer_len;
		set_dma_x_modify(drv_data->tx_dma, word_size);
		set_dma_x_modify(drv_data->rx_dma, word_size);
	}

	drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
				(void *)tx_buf,
				drv_data->tx_dma_size,
				DMA_TO_DEVICE);
	if (dma_mapping_error(&msg->spi->dev,
				drv_data->tx_dma_addr))
		return -ENOMEM;

	drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
				(void *)rx_buf,
				drv_data->rx_dma_size,
				DMA_FROM_DEVICE);
	if (dma_mapping_error(&msg->spi->dev,
				drv_data->rx_dma_addr)) {
		dma_unmap_single(&msg->spi->dev,
				drv_data->tx_dma_addr,
				drv_data->tx_dma_size,
				DMA_TO_DEVICE);
		return -ENOMEM;
	}

	dummy_read(drv_data);
	set_dma_x_count(drv_data->tx_dma, word_count);
	set_dma_x_count(drv_data->rx_dma, word_count);
	set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
	set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
	dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
	set_dma_config(drv_data->tx_dma, dma_config);
	set_dma_config(drv_data->rx_dma, dma_config | WNR);
	enable_dma(drv_data->tx_dma);
	enable_dma(drv_data->rx_dma);
	SSYNC();

	bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN | SPI_RXCTL_RDR_NE);
	SSYNC();
	bfin_write(&drv_data->regs->tx_control,
			SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF);

	return 0;
}

static int bfin_spi_pio_xfer(struct bfin_spi_master *drv_data)
{
	struct spi_message *msg = drv_data->cur_msg;

	if (!drv_data->rx) {
		/* write only half duplex */
		drv_data->ops->write(drv_data);
		if (drv_data->tx != drv_data->tx_end)
			return -EIO;
	} else if (!drv_data->tx) {
		/* read only half duplex */
		drv_data->ops->read(drv_data);
		if (drv_data->rx != drv_data->rx_end)
			return -EIO;
	} else {
		/* full duplex mode */
		drv_data->ops->duplex(drv_data);
		if (drv_data->tx != drv_data->tx_end)
			return -EIO;
	}

	if (!bfin_spi_flush(drv_data))
		return -EIO;
	msg->actual_length += drv_data->transfer_len;
	tasklet_schedule(&drv_data->pump_transfers);
	return 0;
}

static void bfin_spi_pump_transfers(unsigned long data)
{
	struct bfin_spi_master *drv_data = (struct bfin_spi_master *)data;
	struct spi_message *msg = NULL;
	struct spi_transfer *t = NULL;
	struct bfin_spi_device *chip = NULL;
	int ret;

	/* Get current state information */
	msg = drv_data->cur_msg;
	t = drv_data->cur_transfer;
	chip = drv_data->cur_chip;

	/* Handle for abort */
	if (drv_data->state == ERROR_STATE) {
		msg->status = -EIO;
		bfin_spi_giveback(drv_data);
		return;
	}

	if (drv_data->state == RUNNING_STATE) {
		if (t->delay_usecs)
			udelay(t->delay_usecs);
		if (t->cs_change)
			bfin_spi_cs_deactive(drv_data, chip);
		bfin_spi_next_transfer(drv_data);
		t = drv_data->cur_transfer;
	}
	/* Handle end of message */
	if (drv_data->state == DONE_STATE) {
		msg->status = 0;
		bfin_spi_giveback(drv_data);
		return;
	}

	if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
		/* Schedule next transfer tasklet */
		tasklet_schedule(&drv_data->pump_transfers);
		return;
	}

	ret = bfin_spi_setup_transfer(drv_data);
	if (ret) {
		msg->status = ret;
		bfin_spi_giveback(drv_data);
	}

	bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
	bfin_spi_cs_active(drv_data, chip);
	drv_data->state = RUNNING_STATE;

	if (chip->enable_dma)
		ret = bfin_spi_dma_xfer(drv_data);
	else
		ret = bfin_spi_pio_xfer(drv_data);
	if (ret) {
		msg->status = ret;
		bfin_spi_giveback(drv_data);
	}
}

static int bfin_spi_transfer_one_message(struct spi_master *master,
					struct spi_message *m)
{
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);

	drv_data->cur_msg = m;
	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
	bfin_spi_restore_state(drv_data);

	drv_data->state = START_STATE;
	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
					    struct spi_transfer, transfer_list);

	tasklet_schedule(&drv_data->pump_transfers);
	return 0;
}

#define MAX_SPI_SSEL	7

static const u16 ssel[][MAX_SPI_SSEL] = {
	{P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
	P_SPI0_SSEL4, P_SPI0_SSEL5,
	P_SPI0_SSEL6, P_SPI0_SSEL7},

	{P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
	P_SPI1_SSEL4, P_SPI1_SSEL5,
	P_SPI1_SSEL6, P_SPI1_SSEL7},

	{P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
	P_SPI2_SSEL4, P_SPI2_SSEL5,
	P_SPI2_SSEL6, P_SPI2_SSEL7},
};

static int bfin_spi_setup(struct spi_device *spi)
{
	struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);
	struct bfin_spi_device *chip = spi_get_ctldata(spi);
	u32 bfin_ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
	int ret = -EINVAL;

	if (!chip) {
		struct bfin_spi3_chip *chip_info = spi->controller_data;

		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
		if (!chip) {
			dev_err(&spi->dev, "can not allocate chip data\n");
			return -ENOMEM;
		}
		if (chip_info) {
			if (chip_info->control & ~bfin_ctl_reg) {
				dev_err(&spi->dev,
					"do not set bits that the SPI framework manages\n");
				goto error;
			}
			chip->control = chip_info->control;
			chip->cs_chg_udelay = chip_info->cs_chg_udelay;
			chip->tx_dummy_val = chip_info->tx_dummy_val;
			chip->enable_dma = chip_info->enable_dma;
		}
		chip->cs = spi->chip_select;
		if (chip->cs < MAX_CTRL_CS) {
			chip->ssel = (1 << chip->cs) << 8;
			ret = peripheral_request(ssel[spi->master->bus_num]
					[chip->cs-1], dev_name(&spi->dev));
			if (ret) {
				dev_err(&spi->dev, "peripheral_request() error\n");
				goto error;
			}
		} else {
			chip->cs_gpio = chip->cs - MAX_CTRL_CS;
			ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
						dev_name(&spi->dev));
			if (ret) {
				dev_err(&spi->dev, "gpio_request_one() error\n");
				goto error;
			}
		}
		spi_set_ctldata(spi, chip);
	}

	/* force a default base state */
	chip->control &= bfin_ctl_reg;

	if (spi->mode & SPI_CPOL)
		chip->control |= SPI_CTL_CPOL;
	if (spi->mode & SPI_CPHA)
		chip->control |= SPI_CTL_CPHA;
	if (spi->mode & SPI_LSB_FIRST)
		chip->control |= SPI_CTL_LSBF;
	chip->control |= SPI_CTL_MSTR;
	/* we choose software to controll cs */
	chip->control &= ~SPI_CTL_ASSEL;

	chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);

	bfin_spi_cs_enable(drv_data, chip);
	bfin_spi_cs_deactive(drv_data, chip);

	return 0;
error:
	if (chip) {
		kfree(chip);
		spi_set_ctldata(spi, NULL);
	}

	return ret;
}

static void bfin_spi_cleanup(struct spi_device *spi)
{
	struct bfin_spi_device *chip = spi_get_ctldata(spi);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);

	if (!chip)
		return;

	if (chip->cs < MAX_CTRL_CS) {
		peripheral_free(ssel[spi->master->bus_num]
					[chip->cs-1]);
		bfin_spi_cs_disable(drv_data, chip);
	} else {
		gpio_free(chip->cs_gpio);
	}

	kfree(chip);
	spi_set_ctldata(spi, NULL);
}

static irqreturn_t bfin_spi_tx_dma_isr(int irq, void *dev_id)
{
	struct bfin_spi_master *drv_data = dev_id;
	u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);

	clear_dma_irqstat(drv_data->tx_dma);
	if (dma_stat & DMA_DONE) {
		drv_data->tx_num++;
	} else {
		dev_err(&drv_data->master->dev,
				"spi tx dma error: %d\n", dma_stat);
		if (drv_data->tx)
			drv_data->state = ERROR_STATE;
	}
	bfin_write_and(&drv_data->regs->tx_control, ~SPI_TXCTL_TDR_NF);
	return IRQ_HANDLED;
}

static irqreturn_t bfin_spi_rx_dma_isr(int irq, void *dev_id)
{
	struct bfin_spi_master *drv_data = dev_id;
	struct spi_message *msg = drv_data->cur_msg;
	u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);

	clear_dma_irqstat(drv_data->rx_dma);
	if (dma_stat & DMA_DONE) {
		drv_data->rx_num++;
		/* we may fail on tx dma */
		if (drv_data->state != ERROR_STATE)
			msg->actual_length += drv_data->transfer_len;
	} else {
		drv_data->state = ERROR_STATE;
		dev_err(&drv_data->master->dev,
				"spi rx dma error: %d\n", dma_stat);
	}
	bfin_write(&drv_data->regs->tx_control, 0);
	bfin_write(&drv_data->regs->rx_control, 0);
	if (drv_data->rx_num != drv_data->tx_num)
		dev_dbg(&drv_data->master->dev,
				"dma interrupt missing: tx=%d,rx=%d\n",
				drv_data->tx_num, drv_data->rx_num);
	tasklet_schedule(&drv_data->pump_transfers);
	return IRQ_HANDLED;
}

static int bfin_spi_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct bfin_spi3_master *info = dev->platform_data;
	struct spi_master *master;
	struct bfin_spi_master *drv_data;
	struct resource *mem, *res;
	unsigned int tx_dma, rx_dma;
	unsigned long sclk;
	int ret;

	if (!info) {
		dev_err(dev, "platform data missing!\n");
		return -ENODEV;
	}

	sclk = get_sclk1();
	if (!sclk) {
		dev_err(dev, "can not get sclk1\n");
		return -ENXIO;
	}

	/* get register base and tx/rx dma */
	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!mem) {
		dev_err(dev, "can not get register base\n");
		return -ENXIO;
	}

	res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
	if (!res) {
		dev_err(dev, "can not get tx dma resource\n");
		return -ENXIO;
	}
	tx_dma = res->start;

	res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
	if (!res) {
		dev_err(dev, "can not get rx dma resource\n");
		return -ENXIO;
	}
	rx_dma = res->start;

	/* allocate master with space for drv_data */
	master = spi_alloc_master(dev, sizeof(*drv_data));
	if (!master) {
		dev_err(dev, "can not alloc spi_master\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);

	/* the mode bits supported by this driver */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;

	master->bus_num = pdev->id;
	master->num_chipselect = info->num_chipselect;
	master->cleanup = bfin_spi_cleanup;
	master->setup = bfin_spi_setup;
	master->transfer_one_message = bfin_spi_transfer_one_message;
	master->bits_per_word_mask = BIT(32 - 1) | BIT(16 - 1) | BIT(8 - 1);

	drv_data = spi_master_get_devdata(master);
	drv_data->master = master;
	drv_data->tx_dma = tx_dma;
	drv_data->rx_dma = rx_dma;
	drv_data->pin_req = info->pin_req;
	drv_data->sclk = sclk;

	drv_data->regs = devm_ioremap_resource(dev, mem);
	if (IS_ERR(drv_data->regs)) {
		ret = PTR_ERR(drv_data->regs);
		goto err_put_master;
	}

	/* request tx and rx dma */
	ret = request_dma(tx_dma, "SPI_TX_DMA");
	if (ret) {
		dev_err(dev, "can not request SPI TX DMA channel\n");
		goto err_put_master;
	}
	set_dma_callback(tx_dma, bfin_spi_tx_dma_isr, drv_data);

	ret = request_dma(rx_dma, "SPI_RX_DMA");
	if (ret) {
		dev_err(dev, "can not request SPI RX DMA channel\n");
		goto err_free_tx_dma;
	}
	set_dma_callback(drv_data->rx_dma, bfin_spi_rx_dma_isr, drv_data);

	/* request CLK, MOSI and MISO */
	ret = peripheral_request_list(drv_data->pin_req, "bfin-spi3");
	if (ret < 0) {
		dev_err(dev, "can not request spi pins\n");
		goto err_free_rx_dma;
	}

	bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
	bfin_write(&drv_data->regs->ssel, 0x0000FE00);
	bfin_write(&drv_data->regs->delay, 0x0);

	tasklet_init(&drv_data->pump_transfers,
			bfin_spi_pump_transfers, (unsigned long)drv_data);
	/* register with the SPI framework */
	ret = spi_register_master(master);
	if (ret) {
		dev_err(dev, "can not  register spi master\n");
		goto err_free_peripheral;
	}

	return ret;

err_free_peripheral:
	peripheral_free_list(drv_data->pin_req);
err_free_rx_dma:
	free_dma(rx_dma);
err_free_tx_dma:
	free_dma(tx_dma);
err_put_master:
	spi_master_put(master);

	return ret;
}

static int bfin_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);

	bfin_spi_disable(drv_data);

	peripheral_free_list(drv_data->pin_req);
	free_dma(drv_data->rx_dma);
	free_dma(drv_data->tx_dma);

	spi_unregister_master(drv_data->master);
	return 0;
}

#ifdef CONFIG_PM
static int bfin_spi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);

	spi_master_suspend(master);

	drv_data->control = bfin_read(&drv_data->regs->control);
	drv_data->ssel = bfin_read(&drv_data->regs->ssel);

	bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
	bfin_write(&drv_data->regs->ssel, 0x0000FE00);
	dma_disable_irq(drv_data->rx_dma);
	dma_disable_irq(drv_data->tx_dma);

	return 0;
}

static int bfin_spi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
	int ret = 0;

	/* bootrom may modify spi and dma status when resume in spi boot mode */
	disable_dma(drv_data->rx_dma);

	dma_enable_irq(drv_data->rx_dma);
	dma_enable_irq(drv_data->tx_dma);
	bfin_write(&drv_data->regs->control, drv_data->control);
	bfin_write(&drv_data->regs->ssel, drv_data->ssel);

	ret = spi_master_resume(master);
	if (ret) {
		free_dma(drv_data->rx_dma);
		free_dma(drv_data->tx_dma);
	}

	return ret;
}
#endif
static const struct dev_pm_ops bfin_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(bfin_spi_suspend, bfin_spi_resume)
};

MODULE_ALIAS("platform:bfin-spi3");
static struct platform_driver bfin_spi_driver = {
	.driver	= {
		.name	= "bfin-spi3",
		.owner	= THIS_MODULE,
		.pm     = &bfin_spi_pm_ops,
	},
	.remove		= bfin_spi_remove,
};

module_platform_driver_probe(bfin_spi_driver, bfin_spi_probe);

MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
MODULE_LICENSE("GPL v2");