pgtable-book3s64.c 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/sched.h>
11
#include <linux/mm_types.h>
12
#include <linux/memblock.h>
13
#include <misc/cxl-base.h>
14

15 16
#include <asm/pgalloc.h>
#include <asm/tlb.h>
17 18
#include <asm/trace.h>
#include <asm/powernv.h>
19 20 21 22

#include "mmu_decl.h"
#include <trace/events/thp.h>

23 24 25 26 27
unsigned long __pmd_frag_nr;
EXPORT_SYMBOL(__pmd_frag_nr);
unsigned long __pmd_frag_size_shift;
EXPORT_SYMBOL(__pmd_frag_size_shift);

28 29 30
int (*register_process_table)(unsigned long base, unsigned long page_size,
			      unsigned long tbl_size);

31 32 33 34 35 36 37 38 39 40 41 42 43
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * This is called when relaxing access to a hugepage. It's also called in the page
 * fault path when we don't hit any of the major fault cases, ie, a minor
 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 * handled those two for us, we additionally deal with missing execute
 * permission here on some processors
 */
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pmd_t *pmdp, pmd_t entry, int dirty)
{
	int changed;
#ifdef CONFIG_DEBUG_VM
44
	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
45
	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
46 47 48
#endif
	changed = !pmd_same(*(pmdp), entry);
	if (changed) {
49 50 51 52 53 54
		/*
		 * We can use MMU_PAGE_2M here, because only radix
		 * path look at the psize.
		 */
		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
					pmd_pte(entry), address, MMU_PAGE_2M);
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
	}
	return changed;
}

int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long address, pmd_t *pmdp)
{
	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
}
/*
 * set a new huge pmd. We should not be called for updating
 * an existing pmd entry. That should go via pmd_hugepage_update.
 */
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
		pmd_t *pmdp, pmd_t pmd)
{
#ifdef CONFIG_DEBUG_VM
72 73 74 75 76
	/*
	 * Make sure hardware valid bit is not set. We don't do
	 * tlb flush for this update.
	 */
	WARN_ON(pte_val(pmd_pte(*pmdp)) & _PAGE_PRESENT);
77
	assert_spin_locked(pmd_lockptr(mm, pmdp));
78
	WARN_ON(!(pmd_large(pmd) || pmd_devmap(pmd)));
79 80 81 82
#endif
	trace_hugepage_set_pmd(addr, pmd_val(pmd));
	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
}
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

static void do_nothing(void *unused)
{

}
/*
 * Serialize against find_current_mm_pte which does lock-less
 * lookup in page tables with local interrupts disabled. For huge pages
 * it casts pmd_t to pte_t. Since format of pte_t is different from
 * pmd_t we want to prevent transit from pmd pointing to page table
 * to pmd pointing to huge page (and back) while interrupts are disabled.
 * We clear pmd to possibly replace it with page table pointer in
 * different code paths. So make sure we wait for the parallel
 * find_current_mm_pte to finish.
 */
void serialize_against_pte_lookup(struct mm_struct *mm)
{
	smp_mb();
101
	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
102 103
}

104 105 106 107
/*
 * We use this to invalidate a pmdp entry before switching from a
 * hugepte to regular pmd entry.
 */
108
pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
109 110
		     pmd_t *pmdp)
{
111 112
	unsigned long old_pmd;

113
	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
114
	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
115 116 117 118
	/*
	 * This ensures that generic code that rely on IRQ disabling
	 * to prevent a parallel THP split work as expected.
	 */
119
	serialize_against_pte_lookup(vma->vm_mm);
120
	return __pmd(old_pmd);
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
{
	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
}

pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
{
	unsigned long pmdv;

	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
	return pmd_set_protbits(__pmd(pmdv), pgprot);
}

pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
{
	return pfn_pmd(page_to_pfn(page), pgprot);
}

pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
	unsigned long pmdv;

	pmdv = pmd_val(pmd);
	pmdv &= _HPAGE_CHG_MASK;
	return pmd_set_protbits(__pmd(pmdv), newprot);
}

/*
 * This is called at the end of handling a user page fault, when the
 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 * We use it to preload an HPTE into the hash table corresponding to
 * the updated linux HUGE PMD entry.
 */
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
			  pmd_t *pmd)
{
159 160
	if (radix_enabled())
		prefetch((void *)addr);
161 162
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
163 164 165 166 167 168 169 170 171

/* For use by kexec */
void mmu_cleanup_all(void)
{
	if (radix_enabled())
		radix__mmu_cleanup_all();
	else if (mmu_hash_ops.hpte_clear_all)
		mmu_hash_ops.hpte_clear_all();
}
172 173

#ifdef CONFIG_MEMORY_HOTPLUG
174
int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
175 176
{
	if (radix_enabled())
177
		return radix__create_section_mapping(start, end, nid);
178

179
	return hash__create_section_mapping(start, end, nid);
180 181
}

182
int __meminit remove_section_mapping(unsigned long start, unsigned long end)
183 184
{
	if (radix_enabled())
185
		return radix__remove_section_mapping(start, end);
186 187 188 189

	return hash__remove_section_mapping(start, end);
}
#endif /* CONFIG_MEMORY_HOTPLUG */
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

void __init mmu_partition_table_init(void)
{
	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
	unsigned long ptcr;

	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
	partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
						MEMBLOCK_ALLOC_ANYWHERE));

	/* Initialize the Partition Table with no entries */
	memset((void *)partition_tb, 0, patb_size);

	/*
	 * update partition table control register,
	 * 64 K size.
	 */
	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
	mtspr(SPRN_PTCR, ptcr);
	powernv_set_nmmu_ptcr(ptcr);
}

void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
				   unsigned long dw1)
{
	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);

	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
	partition_tb[lpid].patb1 = cpu_to_be64(dw1);

	/*
	 * Global flush of TLBs and partition table caches for this lpid.
	 * The type of flush (hash or radix) depends on what the previous
	 * use of this partition ID was, not the new use.
	 */
	asm volatile("ptesync" : : : "memory");
	if (old & PATB_HR) {
		asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
		asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
	} else {
		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
	}
	/* do we need fixup here ?*/
	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
}
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
{
	void *pmd_frag, *ret;

	spin_lock(&mm->page_table_lock);
	ret = mm->context.pmd_frag;
	if (ret) {
		pmd_frag = ret + PMD_FRAG_SIZE;
		/*
		 * If we have taken up all the fragments mark PTE page NULL
		 */
		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
			pmd_frag = NULL;
		mm->context.pmd_frag = pmd_frag;
	}
	spin_unlock(&mm->page_table_lock);
	return (pmd_t *)ret;
}

static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
{
	void *ret = NULL;
	struct page *page;
	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;

	if (mm == &init_mm)
		gfp &= ~__GFP_ACCOUNT;
	page = alloc_page(gfp);
	if (!page)
		return NULL;
	if (!pgtable_pmd_page_ctor(page)) {
		__free_pages(page, 0);
		return NULL;
	}

277 278
	atomic_set(&page->pt_frag_refcount, 1);

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	ret = page_address(page);
	/*
	 * if we support only one fragment just return the
	 * allocated page.
	 */
	if (PMD_FRAG_NR == 1)
		return ret;

	spin_lock(&mm->page_table_lock);
	/*
	 * If we find pgtable_page set, we return
	 * the allocated page with single fragement
	 * count.
	 */
	if (likely(!mm->context.pmd_frag)) {
294
		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
	}
	spin_unlock(&mm->page_table_lock);

	return (pmd_t *)ret;
}

pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
{
	pmd_t *pmd;

	pmd = get_pmd_from_cache(mm);
	if (pmd)
		return pmd;

	return __alloc_for_pmdcache(mm);
}

void pmd_fragment_free(unsigned long *pmd)
{
	struct page *page = virt_to_page(pmd);

317 318
	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
319
		pgtable_pmd_page_dtor(page);
320
		__free_page(page);
321 322 323
	}
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static pte_t *get_pte_from_cache(struct mm_struct *mm)
{
	void *pte_frag, *ret;

	spin_lock(&mm->page_table_lock);
	ret = mm->context.pte_frag;
	if (ret) {
		pte_frag = ret + PTE_FRAG_SIZE;
		/*
		 * If we have taken up all the fragments mark PTE page NULL
		 */
		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
			pte_frag = NULL;
		mm->context.pte_frag = pte_frag;
	}
	spin_unlock(&mm->page_table_lock);
	return (pte_t *)ret;
}

static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel)
{
	void *ret = NULL;
	struct page *page;

	if (!kernel) {
		page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT);
		if (!page)
			return NULL;
		if (!pgtable_page_ctor(page)) {
			__free_page(page);
			return NULL;
		}
	} else {
		page = alloc_page(PGALLOC_GFP);
		if (!page)
			return NULL;
	}

362
	atomic_set(&page->pt_frag_refcount, 1);
363

364
	ret = page_address(page);
365 366 367 368 369 370
	/*
	 * if we support only one fragment just return the
	 * allocated page.
	 */
	if (PTE_FRAG_NR == 1)
		return ret;
371 372 373 374 375 376 377
	spin_lock(&mm->page_table_lock);
	/*
	 * If we find pgtable_page set, we return
	 * the allocated page with single fragement
	 * count.
	 */
	if (likely(!mm->context.pte_frag)) {
378
		atomic_set(&page->pt_frag_refcount, PTE_FRAG_NR);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
	}
	spin_unlock(&mm->page_table_lock);

	return (pte_t *)ret;
}

pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
{
	pte_t *pte;

	pte = get_pte_from_cache(mm);
	if (pte)
		return pte;

	return __alloc_for_ptecache(mm, kernel);
}

void pte_fragment_free(unsigned long *table, int kernel)
{
	struct page *page = virt_to_page(table);

401 402
	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
403 404
		if (!kernel)
			pgtable_page_dtor(page);
405
		__free_page(page);
406 407 408
	}
}

409 410 411 412 413 414 415
static inline void pgtable_free(void *table, int index)
{
	switch (index) {
	case PTE_INDEX:
		pte_fragment_free(table, 0);
		break;
	case PMD_INDEX:
416
		pmd_fragment_free(table);
417 418 419 420
		break;
	case PUD_INDEX:
		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
		break;
421 422 423 424 425 426 427 428 429 430 431 432
#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
		/* 16M hugepd directory at pud level */
	case HTLB_16M_INDEX:
		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
		break;
		/* 16G hugepd directory at the pgd level */
	case HTLB_16G_INDEX:
		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
		break;
#endif
433 434 435 436 437 438
		/* We don't free pgd table via RCU callback */
	default:
		BUG();
	}
}

439
#ifdef CONFIG_SMP
440
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
441 442 443
{
	unsigned long pgf = (unsigned long)table;

444 445
	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
	pgf |= index;
446 447 448 449 450 451
	tlb_remove_table(tlb, (void *)pgf);
}

void __tlb_remove_table(void *_table)
{
	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
452
	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
453

454
	return pgtable_free(table, index);
455 456
}
#else
457
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
458
{
459
	return pgtable_free(table, index);
460 461
}
#endif
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

#ifdef CONFIG_PROC_FS
atomic_long_t direct_pages_count[MMU_PAGE_COUNT];

void arch_report_meminfo(struct seq_file *m)
{
	/*
	 * Hash maps the memory with one size mmu_linear_psize.
	 * So don't bother to print these on hash
	 */
	if (!radix_enabled())
		return;
	seq_printf(m, "DirectMap4k:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
	seq_printf(m, "DirectMap64k:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
	seq_printf(m, "DirectMap2M:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
	seq_printf(m, "DirectMap1G:    %8lu kB\n",
		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
}
#endif /* CONFIG_PROC_FS */