rotary_encoder.c 9.5 KB
Newer Older
1 2 3 4
/*
 * rotary_encoder.c
 *
 * (c) 2009 Daniel Mack <daniel@caiaq.de>
5
 * Copyright (C) 2011 Johan Hovold <jhovold@gmail.com>
6 7 8 9
 *
 * state machine code inspired by code from Tim Ruetz
 *
 * A generic driver for rotary encoders connected to GPIO lines.
P
Paul Bolle 已提交
10
 * See file:Documentation/input/rotary-encoder.txt for more information
11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/rotary_encoder.h>
25
#include <linux/slab.h>
26
#include <linux/of.h>
27 28
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
29
#include <linux/pm.h>
30 31 32 33 34

#define DRV_NAME "rotary-encoder"

struct rotary_encoder {
	struct input_dev *input;
35
	const struct rotary_encoder_platform_data *pdata;
36 37 38 39 40 41 42 43 44

	unsigned int axis;
	unsigned int pos;

	unsigned int irq_a;
	unsigned int irq_b;

	bool armed;
	unsigned char dir;	/* 0 - clockwise, 1 - CCW */
45 46

	char last_stable;
47 48
};

49
static int rotary_encoder_get_state(const struct rotary_encoder_platform_data *pdata)
50 51 52 53 54 55 56
{
	int a = !!gpio_get_value(pdata->gpio_a);
	int b = !!gpio_get_value(pdata->gpio_b);

	a ^= pdata->inverted_a;
	b ^= pdata->inverted_b;

57 58
	return ((a << 1) | b);
}
59

60 61
static void rotary_encoder_report_event(struct rotary_encoder *encoder)
{
62
	const struct rotary_encoder_platform_data *pdata = encoder->pdata;
63

64 65 66 67 68 69 70 71
	if (pdata->relative_axis) {
		input_report_rel(encoder->input,
				 pdata->axis, encoder->dir ? -1 : 1);
	} else {
		unsigned int pos = encoder->pos;

		if (encoder->dir) {
			/* turning counter-clockwise */
72
			if (pdata->rollover)
73 74 75 76 77 78 79
				pos += pdata->steps;
			if (pos)
				pos--;
		} else {
			/* turning clockwise */
			if (pdata->rollover || pos < pdata->steps)
				pos++;
80 81
		}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
		if (pdata->rollover)
			pos %= pdata->steps;

		encoder->pos = pos;
		input_report_abs(encoder->input, pdata->axis, encoder->pos);
	}

	input_sync(encoder->input);
}

static irqreturn_t rotary_encoder_irq(int irq, void *dev_id)
{
	struct rotary_encoder *encoder = dev_id;
	int state;

	state = rotary_encoder_get_state(encoder->pdata);

	switch (state) {
	case 0x0:
		if (encoder->armed) {
			rotary_encoder_report_event(encoder);
			encoder->armed = false;
		}
105 106 107 108 109 110 111 112 113
		break;

	case 0x1:
	case 0x2:
		if (encoder->armed)
			encoder->dir = state - 1;
		break;

	case 0x3:
114
		encoder->armed = true;
115 116 117 118 119 120
		break;
	}

	return IRQ_HANDLED;
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id)
{
	struct rotary_encoder *encoder = dev_id;
	int state;

	state = rotary_encoder_get_state(encoder->pdata);

	switch (state) {
	case 0x00:
	case 0x03:
		if (state != encoder->last_stable) {
			rotary_encoder_report_event(encoder);
			encoder->last_stable = state;
		}
		break;

	case 0x01:
	case 0x02:
		encoder->dir = (encoder->last_stable + state) & 0x01;
		break;
	}

	return IRQ_HANDLED;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id)
{
	struct rotary_encoder *encoder = dev_id;
	unsigned char sum;
	int state;

	state = rotary_encoder_get_state(encoder->pdata);

	/*
	 * We encode the previous and the current state using a byte.
	 * The previous state in the MSB nibble, the current state in the LSB
	 * nibble. Then use a table to decide the direction of the turn.
	 */
	sum = (encoder->last_stable << 4) + state;
	switch (sum) {
	case 0x31:
	case 0x10:
	case 0x02:
	case 0x23:
		encoder->dir = 0; /* clockwise */
		break;

	case 0x13:
	case 0x01:
	case 0x20:
	case 0x32:
		encoder->dir = 1; /* counter-clockwise */
		break;

	default:
		/*
		 * Ignore all other values. This covers the case when the
		 * state didn't change (a spurious interrupt) and the
		 * cases where the state changed by two steps, making it
		 * impossible to tell the direction.
		 *
		 * In either case, don't report any event and save the
		 * state for later.
		 */
		goto out;
	}

	rotary_encoder_report_event(encoder);

out:
	encoder->last_stable = state;
	return IRQ_HANDLED;
}

195
#ifdef CONFIG_OF
196
static const struct of_device_id rotary_encoder_of_match[] = {
197 198 199 200 201
	{ .compatible = "rotary-encoder", },
	{ },
};
MODULE_DEVICE_TABLE(of, rotary_encoder_of_match);

B
Bill Pemberton 已提交
202
static struct rotary_encoder_platform_data *rotary_encoder_parse_dt(struct device *dev)
203 204 205 206 207 208
{
	const struct of_device_id *of_id =
				of_match_device(rotary_encoder_of_match, dev);
	struct device_node *np = dev->of_node;
	struct rotary_encoder_platform_data *pdata;
	enum of_gpio_flags flags;
209
	int error;
210 211 212 213

	if (!of_id || !np)
		return NULL;

214 215
	pdata = devm_kzalloc(dev, sizeof(struct rotary_encoder_platform_data),
			     GFP_KERNEL);
216 217 218 219 220 221 222 223 224 225 226 227
	if (!pdata)
		return ERR_PTR(-ENOMEM);

	of_property_read_u32(np, "rotary-encoder,steps", &pdata->steps);
	of_property_read_u32(np, "linux,axis", &pdata->axis);

	pdata->gpio_a = of_get_gpio_flags(np, 0, &flags);
	pdata->inverted_a = flags & OF_GPIO_ACTIVE_LOW;

	pdata->gpio_b = of_get_gpio_flags(np, 1, &flags);
	pdata->inverted_b = flags & OF_GPIO_ACTIVE_LOW;

228 229 230
	pdata->relative_axis =
		of_property_read_bool(np, "rotary-encoder,relative-axis");
	pdata->rollover = of_property_read_bool(np, "rotary-encoder,rollover");
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

	error = of_property_read_u32(np, "rotary-encoder,steps-per-period",
				     &pdata->steps_per_period);
	if (error) {
		/*
		 * The 'half-period' property has been deprecated, you must use
		 * 'steps-per-period' and set an appropriate value, but we still
		 * need to parse it to maintain compatibility.
		 */
		if (of_property_read_bool(np, "rotary-encoder,half-period")) {
			pdata->steps_per_period = 2;
		} else {
			/* Fallback to one step per period behavior */
			pdata->steps_per_period = 1;
		}
	}

248
	pdata->wakeup_source = of_property_read_bool(np, "wakeup-source");
249 250 251 252 253 254 255 256 257 258 259

	return pdata;
}
#else
static inline struct rotary_encoder_platform_data *
rotary_encoder_parse_dt(struct device *dev)
{
	return NULL;
}
#endif

B
Bill Pemberton 已提交
260
static int rotary_encoder_probe(struct platform_device *pdev)
261
{
262 263
	struct device *dev = &pdev->dev;
	const struct rotary_encoder_platform_data *pdata = dev_get_platdata(dev);
264 265
	struct rotary_encoder *encoder;
	struct input_dev *input;
266
	irq_handler_t handler;
267 268
	int err;

269
	if (!pdata) {
270 271 272 273 274 275 276 277
		pdata = rotary_encoder_parse_dt(dev);
		if (IS_ERR(pdata))
			return PTR_ERR(pdata);

		if (!pdata) {
			dev_err(dev, "missing platform data\n");
			return -EINVAL;
		}
278 279
	}

280 281 282 283 284 285 286
	encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL);
	if (!encoder)
		return -ENOMEM;

	input = devm_input_allocate_device(dev);
	if (!input)
		return -ENOMEM;
287 288 289 290 291 292

	encoder->input = input;
	encoder->pdata = pdata;

	input->name = pdev->name;
	input->id.bustype = BUS_HOST;
293
	input->dev.parent = dev;
294 295 296 297 298 299 300 301 302

	if (pdata->relative_axis) {
		input->evbit[0] = BIT_MASK(EV_REL);
		input->relbit[0] = BIT_MASK(pdata->axis);
	} else {
		input->evbit[0] = BIT_MASK(EV_ABS);
		input_set_abs_params(encoder->input,
				     pdata->axis, 0, pdata->steps, 0, 1);
	}
303 304

	/* request the GPIOs */
305 306
	err = devm_gpio_request_one(dev, pdata->gpio_a, GPIOF_IN,
				    dev_name(dev));
307
	if (err) {
308
		dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_a);
309
		return err;
310 311
	}

312 313
	err = devm_gpio_request_one(dev, pdata->gpio_b, GPIOF_IN,
				    dev_name(dev));
314
	if (err) {
315
		dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_b);
316
		return err;
317 318
	}

319 320 321
	encoder->irq_a = gpio_to_irq(pdata->gpio_a);
	encoder->irq_b = gpio_to_irq(pdata->gpio_b);

322 323 324 325 326 327
	switch (pdata->steps_per_period) {
	case 4:
		handler = &rotary_encoder_quarter_period_irq;
		encoder->last_stable = rotary_encoder_get_state(pdata);
		break;
	case 2:
328 329
		handler = &rotary_encoder_half_period_irq;
		encoder->last_stable = rotary_encoder_get_state(pdata);
330 331
		break;
	case 1:
332
		handler = &rotary_encoder_irq;
333 334 335 336
		break;
	default:
		dev_err(dev, "'%d' is not a valid steps-per-period value\n",
			pdata->steps_per_period);
337
		return -EINVAL;
338 339
	}

340 341 342
	err = devm_request_irq(dev, encoder->irq_a, handler,
			       IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
			       DRV_NAME, encoder);
343
	if (err) {
344
		dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a);
345
		return err;
346 347
	}

348 349 350
	err = devm_request_irq(dev, encoder->irq_b, handler,
			       IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
			       DRV_NAME, encoder);
351
	if (err) {
352
		dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b);
353
		return err;
354 355
	}

356 357 358
	err = input_register_device(input);
	if (err) {
		dev_err(dev, "failed to register input device\n");
359
		return err;
360 361
	}

362 363
	device_init_wakeup(&pdev->dev, pdata->wakeup_source);

364 365 366 367 368
	platform_set_drvdata(pdev, encoder);

	return 0;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef CONFIG_PM_SLEEP
static int rotary_encoder_suspend(struct device *dev)
{
	struct rotary_encoder *encoder = dev_get_drvdata(dev);

	if (device_may_wakeup(dev)) {
		enable_irq_wake(encoder->irq_a);
		enable_irq_wake(encoder->irq_b);
	}

	return 0;
}

static int rotary_encoder_resume(struct device *dev)
{
	struct rotary_encoder *encoder = dev_get_drvdata(dev);

	if (device_may_wakeup(dev)) {
		disable_irq_wake(encoder->irq_a);
		disable_irq_wake(encoder->irq_b);
	}

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops,
		 rotary_encoder_suspend, rotary_encoder_resume);

398 399 400 401
static struct platform_driver rotary_encoder_driver = {
	.probe		= rotary_encoder_probe,
	.driver		= {
		.name	= DRV_NAME,
402
		.pm	= &rotary_encoder_pm_ops,
403
		.of_match_table = of_match_ptr(rotary_encoder_of_match),
404 405
	}
};
406
module_platform_driver(rotary_encoder_driver);
407 408 409

MODULE_ALIAS("platform:" DRV_NAME);
MODULE_DESCRIPTION("GPIO rotary encoder driver");
410
MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>, Johan Hovold");
411
MODULE_LICENSE("GPL v2");