i7300_edac.c 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2010 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
 *	http://www.intel.com/Assets/PDF/datasheet/318082.pdf
 *
 * TODO: The chipset allow checking for PCI Express errors also. Currently,
 *	 the driver covers only memory error errors
 *
 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>

#include "edac_core.h"

/*
 * Alter this version for the I7300 module when modifications are made
 */
#define I7300_REVISION    " Ver: 1.0.0 " __DATE__

#define EDAC_MOD_STR      "i7300_edac"

#define i7300_printk(level, fmt, arg...) \
	edac_printk(level, "i7300", fmt, ##arg)

#define i7300_mc_printk(mci, level, fmt, arg...) \
	edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)

/*
 * Memory topology is organized as:
 *	Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
 *	Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
 * Each channel can have to 8 DIMM sets (called as SLOTS)
 * Slots should generally be filled in pairs
 *	Except on Single Channel mode of operation
 *		just slot 0/channel0 filled on this mode
 *	On normal operation mode, the two channels on a branch should be
53
 *		filled together for the same SLOT#
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
 *		channels on both branches should be filled
 */

/* Limits for i7300 */
#define MAX_SLOTS		8
#define MAX_BRANCHES		2
#define MAX_CH_PER_BRANCH	2
#define MAX_CHANNELS		(MAX_CH_PER_BRANCH * MAX_BRANCHES)
#define MAX_MIR			3

#define to_channel(ch, branch)	((((branch)) << 1) | (ch))

#define to_csrow(slot, ch, branch)					\
		(to_channel(ch, branch) | ((slot) << 2))

70 71
/*
 * I7300 devices
72 73 74 75
 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
 * uses PCI_DEVICE_ID_INTEL_I7300_MCH_ERR for device 16 (0,1,2),
 * PCI_DEVICE_ID_INTEL_I7300_MCH_FB0 and PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
 * for device 21 (0,1).
76 77 78 79 80 81 82 83 84 85
 */

/****************************************************
 * i7300 Register definitions for memory enumberation
 ****************************************************/

/*
 * Device 16,
 * Function 0: System Address (not documented)
 * Function 1: Memory Branch Map, Control, Errors Register
86 87 88
 */

	/* OFFSETS for Function 0 */
89 90 91
#define AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
#define MAXCH			0x56 /* Max Channel Number */
#define MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
92 93

	/* OFFSETS for Function 1 */
94
#define MC_SETTINGS		0x40
95

96 97 98 99 100 101
#define IS_MIRRORED(mc)			((mc) & (1 << 16))
#define IS_ECC_ENABLED(mc)		((mc) & (1 << 5))
#define IS_RETRY_ENABLED(mc)		((mc) & (1 << 31))
#define IS_SCRBALGO_ENHANCED(mc)	((mc) & (1 << 8))


102 103 104 105 106 107
#define TOLM			0x6C
#define REDMEMB			0x7C

#define MIR0			0x80
#define MIR1			0x84
#define MIR2			0x88
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

/*
 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
 * seems that we cannot use this information directly for the same usage.
 * Each memory slot may have up to 2 AMB interfaces, one for income and another
 * for outcome interface to the next slot.
 * For now, the driver just stores the AMB present registers, but rely only at
 * the MTR info to detect memory.
 * Datasheet is also not clear about how to map each AMBPRESENT registers to
 * one of the 4 available channels.
 */
#define AMBPRESENT_0	0x64
#define AMBPRESENT_1	0x66

const static u16 mtr_regs [MAX_SLOTS] = {
	0x80, 0x84, 0x88, 0x8c,
	0x82, 0x86, 0x8a, 0x8e
};

/* Defines to extract the vaious fields from the
 *	MTRx - Memory Technology Registers
 */
#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 8))
#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 7))
#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 5)) ? 8 : 4)
#define MTR_DIMM_RANKS(mtr)		(((mtr) & (1 << 4)) ? 1 : 0)
#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
#define MTR_DRAM_BANKS_ADDR_BITS	2
#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)

#ifdef CONFIG_EDAC_DEBUG
/* MTR NUMROW */
static const char *numrow_toString[] = {
	"8,192 - 13 rows",
	"16,384 - 14 rows",
	"32,768 - 15 rows",
	"65,536 - 16 rows"
};

/* MTR NUMCOL */
static const char *numcol_toString[] = {
	"1,024 - 10 columns",
	"2,048 - 11 columns",
	"4,096 - 12 columns",
	"reserved"
};
#endif

160 161 162 163 164 165 166
/************************************************
 * i7300 Register definitions for error detection
 ************************************************/
/*
 * Device 16.2: Global Error Registers
 */

167 168 169 170 171 172 173 174 175
#define FERR_GLOBAL_HI	0x48
static const char *ferr_global_hi_name[] = {
	[3] = "FSB 3 Fatal Error",
	[2] = "FSB 2 Fatal Error",
	[1] = "FSB 1 Fatal Error",
	[0] = "FSB 0 Fatal Error",
};
#define ferr_global_hi_is_fatal(errno)	1

176
#define FERR_GLOBAL_LO	0x40
177
static const char *ferr_global_lo_name[] = {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	[31] = "Internal MCH Fatal Error",
	[30] = "Intel QuickData Technology Device Fatal Error",
	[29] = "FSB1 Fatal Error",
	[28] = "FSB0 Fatal Error",
	[27] = "FBD Channel 3 Fatal Error",
	[26] = "FBD Channel 2 Fatal Error",
	[25] = "FBD Channel 1 Fatal Error",
	[24] = "FBD Channel 0 Fatal Error",
	[23] = "PCI Express Device 7Fatal Error",
	[22] = "PCI Express Device 6 Fatal Error",
	[21] = "PCI Express Device 5 Fatal Error",
	[20] = "PCI Express Device 4 Fatal Error",
	[19] = "PCI Express Device 3 Fatal Error",
	[18] = "PCI Express Device 2 Fatal Error",
	[17] = "PCI Express Device 1 Fatal Error",
	[16] = "ESI Fatal Error",
	[15] = "Internal MCH Non-Fatal Error",
	[14] = "Intel QuickData Technology Device Non Fatal Error",
	[13] = "FSB1 Non-Fatal Error",
	[12] = "FSB 0 Non-Fatal Error",
	[11] = "FBD Channel 3 Non-Fatal Error",
	[10] = "FBD Channel 2 Non-Fatal Error",
	[9]  = "FBD Channel 1 Non-Fatal Error",
	[8]  = "FBD Channel 0 Non-Fatal Error",
	[7]  = "PCI Express Device 7 Non-Fatal Error",
	[6]  = "PCI Express Device 6 Non-Fatal Error",
	[5]  = "PCI Express Device 5 Non-Fatal Error",
	[4]  = "PCI Express Device 4 Non-Fatal Error",
	[3]  = "PCI Express Device 3 Non-Fatal Error",
	[2]  = "PCI Express Device 2 Non-Fatal Error",
	[1]  = "PCI Express Device 1 Non-Fatal Error",
	[0]  = "ESI Non-Fatal Error",
};
211
#define ferr_global_lo_is_fatal(errno)	((errno < 16) ? 0 : 1)
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

/* Device name and register DID (Device ID) */
struct i7300_dev_info {
	const char *ctl_name;	/* name for this device */
	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

/* Table of devices attributes supported by this driver */
static const struct i7300_dev_info i7300_devs[] = {
	{
		.ctl_name = "I7300",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
	},
};

struct i7300_dimm_info {
	int megabytes;		/* size, 0 means not present  */
};

/* driver private data structure */
struct i7300_pvt {
233 234 235 236
	struct pci_dev *pci_dev_16_0_fsb_ctlr;		/* 16.0 */
	struct pci_dev *pci_dev_16_1_fsb_addr_map;	/* 16.1 */
	struct pci_dev *pci_dev_16_2_fsb_err_regs;	/* 16.2 */
	struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];	/* 21.0  and 22.0 */
237 238 239

	u16 tolm;				/* top of low memory */
	u64 ambase;				/* AMB BAR */
240
	u32 mc_settings;
241 242 243 244 245 246 247 248 249 250 251 252 253

	u16 mir[MAX_MIR];

	u16 mtr[MAX_SLOTS][MAX_BRANCHES];		/* Memory Technlogy Reg */
	u16 ambpresent[MAX_CHANNELS];		/* AMB present regs */

	/* DIMM information matrix, allocating architecture maximums */
	struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
};

/* FIXME: Why do we need to have this static? */
static struct edac_pci_ctl_info *i7300_pci;

254 255 256
/********************************************
 * i7300 Functions related to error detection
 ********************************************/
257

258 259 260 261 262
struct i7300_error_info {
	int dummy;	/* FIXME */
};

const char *get_err_from_table(const char *table[], int size, int pos)
263
{
264 265 266 267
	if (pos >= size)
		return "Reserved";

	return table[pos];
268 269
}

270 271 272
#define GET_ERR_FROM_TABLE(table, pos)				\
	get_err_from_table(table, ARRAY_SIZE(table), pos)

273 274 275 276 277 278 279 280 281 282 283
/*
 *	i7300_get_error_info	Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
 */
static void i7300_get_error_info(struct mem_ctl_info *mci,
				 struct i7300_error_info *info)
{
}

/*
284 285 286
 *	i7300_process_error_global Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
287
 */
288 289
static void i7300_process_error_global(struct mem_ctl_info *mci,
				 struct i7300_error_info *info)
290
{
291 292 293 294 295
	struct i7300_pvt *pvt;
	u32 errnum, value;
	unsigned long errors;
	const char *specific;
	bool is_fatal;
296

297
	pvt = mci->pvt_info;
298

299 300 301 302 303 304 305 306 307
	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_HI, &value);
	if (unlikely(value)) {
		errors = value;
		errnum = find_first_bit(&errors,
					ARRAY_SIZE(ferr_global_hi_name));
		specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
		is_fatal = ferr_global_hi_is_fatal(errnum);
308 309 310 311 312

		/* Clear the error bit */
		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
				       FERR_GLOBAL_HI, value);

313
		goto error_global;
314 315
	}

316 317 318 319 320 321 322 323
	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_LO, &value);
	if (unlikely(value)) {
		errors = value;
		errnum = find_first_bit(&errors,
					ARRAY_SIZE(ferr_global_lo_name));
		specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
		is_fatal = ferr_global_lo_is_fatal(errnum);
324 325 326 327 328

		/* Clear the error bit */
		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
				       FERR_GLOBAL_LO, value);

329 330 331
		goto error_global;
	}
	return;
332

333 334 335
error_global:
	i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
			is_fatal ? "Fatal" : "NOT fatal", specific);
336 337 338
}

/*
339 340 341
 *	i7300_process_error_info Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
342 343
 */
static void i7300_process_error_info(struct mem_ctl_info *mci,
344 345 346 347
				 struct i7300_error_info *info)
{
	i7300_process_error_global(mci, info);
};
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

/*
 *	i7300_clear_error	Retrieve any error from the hardware
 *				but do NOT process that error.
 *				Used for 'clearing' out of previous errors
 *				Called by the Core module.
 */
static void i7300_clear_error(struct mem_ctl_info *mci)
{
	struct i7300_error_info info;

	i7300_get_error_info(mci, &info);
}

/*
 *	i7300_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7300_check_error(struct mem_ctl_info *mci)
{
	struct i7300_error_info info;
	debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
370

371 372 373 374 375 376 377 378 379 380 381
	i7300_get_error_info(mci, &info);
	i7300_process_error_info(mci, &info);
}

/*
 *	i7300_enable_error_reporting
 *			Turn on the memory reporting features of the hardware
 */
static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
{
}
382 383 384 385

/************************************************
 * i7300 Functions related to memory enumberation
 ************************************************/
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

/*
 * determine_mtr(pvt, csrow, channel)
 *
 * return the proper MTR register as determine by the csrow and desired channel
 */
static int decode_mtr(struct i7300_pvt *pvt,
		      int slot, int ch, int branch,
		      struct i7300_dimm_info *dinfo,
		      struct csrow_info *p_csrow)
{
	int mtr, ans, addrBits, channel;

	channel = to_channel(ch, branch);

	mtr = pvt->mtr[slot][branch];
	ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;

	debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
		slot, channel,
		ans ? "Present" : "NOT Present");

	/* Determine if there is a DIMM present in this DIMM slot */

#if 0
	if (!amb_present || !ans)
		return 0;
#else
	if (!ans)
		return 0;
#endif

	/* Start with the number of bits for a Bank
	* on the DRAM */
	addrBits = MTR_DRAM_BANKS_ADDR_BITS;
	/* Add thenumber of ROW bits */
	addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
	/* add the number of COLUMN bits */
	addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
	/* add the number of RANK bits */
	addrBits += MTR_DIMM_RANKS(mtr);

	addrBits += 6;	/* add 64 bits per DIMM */
	addrBits -= 20;	/* divide by 2^^20 */
	addrBits -= 3;	/* 8 bits per bytes */

	dinfo->megabytes = 1 << addrBits;

	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));

	debugf2("\t\tELECTRICAL THROTTLING is %s\n",
		MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");

	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
	debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);

	p_csrow->grain = 8;
	p_csrow->nr_pages = dinfo->megabytes << 8;
	p_csrow->mtype = MEM_FB_DDR2;
448 449 450 451 452 453 454 455 456

	/*
	 * FIXME: the type of error detection actually depends of the
	 * mode of operation. When it is just one single memory chip, at
	 * socket 0, channel 0, it uses  8-byte-over-32-byte SECDED+ code.
	 * In normal or mirrored mode, it uses Single Device Data correction,
	 * with the possibility of using an extended algorithm for x8 memories
	 * See datasheet Sections 7.3.6 to 7.3.8
	 */
457 458 459
	p_csrow->edac_mode = EDAC_S8ECD8ED;

	/* ask what device type on this row */
460 461 462 463 464
	if (MTR_DRAM_WIDTH(mtr)) {
		debugf0("Scrub algorithm for x8 is on %s mode\n",
			IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
					    "enhanced" : "normal");

465
		p_csrow->dtype = DEV_X8;
466
	} else
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		p_csrow->dtype = DEV_X4;

	return mtr;
}

/*
 *	print_dimm_size
 *
 *	also will output a DIMM matrix map, if debug is enabled, for viewing
 *	how the DIMMs are populated
 */
static void print_dimm_size(struct i7300_pvt *pvt)
{
	struct i7300_dimm_info *dinfo;
	char *p, *mem_buffer;
	int space, n;
	int channel, slot;

	space = PAGE_SIZE;
	mem_buffer = p = kmalloc(space, GFP_KERNEL);
	if (p == NULL) {
		i7300_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
			__FILE__, __func__);
		return;
	}

	n = snprintf(p, space, "              ");
	p += n;
	space -= n;
	for (channel = 0; channel < MAX_CHANNELS; channel++) {
		n = snprintf(p, space, "channel %d | ", channel);
		p += n;
		space -= n;
	}
	debugf2("%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;
	n = snprintf(p, space, "-------------------------------"
		               "------------------------------");
	p += n;
	space -= n;
	debugf2("%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;

	for (slot = 0; slot < MAX_SLOTS; slot++) {
		n = snprintf(p, space, "csrow/SLOT %d  ", slot);
		p += n;
		space -= n;

		for (channel = 0; channel < MAX_CHANNELS; channel++) {
			dinfo = &pvt->dimm_info[slot][channel];
			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
			p += n;
			space -= n;
		}

		debugf2("%s\n", mem_buffer);
		p = mem_buffer;
		space = PAGE_SIZE;
	}

	n = snprintf(p, space, "-------------------------------"
		               "------------------------------");
	p += n;
	space -= n;
	debugf2("%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;

	kfree(mem_buffer);
}

/*
 *	i7300_init_csrows	Initialize the 'csrows' table within
 *				the mci control	structure with the
 *				addressing of memory.
 *
 *	return:
 *		0	success
 *		1	no actual memory found on this MC
 */
static int i7300_init_csrows(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	struct i7300_dimm_info *dinfo;
	struct csrow_info *p_csrow;
	int empty;
	int mtr;
	int ch, branch, slot, channel;

	pvt = mci->pvt_info;

	empty = 1;		/* Assume NO memory */

	debugf2("Memory Technology Registers:\n");

	/* Get the AMB present registers for the four channels */
	for (branch = 0; branch < MAX_BRANCHES; branch++) {
		/* Read and dump branch 0's MTRs */
		channel = to_channel(0, branch);
568
		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_0,
569 570 571 572 573
				&pvt->ambpresent[channel]);
		debugf2("\t\tAMB-present CH%d = 0x%x:\n",
			channel, pvt->ambpresent[channel]);

		channel = to_channel(1, branch);
574
		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_1,
575 576 577 578 579 580 581 582 583
				&pvt->ambpresent[channel]);
		debugf2("\t\tAMB-present CH%d = 0x%x:\n",
			channel, pvt->ambpresent[channel]);
	}

	/* Get the set of MTR[0-7] regs by each branch */
	for (slot = 0; slot < MAX_SLOTS; slot++) {
		int where = mtr_regs[slot];
		for (branch = 0; branch < MAX_BRANCHES; branch++) {
584
			pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
					where,
					&pvt->mtr[slot][branch]);
			for (ch = 0; ch < MAX_BRANCHES; ch++) {
				int channel = to_channel(ch, branch);

				dinfo = &pvt->dimm_info[slot][channel];
				p_csrow = &mci->csrows[slot];

				mtr = decode_mtr(pvt, slot, ch, branch,
							dinfo, p_csrow);
				/* if no DIMMS on this row, continue */
				if (!MTR_DIMMS_PRESENT(mtr))
					continue;

				p_csrow->csrow_idx = slot;

				/* FAKE OUT VALUES, FIXME */
				p_csrow->first_page = 0 + slot * 20;
				p_csrow->last_page = 9 + slot * 20;
				p_csrow->page_mask = 0xfff;

				empty = 0;
			}
		}
	}

	return empty;
}

static void decode_mir(int mir_no, u16 mir[MAX_MIR])
{
	if (mir[mir_no] & 3)
		debugf2("MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
			mir_no,
			(mir[mir_no] >> 4) & 0xfff,
			(mir[mir_no] & 1) ? "B0" : "",
			(mir[mir_no] & 2) ? "B1": "");
}

/*
 *	i7300_get_mc_regs	read in the necessary registers and
 *				cache locally
 *
 *			Fills in the private data members
 */
static int i7300_get_mc_regs(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	u32 actual_tolm;
	int i, rc;

	pvt = mci->pvt_info;

638
	pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
639 640 641 642 643
			(u32 *) &pvt->ambase);

	debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);

	/* Get the Branch Map regs */
644
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
645 646 647 648 649 650 651 652
	pvt->tolm >>= 12;
	debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
		pvt->tolm);

	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
	debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
		actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);

653
	/* Get memory controller settings */
654
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
655
			     &pvt->mc_settings);
656

657
	debugf0("Memory controller operating on %s mode\n",
658
		IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
659
	debugf0("Error detection is %s\n",
660 661 662
		IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
	debugf0("Retry is %s\n",
		IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
663 664

	/* Get Memory Interleave Range registers */
665 666 667
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0, &pvt->mir[0]);
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1, &pvt->mir[1]);
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2, &pvt->mir[2]);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

	/* Decode the MIR regs */
	for (i = 0; i < MAX_MIR; i++)
		decode_mir(i, pvt->mir);

	rc = i7300_init_csrows(mci);
	if (rc < 0)
		return rc;

	/* Go and determine the size of each DIMM and place in an
	 * orderly matrix */
	print_dimm_size(pvt);

	return 0;
}

684 685 686 687
/*************************************************
 * i7300 Functions related to device probe/release
 *************************************************/

688 689 690 691 692 693 694 695 696 697 698 699 700
/*
 *	i7300_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void i7300_put_devices(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	int branch;

	pvt = mci->pvt_info;

	/* Decrement usage count for devices */
	for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
701 702 703
		pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
	pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
	pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
}

/*
 *	i7300_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int i7300_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
	struct i7300_pvt *pvt;
	struct pci_dev *pdev;

	pvt = mci->pvt_info;

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
721
	while (!pvt->pci_dev_16_1_fsb_addr_map || !pvt->pci_dev_16_2_fsb_err_regs) {
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
		if (!pdev) {
			/* End of list, leave */
			i7300_printk(KERN_ERR,
				"'system address,Process Bus' "
				"device not found:"
				"vendor 0x%x device 0x%x ERR funcs "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
			goto error;
		}

		/* Store device 16 funcs 1 and 2 */
		switch (PCI_FUNC(pdev->devfn)) {
		case 1:
739
			pvt->pci_dev_16_1_fsb_addr_map = pdev;
740 741
			break;
		case 2:
742
			pvt->pci_dev_16_2_fsb_err_regs = pdev;
743 744 745 746 747
			break;
		}
	}

	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
748 749
		pci_name(pvt->pci_dev_16_0_fsb_ctlr),
		pvt->pci_dev_16_0_fsb_ctlr->vendor, pvt->pci_dev_16_0_fsb_ctlr->device);
750
	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
751 752
		pci_name(pvt->pci_dev_16_1_fsb_addr_map),
		pvt->pci_dev_16_1_fsb_addr_map->vendor, pvt->pci_dev_16_1_fsb_addr_map->device);
753
	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
754 755
		pci_name(pvt->pci_dev_16_2_fsb_err_regs),
		pvt->pci_dev_16_2_fsb_err_regs->vendor, pvt->pci_dev_16_2_fsb_err_regs->device);
756

757
	pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
758 759
				            PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
					    NULL);
760
	if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
761 762 763 764 765 766 767
		i7300_printk(KERN_ERR,
			"MC: 'BRANCH 0' device not found:"
			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
		goto error;
	}

768
	pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
769 770
					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
					    NULL);
771
	if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		i7300_printk(KERN_ERR,
			"MC: 'BRANCH 1' device not found:"
			"vendor 0x%x device 0x%x Func 0 "
			"(broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL,
			PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
		goto error;
	}

	return 0;

error:
	i7300_put_devices(mci);
	return -ENODEV;
}

/*
 *	i7300_probe1	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int i7300_probe1(struct pci_dev *pdev, int dev_idx)
{
	struct mem_ctl_info *mci;
	struct i7300_pvt *pvt;
	int num_channels;
	int num_dimms_per_channel;
	int num_csrows;

	if (dev_idx >= ARRAY_SIZE(i7300_devs))
		return -EINVAL;

	debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
		__func__,
		pdev->bus->number,
		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));

	/* We only are looking for func 0 of the set */
	if (PCI_FUNC(pdev->devfn) != 0)
		return -ENODEV;

	/* As we don't have a motherboard identification routine to determine
	 * actual number of slots/dimms per channel, we thus utilize the
	 * resource as specified by the chipset. Thus, we might have
	 * have more DIMMs per channel than actually on the mobo, but this
	 * allows the driver to support upto the chipset max, without
	 * some fancy mobo determination.
	 */
	num_dimms_per_channel = MAX_SLOTS;
	num_channels = MAX_CHANNELS;
	num_csrows = MAX_SLOTS * MAX_CHANNELS;

	debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
		__func__, num_channels, num_dimms_per_channel, num_csrows);

	/* allocate a new MC control structure */
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);

	if (mci == NULL)
		return -ENOMEM;

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

	mci->dev = &pdev->dev;	/* record ptr  to the generic device */

	pvt = mci->pvt_info;
840
	pvt->pci_dev_16_0_fsb_ctlr = pdev;	/* Record this device in our private */
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

	/* 'get' the pci devices we want to reserve for our use */
	if (i7300_get_devices(mci, dev_idx))
		goto fail0;

	mci->mc_idx = 0;
	mci->mtype_cap = MEM_FLAG_FB_DDR2;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7300_edac.c";
	mci->mod_ver = I7300_REVISION;
	mci->ctl_name = i7300_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7300_check_error;

	/* initialize the MC control structure 'csrows' table
	 * with the mapping and control information */
	if (i7300_get_mc_regs(mci)) {
		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
			"    because i7300_init_csrows() returned nonzero "
			"value\n");
		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
	} else {
		debugf1("MC: Enable error reporting now\n");
		i7300_enable_error_reporting(mci);
	}

	/* add this new MC control structure to EDAC's list of MCs */
	if (edac_mc_add_mc(mci)) {
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
		goto fail1;
	}

	i7300_clear_error(mci);

	/* allocating generic PCI control info */
	i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i7300_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

	return 0;

	/* Error exit unwinding stack */
fail1:

	i7300_put_devices(mci);

fail0:
	edac_mc_free(mci);
	return -ENODEV;
}

/*
 *	i7300_init_one	constructor for one instance of device
 *
 * 	returns:
 *		negative on error
 *		count (>= 0)
 */
static int __devinit i7300_init_one(struct pci_dev *pdev,
				const struct pci_device_id *id)
{
	int rc;

	debugf0("MC: " __FILE__ ": %s()\n", __func__);

	/* wake up device */
	rc = pci_enable_device(pdev);
	if (rc == -EIO)
		return rc;

	/* now probe and enable the device */
	return i7300_probe1(pdev, id->driver_data);
}

/*
 *	i7300_remove_one	destructor for one instance of device
 *
 */
static void __devexit i7300_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i7300_pci)
		edac_pci_release_generic_ctl(i7300_pci);

	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	/* retrieve references to resources, and free those resources */
	i7300_put_devices(mci);

	edac_mc_free(mci);
}

/*
 *	pci_device_id	table for which devices we are looking for
 *
 *	The "E500P" device is the first device supported.
 */
static const struct pci_device_id i7300_pci_tbl[] __devinitdata = {
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
	{0,}			/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);

/*
 *	i7300_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7300_driver = {
	.name = "i7300_edac",
	.probe = i7300_init_one,
	.remove = __devexit_p(i7300_remove_one),
	.id_table = i7300_pci_tbl,
};

/*
 *	i7300_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7300_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&i7300_driver);

	return (pci_rc < 0) ? pci_rc : 0;
}

/*
 *	i7300_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7300_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7300_driver);
}

module_init(i7300_init);
module_exit(i7300_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
		   I7300_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");