idr.c 14.3 KB
Newer Older
1
#include <linux/bitmap.h>
2
#include <linux/export.h>
L
Linus Torvalds 已提交
3
#include <linux/idr.h>
4
#include <linux/slab.h>
5
#include <linux/spinlock.h>
L
Linus Torvalds 已提交
6

7
DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
8
static DEFINE_SPINLOCK(simple_ida_lock);
L
Linus Torvalds 已提交
9

10
/**
11 12
 * idr_alloc - allocate an id
 * @idr: idr handle
13 14
 * @ptr: pointer to be associated with the new id
 * @start: the minimum id (inclusive)
15 16
 * @end: the maximum id (exclusive)
 * @gfp: memory allocation flags
17
 *
18 19
 * Allocates an unused ID in the range [start, end).  Returns -ENOSPC
 * if there are no unused IDs in that range.
20 21 22 23
 *
 * Note that @end is treated as max when <= 0.  This is to always allow
 * using @start + N as @end as long as N is inside integer range.
 *
24 25 26 27
 * Simultaneous modifications to the @idr are not allowed and should be
 * prevented by the user, usually with a lock.  idr_alloc() may be called
 * concurrently with read-only accesses to the @idr, such as idr_find() and
 * idr_for_each_entry().
28
 */
29
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
30
{
31 32
	void **slot;
	struct radix_tree_iter iter;
33 34 35

	if (WARN_ON_ONCE(start < 0))
		return -EINVAL;
36 37
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
		return -EINVAL;
38

39 40 41 42
	radix_tree_iter_init(&iter, start);
	slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
	if (IS_ERR(slot))
		return PTR_ERR(slot);
43

44 45 46
	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
	return iter.index;
47 48 49
}
EXPORT_SYMBOL_GPL(idr_alloc);

J
Jeff Layton 已提交
50 51
/**
 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
52
 * @idr: idr handle
J
Jeff Layton 已提交
53 54
 * @ptr: pointer to be associated with the new id
 * @start: the minimum id (inclusive)
55 56
 * @end: the maximum id (exclusive)
 * @gfp: memory allocation flags
57
 *
58 59 60
 * Allocates an ID larger than the last ID allocated if one is available.
 * If not, it will attempt to allocate the smallest ID that is larger or
 * equal to @start.
A
Andrew Morton 已提交
61
 */
62
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
L
Linus Torvalds 已提交
63
{
64
	int id, curr = idr->idr_next;
L
Linus Torvalds 已提交
65

66 67
	if (curr < start)
		curr = start;
68

69 70 71
	id = idr_alloc(idr, ptr, curr, end, gfp);
	if ((id == -ENOSPC) && (curr > start))
		id = idr_alloc(idr, ptr, start, curr, gfp);
L
Linus Torvalds 已提交
72

73 74
	if (id >= 0)
		idr->idr_next = id + 1U;
L
Linus Torvalds 已提交
75

76
	return id;
L
Linus Torvalds 已提交
77
}
78
EXPORT_SYMBOL(idr_alloc_cyclic);
L
Linus Torvalds 已提交
79

K
Kristian Hoegsberg 已提交
80 81
/**
 * idr_for_each - iterate through all stored pointers
82
 * @idr: idr handle
K
Kristian Hoegsberg 已提交
83
 * @fn: function to be called for each pointer
84
 * @data: data passed to callback function
K
Kristian Hoegsberg 已提交
85
 *
86 87
 * The callback function will be called for each entry in @idr, passing
 * the id, the pointer and the data pointer passed to this function.
K
Kristian Hoegsberg 已提交
88
 *
89 90
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
K
Kristian Hoegsberg 已提交
91
 *
92 93 94 95
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
K
Kristian Hoegsberg 已提交
96
 */
97 98
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
K
Kristian Hoegsberg 已提交
99
{
100 101
	struct radix_tree_iter iter;
	void **slot;
K
Kristian Hoegsberg 已提交
102

103 104 105 106
	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
		int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
		if (ret)
			return ret;
K
Kristian Hoegsberg 已提交
107 108
	}

109
	return 0;
K
Kristian Hoegsberg 已提交
110 111 112
}
EXPORT_SYMBOL(idr_for_each);

K
KAMEZAWA Hiroyuki 已提交
113
/**
114 115 116 117 118 119 120 121
 * idr_get_next - Find next populated entry
 * @idr: idr handle
 * @nextid: Pointer to lowest possible ID to return
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
K
KAMEZAWA Hiroyuki 已提交
122
 */
123
void *idr_get_next(struct idr *idr, int *nextid)
K
KAMEZAWA Hiroyuki 已提交
124
{
125 126
	struct radix_tree_iter iter;
	void **slot;
K
KAMEZAWA Hiroyuki 已提交
127

128 129
	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
K
KAMEZAWA Hiroyuki 已提交
130 131
		return NULL;

132 133
	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
K
KAMEZAWA Hiroyuki 已提交
134
}
B
Ben Hutchings 已提交
135
EXPORT_SYMBOL(idr_get_next);
K
KAMEZAWA Hiroyuki 已提交
136

J
Jeff Mahoney 已提交
137 138
/**
 * idr_replace - replace pointer for given id
139 140 141
 * @idr: idr handle
 * @ptr: New pointer to associate with the ID
 * @id: Lookup key
J
Jeff Mahoney 已提交
142
 *
143 144 145 146
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
J
Jeff Mahoney 已提交
147
 *
148 149
 * Returns: 0 on success.  %-ENOENT indicates that @id was not found.
 * %-EINVAL indicates that @id or @ptr were not valid.
J
Jeff Mahoney 已提交
150
 */
151
void *idr_replace(struct idr *idr, void *ptr, int id)
J
Jeff Mahoney 已提交
152
{
153 154 155
	struct radix_tree_node *node;
	void **slot = NULL;
	void *entry;
J
Jeff Mahoney 已提交
156

157 158 159
	if (WARN_ON_ONCE(id < 0))
		return ERR_PTR(-EINVAL);
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
160 161
		return ERR_PTR(-EINVAL);

162 163
	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
J
Jeff Mahoney 已提交
164 165
		return ERR_PTR(-ENOENT);

166
	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL);
J
Jeff Mahoney 已提交
167

168
	return entry;
J
Jeff Mahoney 已提交
169 170 171
}
EXPORT_SYMBOL(idr_replace);

172 173
/**
 * DOC: IDA description
174
 *
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_simple_get().  To free an ID, call ida_simple_remove().
 *
 * If you have more complex locking requirements, use a loop around
 * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
 * ida_remove() to free an ID.  You must make sure that ida_get_new() and
 * ida_remove() cannot be called at the same time as each other for the
 * same IDA.
 *
 * You can also use ida_get_new_above() if you need an ID to be allocated
 * above a particular number.  ida_destroy() can be used to dispose of an
 * IDA without needing to free the individual IDs in it.  You can use
 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
195 196
 */

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the IDR & radix tree to store
 * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
 * free, unlike the IDR where it means at least one entry is free.
 *
 * I considered telling the radix tree that each slot is an order-10 node
 * and storing the bit numbers in the radix tree, but the radix tree can't
 * allow a single multiorder entry at index 0, which would significantly
 * increase memory consumption for the IDA.  So instead we divide the index
 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
 * directly in the entry.  By being really tricksy, we could store
 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
 * for 0-3 allocated IDs.
 *
 * We allow the radix tree 'exceptional' count to get out of date.  Nothing
 * in the IDA nor the radix tree code checks it.  If it becomes important
 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
 * calls to radix_tree_iter_replace() which will correct the exceptional
 * count.
 *
 * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

230 231
#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)

232 233
/**
 * ida_get_new_above - allocate new ID above or equal to a start id
234 235 236
 * @ida: ida handle
 * @start: id to start search at
 * @id: pointer to the allocated handle
237
 *
238 239 240 241 242
 * Allocate new ID above or equal to @start.  It should be called
 * with any required locks to ensure that concurrent calls to
 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
 * Consider using ida_simple_get() if you do not have complex locking
 * requirements.
243
 *
244
 * If memory is required, it will return %-EAGAIN, you should unlock
245
 * and go back to the ida_pre_get() call.  If the ida is full, it will
246
 * return %-ENOSPC.  On success, it will return 0.
247
 *
248
 * @id returns a value in the range @start ... %0x7fffffff.
249
 */
250
int ida_get_new_above(struct ida *ida, int start, int *id)
251
{
252 253 254
	struct radix_tree_root *root = &ida->ida_rt;
	void **slot;
	struct radix_tree_iter iter;
255
	struct ida_bitmap *bitmap;
256
	unsigned long index;
257
	unsigned bit, ebit;
258 259 260 261
	int new;

	index = start / IDA_BITMAP_BITS;
	bit = start % IDA_BITMAP_BITS;
262
	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
263 264 265 266 267 268 269 270 271 272 273 274 275 276

	slot = radix_tree_iter_init(&iter, index);
	for (;;) {
		if (slot)
			slot = radix_tree_next_slot(slot, &iter,
						RADIX_TREE_ITER_TAGGED);
		if (!slot) {
			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
			if (IS_ERR(slot)) {
				if (slot == ERR_PTR(-ENOMEM))
					return -EAGAIN;
				return PTR_ERR(slot);
			}
		}
277
		if (iter.index > index) {
278
			bit = 0;
279 280
			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
		}
281 282
		new = iter.index * IDA_BITMAP_BITS;
		bitmap = rcu_dereference_raw(*slot);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
		if (radix_tree_exception(bitmap)) {
			unsigned long tmp = (unsigned long)bitmap;
			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
			if (ebit < BITS_PER_LONG) {
				tmp |= 1UL << ebit;
				rcu_assign_pointer(*slot, (void *)tmp);
				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
				return 0;
			}
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
			rcu_assign_pointer(*slot, bitmap);
		}

300 301 302 303 304 305 306 307
		if (bitmap) {
			bit = find_next_zero_bit(bitmap->bitmap,
							IDA_BITMAP_BITS, bit);
			new += bit;
			if (new < 0)
				return -ENOSPC;
			if (bit == IDA_BITMAP_BITS)
				continue;
308

309 310 311 312 313 314 315 316
			__set_bit(bit, bitmap->bitmap);
			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
				radix_tree_iter_tag_clear(root, &iter,
								IDR_FREE);
		} else {
			new += bit;
			if (new < 0)
				return -ENOSPC;
317 318 319 320 321 322 323 324
			if (ebit < BITS_PER_LONG) {
				bitmap = (void *)((1UL << ebit) |
						RADIX_TREE_EXCEPTIONAL_ENTRY);
				radix_tree_iter_replace(root, &iter, slot,
						bitmap);
				*id = new;
				return 0;
			}
325
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
326 327 328 329 330 331
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			__set_bit(bit, bitmap->bitmap);
			radix_tree_iter_replace(root, &iter, slot, bitmap);
		}
332

333 334
		*id = new;
		return 0;
335 336 337 338 339
	}
}
EXPORT_SYMBOL(ida_get_new_above);

/**
340 341 342 343 344
 * ida_remove - Free the given ID
 * @ida: ida handle
 * @id: ID to free
 *
 * This function should not be called at the same time as ida_get_new_above().
345 346 347
 */
void ida_remove(struct ida *ida, int id)
{
348 349
	unsigned long index = id / IDA_BITMAP_BITS;
	unsigned offset = id % IDA_BITMAP_BITS;
350
	struct ida_bitmap *bitmap;
351
	unsigned long *btmp;
352 353
	struct radix_tree_iter iter;
	void **slot;
354

355 356
	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
	if (!slot)
357 358
		goto err;

359
	bitmap = rcu_dereference_raw(*slot);
360 361 362 363 364 365 366 367 368
	if (radix_tree_exception(bitmap)) {
		btmp = (unsigned long *)slot;
		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
		if (offset >= BITS_PER_LONG)
			goto err;
	} else {
		btmp = bitmap->bitmap;
	}
	if (!test_bit(offset, btmp))
369 370
		goto err;

371
	__clear_bit(offset, btmp);
372
	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
373 374 375 376 377
	if (radix_tree_exception(bitmap)) {
		if (rcu_dereference_raw(*slot) ==
					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
378 379
		kfree(bitmap);
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
380 381 382
	}
	return;
 err:
383
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
384 385 386 387
}
EXPORT_SYMBOL(ida_remove);

/**
388 389 390 391 392 393 394
 * ida_destroy - Free the contents of an ida
 * @ida: ida handle
 *
 * Calling this function releases all resources associated with an IDA.  When
 * this call returns, the IDA is empty and can be reused or freed.  The caller
 * should not allow ida_remove() or ida_get_new_above() to be called at the
 * same time.
395 396 397
 */
void ida_destroy(struct ida *ida)
{
398 399 400 401 402
	struct radix_tree_iter iter;
	void **slot;

	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
403 404
		if (!radix_tree_exception(bitmap))
			kfree(bitmap);
405 406
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	}
407 408 409
}
EXPORT_SYMBOL(ida_destroy);

410 411 412 413 414 415 416 417 418 419
/**
 * ida_simple_get - get a new id.
 * @ida: the (initialized) ida.
 * @start: the minimum id (inclusive, < 0x8000000)
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 * @gfp_mask: memory allocation flags
 *
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 * On memory allocation failure, returns -ENOMEM.
 *
420 421 422
 * Compared to ida_get_new_above() this function does its own locking, and
 * should be used unless there are special requirements.
 *
423 424 425 426 427 428 429
 * Use ida_simple_remove() to get rid of an id.
 */
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
		   gfp_t gfp_mask)
{
	int ret, id;
	unsigned int max;
430
	unsigned long flags;
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	BUG_ON((int)start < 0);
	BUG_ON((int)end < 0);

	if (end == 0)
		max = 0x80000000;
	else {
		BUG_ON(end < start);
		max = end - 1;
	}

again:
	if (!ida_pre_get(ida, gfp_mask))
		return -ENOMEM;

446
	spin_lock_irqsave(&simple_ida_lock, flags);
447 448 449 450 451 452 453 454 455
	ret = ida_get_new_above(ida, start, &id);
	if (!ret) {
		if (id > max) {
			ida_remove(ida, id);
			ret = -ENOSPC;
		} else {
			ret = id;
		}
	}
456
	spin_unlock_irqrestore(&simple_ida_lock, flags);
457 458 459 460 461 462 463 464 465 466 467 468

	if (unlikely(ret == -EAGAIN))
		goto again;

	return ret;
}
EXPORT_SYMBOL(ida_simple_get);

/**
 * ida_simple_remove - remove an allocated id.
 * @ida: the (initialized) ida.
 * @id: the id returned by ida_simple_get.
469 470 471 472 473
 *
 * Use to release an id allocated with ida_simple_get().
 *
 * Compared to ida_remove() this function does its own locking, and should be
 * used unless there are special requirements.
474 475 476
 */
void ida_simple_remove(struct ida *ida, unsigned int id)
{
477 478
	unsigned long flags;

479
	BUG_ON((int)id < 0);
480
	spin_lock_irqsave(&simple_ida_lock, flags);
481
	ida_remove(ida, id);
482
	spin_unlock_irqrestore(&simple_ida_lock, flags);
483 484
}
EXPORT_SYMBOL(ida_simple_remove);