renoir_ppt.c 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "amdgpu.h"
#include "amdgpu_smu.h"
26
#include "smu_internal.h"
27 28
#include "soc15_common.h"
#include "smu_v12_0_ppsmc.h"
29
#include "smu12_driver_if.h"
30
#include "smu_v12_0.h"
31 32 33
#include "renoir_ppt.h"


34 35 36
#define CLK_MAP(clk, index) \
	[SMU_##clk] = {1, (index)}

37
#define MSG_MAP(msg, index) \
38
	[SMU_MSG_##msg] = {1, (index)}
39

40 41 42 43 44 45
#define TAB_MAP_VALID(tab) \
	[SMU_TABLE_##tab] = {1, TABLE_##tab}

#define TAB_MAP_INVALID(tab) \
	[SMU_TABLE_##tab] = {0, TABLE_##tab}

46
static struct smu_12_0_cmn2aisc_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = {
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	MSG_MAP(TestMessage,                    PPSMC_MSG_TestMessage),
	MSG_MAP(GetSmuVersion,                  PPSMC_MSG_GetSmuVersion),
	MSG_MAP(GetDriverIfVersion,             PPSMC_MSG_GetDriverIfVersion),
	MSG_MAP(PowerUpGfx,                     PPSMC_MSG_PowerUpGfx),
	MSG_MAP(AllowGfxOff,                    PPSMC_MSG_EnableGfxOff),
	MSG_MAP(DisallowGfxOff,                 PPSMC_MSG_DisableGfxOff),
	MSG_MAP(PowerDownIspByTile,             PPSMC_MSG_PowerDownIspByTile),
	MSG_MAP(PowerUpIspByTile,               PPSMC_MSG_PowerUpIspByTile),
	MSG_MAP(PowerDownVcn,                   PPSMC_MSG_PowerDownVcn),
	MSG_MAP(PowerUpVcn,                     PPSMC_MSG_PowerUpVcn),
	MSG_MAP(PowerDownSdma,                  PPSMC_MSG_PowerDownSdma),
	MSG_MAP(PowerUpSdma,                    PPSMC_MSG_PowerUpSdma),
	MSG_MAP(SetHardMinIspclkByFreq,         PPSMC_MSG_SetHardMinIspclkByFreq),
	MSG_MAP(SetHardMinVcn,                  PPSMC_MSG_SetHardMinVcn),
	MSG_MAP(Spare1,                         PPSMC_MSG_spare1),
	MSG_MAP(Spare2,                         PPSMC_MSG_spare2),
	MSG_MAP(SetAllowFclkSwitch,             PPSMC_MSG_SetAllowFclkSwitch),
	MSG_MAP(SetMinVideoGfxclkFreq,          PPSMC_MSG_SetMinVideoGfxclkFreq),
	MSG_MAP(ActiveProcessNotify,            PPSMC_MSG_ActiveProcessNotify),
	MSG_MAP(SetCustomPolicy,                PPSMC_MSG_SetCustomPolicy),
	MSG_MAP(SetVideoFps,                    PPSMC_MSG_SetVideoFps),
	MSG_MAP(NumOfDisplays,                  PPSMC_MSG_SetDisplayCount),
	MSG_MAP(QueryPowerLimit,                PPSMC_MSG_QueryPowerLimit),
	MSG_MAP(SetDriverDramAddrHigh,          PPSMC_MSG_SetDriverDramAddrHigh),
	MSG_MAP(SetDriverDramAddrLow,           PPSMC_MSG_SetDriverDramAddrLow),
	MSG_MAP(TransferTableSmu2Dram,          PPSMC_MSG_TransferTableSmu2Dram),
	MSG_MAP(TransferTableDram2Smu,          PPSMC_MSG_TransferTableDram2Smu),
	MSG_MAP(GfxDeviceDriverReset,           PPSMC_MSG_GfxDeviceDriverReset),
	MSG_MAP(SetGfxclkOverdriveByFreqVid,    PPSMC_MSG_SetGfxclkOverdriveByFreqVid),
	MSG_MAP(SetHardMinDcfclkByFreq,         PPSMC_MSG_SetHardMinDcfclkByFreq),
	MSG_MAP(SetHardMinSocclkByFreq,         PPSMC_MSG_SetHardMinSocclkByFreq),
	MSG_MAP(ControlIgpuATS,                 PPSMC_MSG_ControlIgpuATS),
	MSG_MAP(SetMinVideoFclkFreq,            PPSMC_MSG_SetMinVideoFclkFreq),
	MSG_MAP(SetMinDeepSleepDcfclk,          PPSMC_MSG_SetMinDeepSleepDcfclk),
	MSG_MAP(ForcePowerDownGfx,              PPSMC_MSG_ForcePowerDownGfx),
	MSG_MAP(SetPhyclkVoltageByFreq,         PPSMC_MSG_SetPhyclkVoltageByFreq),
	MSG_MAP(SetDppclkVoltageByFreq,         PPSMC_MSG_SetDppclkVoltageByFreq),
	MSG_MAP(SetSoftMinVcn,                  PPSMC_MSG_SetSoftMinVcn),
	MSG_MAP(EnablePostCode,                 PPSMC_MSG_EnablePostCode),
	MSG_MAP(GetGfxclkFrequency,             PPSMC_MSG_GetGfxclkFrequency),
	MSG_MAP(GetFclkFrequency,               PPSMC_MSG_GetFclkFrequency),
	MSG_MAP(GetMinGfxclkFrequency,          PPSMC_MSG_GetMinGfxclkFrequency),
	MSG_MAP(GetMaxGfxclkFrequency,          PPSMC_MSG_GetMaxGfxclkFrequency),
	MSG_MAP(SoftReset,                      PPSMC_MSG_SoftReset),
	MSG_MAP(SetGfxCGPG,                     PPSMC_MSG_SetGfxCGPG),
	MSG_MAP(SetSoftMaxGfxClk,               PPSMC_MSG_SetSoftMaxGfxClk),
	MSG_MAP(SetHardMinGfxClk,               PPSMC_MSG_SetHardMinGfxClk),
	MSG_MAP(SetSoftMaxSocclkByFreq,         PPSMC_MSG_SetSoftMaxSocclkByFreq),
	MSG_MAP(SetSoftMaxFclkByFreq,           PPSMC_MSG_SetSoftMaxFclkByFreq),
	MSG_MAP(SetSoftMaxVcn,                  PPSMC_MSG_SetSoftMaxVcn),
	MSG_MAP(PowerGateMmHub,                 PPSMC_MSG_PowerGateMmHub),
	MSG_MAP(UpdatePmeRestore,               PPSMC_MSG_UpdatePmeRestore),
	MSG_MAP(GpuChangeState,                 PPSMC_MSG_GpuChangeState),
	MSG_MAP(SetPowerLimitPercentage,        PPSMC_MSG_SetPowerLimitPercentage),
	MSG_MAP(ForceGfxContentSave,            PPSMC_MSG_ForceGfxContentSave),
	MSG_MAP(EnableTmdp48MHzRefclkPwrDown,   PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown),
	MSG_MAP(PowerDownJpeg,                  PPSMC_MSG_PowerDownJpeg),
	MSG_MAP(PowerUpJpeg,                    PPSMC_MSG_PowerUpJpeg),
	MSG_MAP(PowerGateAtHub,                 PPSMC_MSG_PowerGateAtHub),
	MSG_MAP(SetSoftMinJpeg,                 PPSMC_MSG_SetSoftMinJpeg),
	MSG_MAP(SetHardMinFclkByFreq,           PPSMC_MSG_SetHardMinFclkByFreq),
};

110 111 112 113 114 115 116 117
static struct smu_12_0_cmn2aisc_mapping renoir_clk_map[SMU_CLK_COUNT] = {
	CLK_MAP(GFXCLK, CLOCK_GFXCLK),
	CLK_MAP(SCLK,	CLOCK_GFXCLK),
	CLK_MAP(SOCCLK, CLOCK_SOCCLK),
	CLK_MAP(UCLK, CLOCK_UMCCLK),
	CLK_MAP(MCLK, CLOCK_UMCCLK),
};

118 119 120 121 122 123 124
static struct smu_12_0_cmn2aisc_mapping renoir_table_map[SMU_TABLE_COUNT] = {
	TAB_MAP_VALID(WATERMARKS),
	TAB_MAP_INVALID(CUSTOM_DPM),
	TAB_MAP_VALID(DPMCLOCKS),
	TAB_MAP_VALID(SMU_METRICS),
};

125 126
static int renoir_get_smu_msg_index(struct smu_context *smc, uint32_t index)
{
127
	struct smu_12_0_cmn2aisc_mapping mapping;
128 129 130 131

	if (index >= SMU_MSG_MAX_COUNT)
		return -EINVAL;

132 133
	mapping = renoir_message_map[index];
	if (!(mapping.valid_mapping))
134 135
		return -EINVAL;

136
	return mapping.map_to;
137 138
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static int renoir_get_smu_clk_index(struct smu_context *smc, uint32_t index)
{
	struct smu_12_0_cmn2aisc_mapping mapping;

	if (index >= SMU_CLK_COUNT)
		return -EINVAL;

	mapping = renoir_clk_map[index];
	if (!(mapping.valid_mapping)) {
		return -EINVAL;
	}

	return mapping.map_to;
}

154 155 156 157 158 159 160 161 162 163 164 165 166
static int renoir_get_smu_table_index(struct smu_context *smc, uint32_t index)
{
	struct smu_12_0_cmn2aisc_mapping mapping;

	if (index >= SMU_TABLE_COUNT)
		return -EINVAL;

	mapping = renoir_table_map[index];
	if (!(mapping.valid_mapping))
		return -EINVAL;

	return mapping.map_to;
}
167

168 169 170 171 172 173
static int renoir_get_metrics_table(struct smu_context *smu,
				    SmuMetrics_t *metrics_table)
{
	struct smu_table_context *smu_table= &smu->smu_table;
	int ret = 0;

174
	mutex_lock(&smu->metrics_lock);
175 176 177 178 179
	if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) {
		ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
				(void *)smu_table->metrics_table, false);
		if (ret) {
			pr_info("Failed to export SMU metrics table!\n");
180
			mutex_unlock(&smu->metrics_lock);
181 182 183 184 185 186
			return ret;
		}
		smu_table->metrics_time = jiffies;
	}

	memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
187
	mutex_unlock(&smu->metrics_lock);
188 189 190 191

	return ret;
}

192 193
static int renoir_tables_init(struct smu_context *smu, struct smu_table *tables)
{
194 195
	struct smu_table_context *smu_table = &smu->smu_table;

196 197 198 199 200 201 202
	SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);

203 204 205 206
	smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
	if (!smu_table->clocks_table)
		return -ENOMEM;

207 208 209 210 211
	smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
	if (!smu_table->metrics_table)
		return -ENOMEM;
	smu_table->metrics_time = 0;

212 213 214
	return 0;
}

215 216 217 218
/**
 * This interface just for getting uclk ultimate freq and should't introduce
 * other likewise function result in overmuch callback.
 */
219 220
static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type,
						uint32_t dpm_level, uint32_t *freq)
221
{
222
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;
223

224
	if (!clk_table || clk_type >= SMU_CLK_COUNT)
225 226
		return -EINVAL;

227
	GET_DPM_CUR_FREQ(clk_table, clk_type, dpm_level, *freq);
228 229 230 231

	return 0;
}

232 233 234 235 236 237
static int renoir_print_clk_levels(struct smu_context *smu,
			enum smu_clk_type clk_type, char *buf)
{
	int i, size = 0, ret = 0;
	uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0;
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;
238
	SmuMetrics_t metrics;
239 240 241 242

	if (!clk_table || clk_type >= SMU_CLK_COUNT)
		return -EINVAL;

243 244
	memset(&metrics, 0, sizeof(metrics));

245
	ret = renoir_get_metrics_table(smu, &metrics);
246 247 248 249 250 251 252 253
	if (ret)
		return ret;

	switch (clk_type) {
	case SMU_GFXCLK:
	case SMU_SCLK:
		/* retirve table returned paramters unit is MHz */
		cur_value = metrics.ClockFrequency[CLOCK_GFXCLK];
254
		ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min, &max, false);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
		if (!ret) {
			/* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
			if (cur_value  == max)
				i = 2;
			else if (cur_value == min)
				i = 0;
			else
				i = 1;

			size += sprintf(buf + size, "0: %uMhz %s\n", min,
					i == 0 ? "*" : "");
			size += sprintf(buf + size, "1: %uMhz %s\n",
					i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK,
					i == 1 ? "*" : "");
			size += sprintf(buf + size, "2: %uMhz %s\n", max,
					i == 2 ? "*" : "");
		}
		return size;
	case SMU_SOCCLK:
		count = NUM_SOCCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_SOCCLK];
		break;
	case SMU_MCLK:
		count = NUM_MEMCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_UMCCLK];
		break;
	case SMU_DCEFCLK:
		count = NUM_DCFCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_DCFCLK];
		break;
	case SMU_FCLK:
		count = NUM_FCLK_DPM_LEVELS;
		cur_value = metrics.ClockFrequency[CLOCK_FCLK];
		break;
	default:
		return -EINVAL;
	}

	for (i = 0; i < count; i++) {
		GET_DPM_CUR_FREQ(clk_table, clk_type, i, value);
		size += sprintf(buf + size, "%d: %uMhz %s\n", i, value,
				cur_value == value ? "*" : "");
	}

	return size;
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_type;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

	if (!smu_dpm_ctx->dpm_context ||
	    !smu_dpm_ctx->dpm_current_power_state)
		return -EINVAL;

	switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
	case SMU_STATE_UI_LABEL_BATTERY:
		pm_type = POWER_STATE_TYPE_BATTERY;
		break;
	case SMU_STATE_UI_LABEL_BALLANCED:
		pm_type = POWER_STATE_TYPE_BALANCED;
		break;
	case SMU_STATE_UI_LABEL_PERFORMANCE:
		pm_type = POWER_STATE_TYPE_PERFORMANCE;
		break;
	default:
		if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
			pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
		else
			pm_type = POWER_STATE_TYPE_DEFAULT;
		break;
	}

	return pm_type;
}

332 333 334 335 336 337 338 339 340
static int renoir_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
	int ret = 0;

	if (enable) {
		/* vcn dpm on is a prerequisite for vcn power gate messages */
		if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
341
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
			if (ret)
				return ret;
		}
		power_gate->vcn_gated = false;
	} else {
		if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
			ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn);
			if (ret)
				return ret;
		}
		power_gate->vcn_gated = true;
	}

	return ret;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
	int ret = 0;

	if (enable) {
		if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0);
			if (ret)
				return ret;
		}
		power_gate->jpeg_gated = false;
	} else {
		if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0);
			if (ret)
				return ret;
		}
		power_gate->jpeg_gated = true;
	}

	return ret;
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static int renoir_get_current_clk_freq_by_table(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       uint32_t *value)
{
	int ret = 0, clk_id = 0;
	SmuMetrics_t metrics;

	ret = renoir_get_metrics_table(smu, &metrics);
	if (ret)
		return ret;

	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	*value = metrics.ClockFrequency[clk_id];

	return ret;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416
static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
	int ret = 0, i = 0;
	uint32_t min_freq, max_freq, force_freq;
	enum smu_clk_type clk_type;

	enum smu_clk_type clks[] = {
		SMU_GFXCLK,
		SMU_MCLK,
		SMU_SOCCLK,
	};

	for (i = 0; i < ARRAY_SIZE(clks); i++) {
		clk_type = clks[i];
417
		ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		if (ret)
			return ret;

		force_freq = highest ? max_freq : min_freq;
		ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq);
		if (ret)
			return ret;
	}

	return ret;
}

static int renoir_unforce_dpm_levels(struct smu_context *smu) {

	int ret = 0, i = 0;
	uint32_t min_freq, max_freq;
	enum smu_clk_type clk_type;

	struct clk_feature_map {
		enum smu_clk_type clk_type;
		uint32_t	feature;
	} clk_feature_map[] = {
		{SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT},
		{SMU_MCLK,   SMU_FEATURE_DPM_UCLK_BIT},
		{SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT},
	};

	for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) {
		if (!smu_feature_is_enabled(smu, clk_feature_map[i].feature))
		    continue;

		clk_type = clk_feature_map[i].clk_type;

451
		ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
452 453 454 455 456 457 458 459 460 461 462
		if (ret)
			return ret;

		ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq);
		if (ret)
			return ret;
	}

	return ret;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static int renoir_get_gpu_temperature(struct smu_context *smu, uint32_t *value)
{
	int ret = 0;
	SmuMetrics_t metrics;

	if (!value)
		return -EINVAL;

	ret = renoir_get_metrics_table(smu, &metrics);
	if (ret)
		return ret;

	*value = (metrics.GfxTemperature / 100) *
		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static int renoir_get_current_activity_percent(struct smu_context *smu,
					       enum amd_pp_sensors sensor,
					       uint32_t *value)
{
	int ret = 0;
	SmuMetrics_t metrics;

	if (!value)
		return -EINVAL;

	ret = renoir_get_metrics_table(smu, &metrics);
	if (ret)
		return ret;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
497
		*value = metrics.AverageGfxActivity / 100;
498 499 500 501 502 503 504 505 506
		break;
	default:
		pr_err("Invalid sensor for retrieving clock activity\n");
		return -EINVAL;
	}

	return 0;
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
static int renoir_get_workload_type(struct smu_context *smu, uint32_t profile)
{

	uint32_t  pplib_workload = 0;

	switch (profile) {
	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
		pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
		break;
	case PP_SMC_POWER_PROFILE_CUSTOM:
		pplib_workload = WORKLOAD_PPLIB_COUNT;
		break;
	case PP_SMC_POWER_PROFILE_VIDEO:
		pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
		break;
	case PP_SMC_POWER_PROFILE_VR:
		pplib_workload = WORKLOAD_PPLIB_VR_BIT;
		break;
	case PP_SMC_POWER_PROFILE_COMPUTE:
		pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
		break;
	default:
		return -EINVAL;
	}

	return pplib_workload;
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
static int renoir_get_profiling_clk_mask(struct smu_context *smu,
					 enum amd_dpm_forced_level level,
					 uint32_t *sclk_mask,
					 uint32_t *mclk_mask,
					 uint32_t *soc_mask)
{

	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
		if (sclk_mask)
			*sclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
		if (mclk_mask)
			*mclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
		if(sclk_mask)
			/* The sclk as gfxclk and has three level about max/min/current */
			*sclk_mask = 3 - 1;

		if(mclk_mask)
			*mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1;

		if(soc_mask)
			*soc_mask = NUM_SOCCLK_DPM_LEVELS - 1;
	}

	return 0;
}

563 564 565 566 567 568 569 570 571 572 573
/**
 * This interface get dpm clock table for dc
 */
static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table)
{
	DpmClocks_t *table = smu->smu_table.clocks_table;
	int i;

	if (!clock_table || !table)
		return -EINVAL;

574
	for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) {
575 576 577 578
		clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq;
		clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol;
	}

579
	for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) {
580 581 582 583
		clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq;
		clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol;
	}

584
	for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
585 586 587 588
		clock_table->FClocks[i].Freq = table->FClocks[i].Freq;
		clock_table->FClocks[i].Vol = table->FClocks[i].Vol;
	}

589
	for (i = 0; i<  NUM_MEMCLK_DPM_LEVELS; i++) {
590 591 592 593 594 595 596
		clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq;
		clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol;
	}

	return 0;
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static int renoir_force_clk_levels(struct smu_context *smu,
				   enum smu_clk_type clk_type, uint32_t mask)
{

	int ret = 0 ;
	uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
	DpmClocks_t *clk_table = smu->smu_table.clocks_table;

	soft_min_level = mask ? (ffs(mask) - 1) : 0;
	soft_max_level = mask ? (fls(mask) - 1) : 0;

	switch (clk_type) {
	case SMU_GFXCLK:
	case SMU_SCLK:
		if (soft_min_level > 2 || soft_max_level > 2) {
			pr_info("Currently sclk only support 3 levels on APU\n");
			return -EINVAL;
		}

616
		ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min_freq, &max_freq, false);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
					soft_max_level == 0 ? min_freq :
					soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
					soft_min_level == 2 ? max_freq :
					soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq);
		if (ret)
			return ret;
		break;
	case SMU_SOCCLK:
		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq);
		if (ret)
			return ret;
		break;
	case SMU_MCLK:
	case SMU_FCLK:
		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq);
		if (ret)
			return ret;
		break;
	default:
		break;
	}

	return ret;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
	int workload_type, ret;
	uint32_t profile_mode = input[size];

	if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
		pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
		return -EINVAL;
	}

	/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
	workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
	if (workload_type < 0) {
		pr_err("Unsupported power profile mode %d on RENOIR\n",smu->power_profile_mode);
		return -EINVAL;
	}

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
				    1 << workload_type);
	if (ret) {
		pr_err("Fail to set workload type %d\n", workload_type);
		return ret;
	}

	smu->power_profile_mode = profile_mode;

	return 0;
}

687 688 689 690 691
static int renoir_set_peak_clock_by_device(struct smu_context *smu)
{
	int ret = 0;
	uint32_t sclk_freq = 0, uclk_freq = 0;

692
	ret = smu_get_dpm_freq_range(smu, SMU_SCLK, NULL, &sclk_freq, false);
693 694 695 696 697 698 699
	if (ret)
		return ret;

	ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
	if (ret)
		return ret;

700
	ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &uclk_freq, false);
701 702 703 704 705 706 707 708 709 710
	if (ret)
		return ret;

	ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
	if (ret)
		return ret;

	return ret;
}

711 712
static int renoir_set_performance_level(struct smu_context *smu,
					enum amd_dpm_forced_level level)
713 714
{
	int ret = 0;
715
	uint32_t sclk_mask, mclk_mask, soc_mask;
716 717

	switch (level) {
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
		break;
740 741 742
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = renoir_set_peak_clock_by_device(smu);
		break;
743 744
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
745 746 747 748 749
	default:
		break;
	}
	return ret;
}
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/* save watermark settings into pplib smu structure,
 * also pass data to smu controller
 */
static int renoir_set_watermarks_table(
		struct smu_context *smu,
		void *watermarks,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
	int i;
	int ret = 0;
	Watermarks_t *table = watermarks;

	if (!table || !clock_ranges)
		return -EINVAL;

	if (clock_ranges->num_wm_dmif_sets > 4 ||
			clock_ranges->num_wm_mcif_sets > 4)
		return -EINVAL;

	/* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/
	for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
		table->WatermarkRow[WM_DCFCLK][i].MinClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz));
		table->WatermarkRow[WM_DCFCLK][i].MaxClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz));
		table->WatermarkRow[WM_DCFCLK][i].MinMclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz));
		table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz));
		table->WatermarkRow[WM_DCFCLK][i].WmSetting = (uint8_t)
				clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
	}

	for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
		table->WatermarkRow[WM_SOCCLK][i].MinClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz));
		table->WatermarkRow[WM_SOCCLK][i].MaxClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz));
		table->WatermarkRow[WM_SOCCLK][i].MinMclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz));
		table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz));
		table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
				clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
	}

	/* pass data to smu controller */
806 807 808 809 810 811 812 813 814
	if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
			!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
		ret = smu_write_watermarks_table(smu);
		if (ret) {
			pr_err("Failed to update WMTABLE!");
			return ret;
		}
		smu->watermarks_bitmap |= WATERMARKS_LOADED;
	}
815

816
	return 0;
817 818
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
static int renoir_get_power_profile_mode(struct smu_context *smu,
					   char *buf)
{
	static const char *profile_name[] = {
					"BOOTUP_DEFAULT",
					"3D_FULL_SCREEN",
					"POWER_SAVING",
					"VIDEO",
					"VR",
					"COMPUTE",
					"CUSTOM"};
	uint32_t i, size = 0;
	int16_t workload_type = 0;

	if (!smu->pm_enabled || !buf)
		return -EINVAL;

	for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
		/*
		 * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
		 * Not all profile modes are supported on arcturus.
		 */
		workload_type = smu_workload_get_type(smu, i);
		if (workload_type < 0)
			continue;

		size += sprintf(buf + size, "%2d %14s%s\n",
			i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
	}

	return size;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static int renoir_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;

	if (!data || !size)
		return -EINVAL;

	mutex_lock(&smu->sensor_lock);
	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
		ret = renoir_get_current_activity_percent(smu, sensor, (uint32_t *)data);
		*size = 4;
		break;
867 868 869 870
	case AMDGPU_PP_SENSOR_GPU_TEMP:
		ret = renoir_get_gpu_temperature(smu, (uint32_t *)data);
		*size = 4;
		break;
871 872 873 874 875 876 877 878
	default:
		ret = smu_v12_0_read_sensor(smu, sensor, data, size);
	}
	mutex_unlock(&smu->sensor_lock);

	return ret;
}

879 880
static const struct pptable_funcs renoir_ppt_funcs = {
	.get_smu_msg_index = renoir_get_smu_msg_index,
881
	.get_smu_clk_index = renoir_get_smu_clk_index,
882
	.get_smu_table_index = renoir_get_smu_table_index,
883
	.tables_init = renoir_tables_init,
884
	.set_power_state = NULL,
885
	.get_dpm_clk_limited = renoir_get_dpm_clk_limited,
886
	.print_clk_levels = renoir_print_clk_levels,
887
	.get_current_power_state = renoir_get_current_power_state,
888
	.dpm_set_uvd_enable = renoir_dpm_set_uvd_enable,
889
	.dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable,
890
	.get_current_clk_freq_by_table = renoir_get_current_clk_freq_by_table,
891 892
	.force_dpm_limit_value = renoir_force_dpm_limit_value,
	.unforce_dpm_levels = renoir_unforce_dpm_levels,
893
	.get_workload_type = renoir_get_workload_type,
894 895
	.get_profiling_clk_mask = renoir_get_profiling_clk_mask,
	.force_clk_levels = renoir_force_clk_levels,
896
	.set_power_profile_mode = renoir_set_power_profile_mode,
897
	.set_performance_level = renoir_set_performance_level,
898 899
	.get_dpm_clock_table = renoir_get_dpm_clock_table,
	.set_watermarks_table = renoir_set_watermarks_table,
900
	.get_power_profile_mode = renoir_get_power_profile_mode,
901
	.read_sensor = renoir_read_sensor,
902 903 904 905
	.check_fw_status = smu_v12_0_check_fw_status,
	.check_fw_version = smu_v12_0_check_fw_version,
	.powergate_sdma = smu_v12_0_powergate_sdma,
	.powergate_vcn = smu_v12_0_powergate_vcn,
906
	.powergate_jpeg = smu_v12_0_powergate_jpeg,
907 908 909 910 911 912 913
	.send_smc_msg_with_param = smu_v12_0_send_msg_with_param,
	.read_smc_arg = smu_v12_0_read_arg,
	.set_gfx_cgpg = smu_v12_0_set_gfx_cgpg,
	.gfx_off_control = smu_v12_0_gfx_off_control,
	.init_smc_tables = smu_v12_0_init_smc_tables,
	.fini_smc_tables = smu_v12_0_fini_smc_tables,
	.populate_smc_tables = smu_v12_0_populate_smc_tables,
914
	.get_enabled_mask = smu_v12_0_get_enabled_mask,
915
	.get_current_clk_freq = smu_v12_0_get_current_clk_freq,
916 917 918
	.get_dpm_ultimate_freq = smu_v12_0_get_dpm_ultimate_freq,
	.mode2_reset = smu_v12_0_mode2_reset,
	.set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range,
919 920 921 922 923
};

void renoir_set_ppt_funcs(struct smu_context *smu)
{
	smu->ppt_funcs = &renoir_ppt_funcs;
924
	smu->smc_if_version = SMU12_DRIVER_IF_VERSION;
925
	smu->is_apu = true;
926
}