rhashtable.c 25.5 KB
Newer Older
1 2 3
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
4
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Based on the following paper:
 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
 *
 * Code partially derived from nft_hash
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
E
Eric Dumazet 已提交
20
#include <linux/sched.h>
21 22 23
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
24
#include <linux/jhash.h>
25 26
#include <linux/random.h>
#include <linux/rhashtable.h>
27
#include <linux/err.h>
28 29 30

#define HASH_DEFAULT_SIZE	64UL
#define HASH_MIN_SIZE		4UL
31 32
#define BUCKET_LOCKS_PER_CPU   128UL

33 34 35
/* Base bits plus 1 bit for nulls marker */
#define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)

36 37 38 39 40 41 42 43
enum {
	RHT_LOCK_NORMAL,
	RHT_LOCK_NESTED,
};

/* The bucket lock is selected based on the hash and protects mutations
 * on a group of hash buckets.
 *
44 45 46 47 48 49
 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
 * a single lock always covers both buckets which may both contains
 * entries which link to the same bucket of the old table during resizing.
 * This allows to simplify the locking as locking the bucket in both
 * tables during resize always guarantee protection.
 *
50 51 52 53 54 55 56 57
 * IMPORTANT: When holding the bucket lock of both the old and new table
 * during expansions and shrinking, the old bucket lock must always be
 * acquired first.
 */
static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
{
	return &tbl->locks[hash & tbl->locks_mask];
}
58

59
static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
60 61 62 63
{
	return (void *) he - ht->p.head_offset;
}

64
static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
65
{
66
	return hash & (tbl->size - 1);
67 68
}

69 70
static u32 obj_raw_hashfn(struct rhashtable *ht,
			  const struct bucket_table *tbl, const void *ptr)
71
{
72
	u32 hash;
73

74
	if (unlikely(!ht->p.key_len))
75
		hash = ht->p.obj_hashfn(ptr, tbl->hash_rnd);
76 77
	else
		hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
78
				    tbl->hash_rnd);
79

80
	return hash >> HASH_RESERVED_SPACE;
81 82
}

83 84
static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl,
		      const void *key, u32 len)
85
{
86
	return ht->p.hashfn(key, len, tbl->hash_rnd) >> HASH_RESERVED_SPACE;
87 88
}

89
static u32 head_hashfn(struct rhashtable *ht,
90 91
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
92
{
93
	return rht_bucket_index(tbl, obj_raw_hashfn(ht, tbl, rht_obj(ht, he)));
94 95
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
	spinlock_t *lock = bucket_lock(tbl, hash);

	return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif


117 118 119 120 121 122 123 124 125 126 127 128
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
{
	unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
	unsigned int nr_pcpus = 2;
#else
	unsigned int nr_pcpus = num_possible_cpus();
#endif

	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);

129 130
	/* Never allocate more than 0.5 locks per bucket */
	size = min_t(unsigned int, size, tbl->size >> 1);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	if (sizeof(spinlock_t) != 0) {
#ifdef CONFIG_NUMA
		if (size * sizeof(spinlock_t) > PAGE_SIZE)
			tbl->locks = vmalloc(size * sizeof(spinlock_t));
		else
#endif
		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
					   GFP_KERNEL);
		if (!tbl->locks)
			return -ENOMEM;
		for (i = 0; i < size; i++)
			spin_lock_init(&tbl->locks[i]);
	}
	tbl->locks_mask = size - 1;

	return 0;
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl)
		kvfree(tbl->locks);

	kvfree(tbl);
}

static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
					       size_t nbuckets)
160
{
161
	struct bucket_table *tbl = NULL;
162
	size_t size;
163
	int i;
164 165

	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
166 167
	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
		tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
168 169 170 171 172 173 174
	if (tbl == NULL)
		tbl = vzalloc(size);
	if (tbl == NULL)
		return NULL;

	tbl->size = nbuckets;

175 176 177 178
	if (alloc_bucket_locks(ht, tbl) < 0) {
		bucket_table_free(tbl);
		return NULL;
	}
179

180 181 182
	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);

183
	return tbl;
184 185 186 187 188 189 190
}

/**
 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
 * @ht:		hash table
 * @new_size:	new table size
 */
191
static bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
192 193
{
	/* Expand table when exceeding 75% load */
194
	return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
195
	       (!ht->p.max_shift || atomic_read(&ht->shift) < ht->p.max_shift);
196 197 198 199 200 201 202
}

/**
 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
 * @ht:		hash table
 * @new_size:	new table size
 */
203
static bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
204 205
{
	/* Shrink table beneath 30% load */
206 207
	return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
	       (atomic_read(&ht->shift) > ht->p.min_shift);
208 209
}

210
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
211
{
212 213 214 215 216 217 218 219 220 221 222 223 224 225
	struct bucket_table *new_tbl = rht_dereference(ht->future_tbl, ht);
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
	int err = -ENOENT;
	struct rhash_head *head, *next, *entry;
	spinlock_t *new_bucket_lock;
	unsigned new_hash;

	rht_for_each(entry, old_tbl, old_hash) {
		err = 0;
		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);

		if (rht_is_a_nulls(next))
			break;
226

227 228
		pprev = &entry->next;
	}
229

230 231
	if (err)
		goto out;
232

233
	new_hash = head_hashfn(ht, new_tbl, entry);
234

235
	new_bucket_lock = bucket_lock(new_tbl, new_hash);
236

237 238 239
	spin_lock(new_bucket_lock);
	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
				      new_tbl, new_hash);
240

241 242 243 244
	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
	else
		RCU_INIT_POINTER(entry->next, head);
245

246 247
	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
	spin_unlock(new_bucket_lock);
248

249
	rcu_assign_pointer(*pprev, next);
250

251 252 253
out:
	return err;
}
254

255 256 257 258 259 260
static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	spinlock_t *old_bucket_lock;

	old_bucket_lock = bucket_lock(old_tbl, old_hash);
261

262 263 264 265
	spin_lock_bh(old_bucket_lock);
	while (!rhashtable_rehash_one(ht, old_hash))
		;
	spin_unlock_bh(old_bucket_lock);
266 267
}

268 269
static void rhashtable_rehash(struct rhashtable *ht,
			      struct bucket_table *new_tbl)
270
{
271 272
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	unsigned old_hash;
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	get_random_bytes(&new_tbl->hash_rnd, sizeof(new_tbl->hash_rnd));

	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 * The synchronize_rcu() guarantees for the new table to be picked up
	 * so no new additions go into the old table while we relink.
	 */
	rcu_assign_pointer(ht->future_tbl, new_tbl);

	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
		rhashtable_rehash_chain(ht, old_hash);

	/* Publish the new table pointer. */
	rcu_assign_pointer(ht->tbl, new_tbl);

	/* Wait for readers. All new readers will see the new
	 * table, and thus no references to the old table will
	 * remain.
	 */
	synchronize_rcu();

	bucket_table_free(old_tbl);
296 297 298 299 300 301
}

/**
 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 * @ht:		the hash table to expand
 *
302
 * A secondary bucket array is allocated and the hash entries are migrated.
303 304 305 306
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
307 308 309 310 311
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
312
 */
313
int rhashtable_expand(struct rhashtable *ht)
314 315 316 317 318
{
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);

	ASSERT_RHT_MUTEX(ht);

319
	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
320 321 322
	if (new_tbl == NULL)
		return -ENOMEM;

323 324
	new_tbl->hash_rnd = old_tbl->hash_rnd;

325
	atomic_inc(&ht->shift);
326

327
	rhashtable_rehash(ht, new_tbl);
328 329 330 331 332 333 334 335 336 337 338 339

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_expand);

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
340 341 342
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
343 344
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
345 346 347
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
348
 */
349
int rhashtable_shrink(struct rhashtable *ht)
350
{
351
	struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
352 353 354

	ASSERT_RHT_MUTEX(ht);

355 356
	new_tbl = bucket_table_alloc(ht, tbl->size / 2);
	if (new_tbl == NULL)
357 358
		return -ENOMEM;

359 360
	new_tbl->hash_rnd = tbl->hash_rnd;

361
	atomic_dec(&ht->shift);
362

363
	rhashtable_rehash(ht, new_tbl);
364 365 366 367 368

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_shrink);

369 370 371 372
static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;
373
	struct rhashtable_walker *walker;
374

375
	ht = container_of(work, struct rhashtable, run_work);
376
	mutex_lock(&ht->mutex);
377 378 379
	if (ht->being_destroyed)
		goto unlock;

380 381
	tbl = rht_dereference(ht->tbl, ht);

382 383 384
	list_for_each_entry(walker, &ht->walkers, list)
		walker->resize = true;

385
	if (rht_grow_above_75(ht, tbl->size))
386
		rhashtable_expand(ht);
387
	else if (rht_shrink_below_30(ht, tbl->size))
388
		rhashtable_shrink(ht);
389
unlock:
390 391 392
	mutex_unlock(&ht->mutex);
}

393 394
static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
				bool (*compare)(void *, void *), void *arg)
395
{
396
	struct bucket_table *tbl, *old_tbl;
397
	struct rhash_head *head;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	bool no_resize_running;
	unsigned hash;
	bool success = true;

	rcu_read_lock();

	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	hash = obj_raw_hashfn(ht, old_tbl, rht_obj(ht, obj));

	spin_lock_bh(bucket_lock(old_tbl, hash));

	/* Because we have already taken the bucket lock in old_tbl,
	 * if we find that future_tbl is not yet visible then that
	 * guarantees all other insertions of the same entry will
	 * also grab the bucket lock in old_tbl because until the
	 * rehash completes ht->tbl won't be changed.
	 */
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (tbl != old_tbl) {
		hash = obj_raw_hashfn(ht, tbl, rht_obj(ht, obj));
		spin_lock(bucket_lock(tbl, hash));
	}

	if (compare &&
	    rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
				      compare, arg)) {
		success = false;
		goto exit;
	}

	no_resize_running = tbl == old_tbl;
429 430 431

	hash = rht_bucket_index(tbl, hash);
	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
432 433 434 435 436 437 438 439 440

	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
	else
		RCU_INIT_POINTER(obj->next, head);

	rcu_assign_pointer(tbl->buckets[hash], obj);

	atomic_inc(&ht->nelems);
441 442
	if (no_resize_running && rht_grow_above_75(ht, tbl->size))
		schedule_work(&ht->run_work);
443 444 445 446 447 448 449 450 451 452 453 454 455

exit:
	if (tbl != old_tbl) {
		hash = obj_raw_hashfn(ht, tbl, rht_obj(ht, obj));
		spin_unlock(bucket_lock(tbl, hash));
	}

	hash = obj_raw_hashfn(ht, old_tbl, rht_obj(ht, obj));
	spin_unlock_bh(bucket_lock(old_tbl, hash));

	rcu_read_unlock();

	return success;
456 457
}

458
/**
459
 * rhashtable_insert - insert object into hash table
460 461 462
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
463 464 465
 * Will take a per bucket spinlock to protect against mutual mutations
 * on the same bucket. Multiple insertions may occur in parallel unless
 * they map to the same bucket lock.
466
 *
467 468 469 470 471
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
472
 */
473
void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
474
{
475 476 477 478 479 480 481 482 483 484 485
	__rhashtable_insert(ht, obj, NULL, NULL);
}
EXPORT_SYMBOL_GPL(rhashtable_insert);

static bool __rhashtable_remove(struct rhashtable *ht,
				struct bucket_table *tbl,
				struct rhash_head *obj)
{
	struct rhash_head __rcu **pprev;
	struct rhash_head *he;
	spinlock_t * lock;
486
	unsigned hash;
487
	bool ret = false;
488

489 490 491
	hash = obj_raw_hashfn(ht, tbl, rht_obj(ht, obj));
	lock = bucket_lock(tbl, hash);
	hash = rht_bucket_index(tbl, hash);
492

493
	spin_lock_bh(lock);
494

495 496 497 498 499 500
	pprev = &tbl->buckets[hash];
	rht_for_each(he, tbl, hash) {
		if (he != obj) {
			pprev = &he->next;
			continue;
		}
501

502 503 504 505 506 507 508 509
		rcu_assign_pointer(*pprev, obj->next);
		ret = true;
		break;
	}

	spin_unlock_bh(lock);

	return ret;
510 511 512 513 514 515 516 517 518 519 520
}

/**
 * rhashtable_remove - remove object from hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Since the hash chain is single linked, the removal operation needs to
 * walk the bucket chain upon removal. The removal operation is thus
 * considerable slow if the hash table is not correctly sized.
 *
521
 * Will automatically shrink the table via rhashtable_expand() if the
522 523 524 525 526
 * shrink_decision function specified at rhashtable_init() returns true.
 *
 * The caller must ensure that no concurrent table mutations occur. It is
 * however valid to have concurrent lookups if they are RCU protected.
 */
527
bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
528
{
529 530
	struct bucket_table *tbl, *old_tbl;
	bool ret;
531

532
	rcu_read_lock();
533

534 535
	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	ret = __rhashtable_remove(ht, old_tbl, obj);
536

537 538 539 540
	/* Because we have already taken (and released) the bucket
	 * lock in old_tbl, if we find that future_tbl is not yet
	 * visible then that guarantees the entry to still be in
	 * old_tbl if it exists.
541
	 */
542 543 544
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (!ret && old_tbl != tbl)
		ret = __rhashtable_remove(ht, tbl, obj);
545 546

	if (ret) {
547
		bool no_resize_running = tbl == old_tbl;
548

549
		atomic_dec(&ht->nelems);
550
		if (no_resize_running && rht_shrink_below_30(ht, tbl->size))
551
			schedule_work(&ht->run_work);
552 553
	}

554 555
	rcu_read_unlock();

556
	return ret;
557 558 559
}
EXPORT_SYMBOL_GPL(rhashtable_remove);

560 561 562 563 564 565 566 567 568 569 570 571 572
struct rhashtable_compare_arg {
	struct rhashtable *ht;
	const void *key;
};

static bool rhashtable_compare(void *ptr, void *arg)
{
	struct rhashtable_compare_arg *x = arg;
	struct rhashtable *ht = x->ht;

	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
}

573 574 575 576 577 578 579 580 581
/**
 * rhashtable_lookup - lookup key in hash table
 * @ht:		hash table
 * @key:	pointer to key
 *
 * Computes the hash value for the key and traverses the bucket chain looking
 * for a entry with an identical key. The first matching entry is returned.
 *
 * This lookup function may only be used for fixed key hash table (key_len
582
 * parameter set). It will BUG() if used inappropriately.
583
 *
584
 * Lookups may occur in parallel with hashtable mutations and resizing.
585
 */
586
void *rhashtable_lookup(struct rhashtable *ht, const void *key)
587
{
588 589 590 591
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = key,
	};
592 593 594

	BUG_ON(!ht->p.key_len);

595
	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
596 597 598 599 600 601
}
EXPORT_SYMBOL_GPL(rhashtable_lookup);

/**
 * rhashtable_lookup_compare - search hash table with compare function
 * @ht:		hash table
602
 * @key:	the pointer to the key
603 604 605 606 607 608
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Traverses the bucket chain behind the provided hash value and calls the
 * specified compare function for each entry.
 *
609
 * Lookups may occur in parallel with hashtable mutations and resizing.
610 611 612
 *
 * Returns the first entry on which the compare function returned true.
 */
613
void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
614 615
				bool (*compare)(void *, void *), void *arg)
{
616
	const struct bucket_table *tbl, *old_tbl;
617
	struct rhash_head *he;
618
	u32 hash;
619

620 621
	rcu_read_lock();

622 623
	tbl = rht_dereference_rcu(ht->tbl, ht);
	hash = key_hashfn(ht, tbl, key, ht->p.key_len);
624 625
restart:
	rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
626 627
		if (!compare(rht_obj(ht, he), arg))
			continue;
628
		rcu_read_unlock();
629
		return rht_obj(ht, he);
630 631
	}

632 633 634
	old_tbl = tbl;
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (unlikely(tbl != old_tbl))
635 636 637
		goto restart;
	rcu_read_unlock();

638 639 640 641
	return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
/**
 * rhashtable_lookup_insert - lookup and insert object into hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * This lookup function may only be used for fixed key hash table (key_len
 * parameter set). It will BUG() if used inappropriately.
 *
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = rht_obj(ht, obj) + ht->p.key_offset,
	};

	BUG_ON(!ht->p.key_len);

	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
						&arg);
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);

/**
 * rhashtable_lookup_compare_insert - search and insert object to hash table
 *                                    with compare function
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * Lookups may occur in parallel with hashtable mutations and resizing.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
				      struct rhash_head *obj,
				      bool (*compare)(void *, void *),
				      void *arg)
700 701 702
{
	BUG_ON(!ht->p.key_len);

703
	return __rhashtable_insert(ht, obj, compare, arg);
704
}
705
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/**
 * rhashtable_walk_init - Initialise an iterator
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may sleep so you must not call it from interrupt
 * context or with spin locks held.
 *
 * You must call rhashtable_walk_exit if this function returns
 * successfully.
 */
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;

	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
	if (!iter->walker)
		return -ENOMEM;

739 740 741
	INIT_LIST_HEAD(&iter->walker->list);
	iter->walker->resize = false;

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	mutex_lock(&ht->mutex);
	list_add(&iter->walker->list, &ht->walkers);
	mutex_unlock(&ht->mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_init);

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_init.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
	mutex_lock(&iter->ht->mutex);
	list_del(&iter->walker->list);
	mutex_unlock(&iter->ht->mutex);
	kfree(iter->walker);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk.  Note that we take the RCU lock in all
 * cases including when we return an error.  So you must always call
 * rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 */
int rhashtable_walk_start(struct rhashtable_iter *iter)
{
	rcu_read_lock();

	if (iter->walker->resize) {
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return -EAGAIN;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
	const struct bucket_table *tbl;
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;
	void *obj = NULL;

	tbl = rht_dereference_rcu(ht->tbl, ht);

	if (p) {
		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
		goto next;
	}

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
			obj = rht_obj(ht, p);
			goto out;
		}

		iter->skip = 0;
	}

	iter->p = NULL;

out:
	if (iter->walker->resize) {
		iter->p = NULL;
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return ERR_PTR(-EAGAIN);
	}

	return obj;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
{
	rcu_read_unlock();
	iter->p = NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

868
static size_t rounded_hashtable_size(struct rhashtable_params *params)
869
{
870 871
	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
		   1UL << params->min_shift);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
}

/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
894
 *	.hashfn = jhash,
895
 *	.nulls_base = (1U << RHT_BASE_SHIFT),
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
 * u32 my_hash_fn(const void *data, u32 seed)
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
913
 *	.hashfn = jhash,
914 915 916 917 918 919 920 921 922 923 924 925 926 927
 *	.obj_hashfn = my_hash_fn,
 * };
 */
int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
{
	struct bucket_table *tbl;
	size_t size;

	size = HASH_DEFAULT_SIZE;

	if ((params->key_len && !params->hashfn) ||
	    (!params->key_len && !params->obj_hashfn))
		return -EINVAL;

928 929 930
	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
		return -EINVAL;

931 932 933
	params->min_shift = max_t(size_t, params->min_shift,
				  ilog2(HASH_MIN_SIZE));

934
	if (params->nelem_hint)
935
		size = rounded_hashtable_size(params);
936

937 938 939
	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
	memcpy(&ht->p, params, sizeof(*params));
940
	INIT_LIST_HEAD(&ht->walkers);
941 942 943 944 945 946 947

	if (params->locks_mul)
		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
	else
		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;

	tbl = bucket_table_alloc(ht, size);
948 949 950
	if (tbl == NULL)
		return -ENOMEM;

951 952
	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));

953
	atomic_set(&ht->nelems, 0);
954
	atomic_set(&ht->shift, ilog2(tbl->size));
955
	RCU_INIT_POINTER(ht->tbl, tbl);
956
	RCU_INIT_POINTER(ht->future_tbl, tbl);
957

958
	INIT_WORK(&ht->run_work, rht_deferred_worker);
959

960 961 962 963 964 965 966 967
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
 * rhashtable_destroy - destroy hash table
 * @ht:		the hash table to destroy
 *
968 969 970
 * Frees the bucket array. This function is not rcu safe, therefore the caller
 * has to make sure that no resizing may happen by unpublishing the hashtable
 * and waiting for the quiescent cycle before releasing the bucket array.
971
 */
972
void rhashtable_destroy(struct rhashtable *ht)
973
{
974 975
	ht->being_destroyed = true;

976
	cancel_work_sync(&ht->run_work);
977

978
	mutex_lock(&ht->mutex);
979 980
	bucket_table_free(rht_dereference(ht->tbl, ht));
	mutex_unlock(&ht->mutex);
981 982
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);