dccp.txt 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DCCP protocol
============


Contents
========

- Introduction
- Missing features
- Socket options
- Notes

Introduction
============

Datagram Congestion Control Protocol (DCCP) is an unreliable, connection
17 18 19 20 21 22 23 24 25
oriented protocol designed to solve issues present in UDP and TCP, particularly
for real-time and multimedia (streaming) traffic.
It divides into a base protocol (RFC 4340) and plugable congestion control
modules called CCIDs. Like plugable TCP congestion control, at least one CCID
needs to be enabled in order for the protocol to function properly. In the Linux
implementation, this is the TCP-like CCID2 (RFC 4341). Additional CCIDs, such as
the TCP-friendly CCID3 (RFC 4342), are optional.
For a brief introduction to CCIDs and suggestions for choosing a CCID to match
given applications, see section 10 of RFC 4340.
26 27 28

It has a base protocol and pluggable congestion control IDs (CCIDs).

G
Gerrit Renker 已提交
29 30
DCCP is a Proposed Standard (RFC 2026), and the homepage for DCCP as a protocol
is at http://www.ietf.org/html.charters/dccp-charter.html
31 32 33 34

Missing features
================

G
Gerrit Renker 已提交
35 36
The Linux DCCP implementation does not currently support all the features that are
specified in RFCs 4340...42.
37

I
Ian McDonald 已提交
38 39
The known bugs are at:
	http://linux-net.osdl.org/index.php/TODO#DCCP
40

G
Gerrit Renker 已提交
41 42 43 44 45
For more up-to-date versions of the DCCP implementation, please consider using
the experimental DCCP test tree; instructions for checking this out are on:
http://linux-net.osdl.org/index.php/DCCP_Testing#Experimental_DCCP_source_tree


46 47
Socket options
==============
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
DCCP_SOCKOPT_QPOLICY_ID sets the dequeuing policy for outgoing packets. It takes
a policy ID as argument and can only be set before the connection (i.e. changes
during an established connection are not supported). Currently, two policies are
defined: the "simple" policy (DCCPQ_POLICY_SIMPLE), which does nothing special,
and a priority-based variant (DCCPQ_POLICY_PRIO). The latter allows to pass an
u32 priority value as ancillary data to sendmsg(), where higher numbers indicate
a higher packet priority (similar to SO_PRIORITY). This ancillary data needs to
be formatted using a cmsg(3) message header filled in as follows:
	cmsg->cmsg_level = SOL_DCCP;
	cmsg->cmsg_type	 = DCCP_SCM_PRIORITY;
	cmsg->cmsg_len	 = CMSG_LEN(sizeof(uint32_t));	/* or CMSG_LEN(4) */

DCCP_SOCKOPT_QPOLICY_TXQLEN sets the maximum length of the output queue. A zero
value is always interpreted as unbounded queue length. If different from zero,
the interpretation of this parameter depends on the current dequeuing policy
(see above): the "simple" policy will enforce a fixed queue size by returning
EAGAIN, whereas the "prio" policy enforces a fixed queue length by dropping the
lowest-priority packet first. The default value for this parameter is
initialised from /proc/sys/net/dccp/default/tx_qlen.
67

68 69 70
DCCP_SOCKOPT_SERVICE sets the service. The specification mandates use of
service codes (RFC 4340, sec. 8.1.2); if this socket option is not set,
the socket will fall back to 0 (which means that no meaningful service code
G
Gerrit Renker 已提交
71 72 73 74
is present). On active sockets this is set before connect(); specifying more
than one code has no effect (all subsequent service codes are ignored). The
case is different for passive sockets, where multiple service codes (up to 32)
can be set before calling bind().
75

76 77 78
DCCP_SOCKOPT_GET_CUR_MPS is read-only and retrieves the current maximum packet
size (application payload size) in bytes, see RFC 4340, section 14.

G
Gerrit Renker 已提交
79 80 81 82
DCCP_SOCKOPT_AVAILABLE_CCIDS is also read-only and returns the list of CCIDs
supported by the endpoint (see include/linux/dccp.h for symbolic constants).
The caller needs to provide a sufficiently large (> 2) array of type uint8_t.

83 84 85 86 87 88 89 90 91 92 93 94 95 96
DCCP_SOCKOPT_CCID is write-only and sets both the TX and RX CCIDs at the same
time, combining the operation of the next two socket options. This option is
preferrable over the latter two, since often applications will use the same
type of CCID for both directions; and mixed use of CCIDs is not currently well
understood. This socket option takes as argument at least one uint8_t value, or
an array of uint8_t values, which must match available CCIDS (see above). CCIDs
must be registered on the socket before calling connect() or listen().

DCCP_SOCKOPT_TX_CCID is read/write. It returns the current CCID (if set) or sets
the preference list for the TX CCID, using the same format as DCCP_SOCKOPT_CCID.
Please note that the getsockopt argument type here is `int', not uint8_t.

DCCP_SOCKOPT_RX_CCID is analogous to DCCP_SOCKOPT_TX_CCID, but for the RX CCID.

97 98 99 100 101 102
DCCP_SOCKOPT_SERVER_TIMEWAIT enables the server (listening socket) to hold
timewait state when closing the connection (RFC 4340, 8.3). The usual case is
that the closing server sends a CloseReq, whereupon the client holds timewait
state. When this boolean socket option is on, the server sends a Close instead
and will enter TIMEWAIT. This option must be set after accept() returns.

103 104 105 106 107 108 109 110 111
DCCP_SOCKOPT_SEND_CSCOV and DCCP_SOCKOPT_RECV_CSCOV are used for setting the
partial checksum coverage (RFC 4340, sec. 9.2). The default is that checksums
always cover the entire packet and that only fully covered application data is
accepted by the receiver. Hence, when using this feature on the sender, it must
be enabled at the receiver, too with suitable choice of CsCov.

DCCP_SOCKOPT_SEND_CSCOV sets the sender checksum coverage. Values in the
	range 0..15 are acceptable. The default setting is 0 (full coverage),
	values between 1..15 indicate partial coverage.
G
Gerrit Renker 已提交
112
DCCP_SOCKOPT_RECV_CSCOV is for the receiver and has a different meaning: it
113 114 115 116
	sets a threshold, where again values 0..15 are acceptable. The default
	of 0 means that all packets with a partial coverage will be discarded.
	Values in the range 1..15 indicate that packets with minimally such a
	coverage value are also acceptable. The higher the number, the more
G
Gerrit Renker 已提交
117 118
	restrictive this setting (see [RFC 4340, sec. 9.2.1]). Partial coverage
	settings are inherited to the child socket after accept().
119

120 121 122 123 124 125 126 127 128
The following two options apply to CCID 3 exclusively and are getsockopt()-only.
In either case, a TFRC info struct (defined in <linux/tfrc.h>) is returned.
DCCP_SOCKOPT_CCID_RX_INFO
	Returns a `struct tfrc_rx_info' in optval; the buffer for optval and
	optlen must be set to at least sizeof(struct tfrc_rx_info).
DCCP_SOCKOPT_CCID_TX_INFO
	Returns a `struct tfrc_tx_info' in optval; the buffer for optval and
	optlen must be set to at least sizeof(struct tfrc_tx_info).

129 130
On unidirectional connections it is useful to close the unused half-connection
via shutdown (SHUT_WR or SHUT_RD): this will reduce per-packet processing costs.
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
Sysctl variables
================
Several DCCP default parameters can be managed by the following sysctls
(sysctl net.dccp.default or /proc/sys/net/dccp/default):

request_retries
	The number of active connection initiation retries (the number of
	Requests minus one) before timing out. In addition, it also governs
	the behaviour of the other, passive side: this variable also sets
	the number of times DCCP repeats sending a Response when the initial
	handshake does not progress from RESPOND to OPEN (i.e. when no Ack
	is received after the initial Request).  This value should be greater
	than 0, suggested is less than 10. Analogue of tcp_syn_retries.

retries1
	How often a DCCP Response is retransmitted until the listening DCCP
	side considers its connecting peer dead. Analogue of tcp_retries1.

retries2
	The number of times a general DCCP packet is retransmitted. This has
	importance for retransmitted acknowledgments and feature negotiation,
	data packets are never retransmitted. Analogue of tcp_retries2.

tx_ccid = 2
156 157
	Default CCID for the sender-receiver half-connection. Depending on the
	choice of CCID, the Send Ack Vector feature is enabled automatically.
158 159

rx_ccid = 2
160
	Default CCID for the receiver-sender half-connection; see tx_ccid.
161 162

seq_window = 100
163 164
	The initial sequence window (sec. 7.5.2) of the sender. This influences
	the local ackno validity and the remote seqno validity windows (7.5.1).
165

I
Ian McDonald 已提交
166 167 168 169
tx_qlen = 5
	The size of the transmit buffer in packets. A value of 0 corresponds
	to an unbounded transmit buffer.

G
Gerrit Renker 已提交
170 171 172 173 174
sync_ratelimit = 125 ms
	The timeout between subsequent DCCP-Sync packets sent in response to
	sequence-invalid packets on the same socket (RFC 4340, 7.5.4). The unit
	of this parameter is milliseconds; a value of 0 disables rate-limiting.

175 176 177 178 179 180
IOCTLS
======
FIONREAD
	Works as in udp(7): returns in the `int' argument pointer the size of
	the next pending datagram in bytes, or 0 when no datagram is pending.

181 182 183
Notes
=====

I
Ian McDonald 已提交
184
DCCP does not travel through NAT successfully at present on many boxes. This is
G
Gerrit Renker 已提交
185
because the checksum covers the pseudo-header as per TCP and UDP. Linux NAT
I
Ian McDonald 已提交
186
support for DCCP has been added.