skx_common.c 18.0 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0
/*
3 4 5 6 7 8 9 10 11 12
 *
 * Shared code by both skx_edac and i10nm_edac. Originally split out
 * from the skx_edac driver.
 *
 * This file is linked into both skx_edac and i10nm_edac drivers. In
 * order to avoid link errors, this file must be like a pure library
 * without including symbols and defines which would otherwise conflict,
 * when linked once into a module and into a built-in object, at the
 * same time. For example, __this_module symbol references when that
 * file is being linked into a built-in object.
13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Copyright (c) 2018, Intel Corporation.
 */

#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/adxl.h>
#include <acpi/nfit.h>
#include <asm/mce.h>
#include "edac_module.h"
#include "skx_common.h"

static const char * const component_names[] = {
26 27 28 29 30 31 32
	[INDEX_SOCKET]		= "ProcessorSocketId",
	[INDEX_MEMCTRL]		= "MemoryControllerId",
	[INDEX_CHANNEL]		= "ChannelId",
	[INDEX_DIMM]		= "DimmSlotId",
	[INDEX_NM_MEMCTRL]	= "NmMemoryControllerId",
	[INDEX_NM_CHANNEL]	= "NmChannelId",
	[INDEX_NM_DIMM]		= "NmDimmSlotId",
33 34 35 36 37 38 39
};

static int component_indices[ARRAY_SIZE(component_names)];
static int adxl_component_count;
static const char * const *adxl_component_names;
static u64 *adxl_values;
static char *adxl_msg;
40
static unsigned long adxl_nm_bitmap;
41 42

static char skx_msg[MSG_SIZE];
43
static skx_decode_f driver_decode;
44
static skx_show_retry_log_f skx_show_retry_rd_err_log;
45 46
static u64 skx_tolm, skx_tohm;
static LIST_HEAD(dev_edac_list);
47
static bool skx_mem_cfg_2lm;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

int __init skx_adxl_get(void)
{
	const char * const *names;
	int i, j;

	names = adxl_get_component_names();
	if (!names) {
		skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
		return -ENODEV;
	}

	for (i = 0; i < INDEX_MAX; i++) {
		for (j = 0; names[j]; j++) {
			if (!strcmp(component_names[i], names[j])) {
				component_indices[i] = j;
64 65 66 67

				if (i >= INDEX_NM_FIRST)
					adxl_nm_bitmap |= 1 << i;

68 69 70 71
				break;
			}
		}

72
		if (!names[j] && i < INDEX_NM_FIRST)
73 74 75
			goto err;
	}

76 77 78 79 80 81 82
	if (skx_mem_cfg_2lm) {
		if (!adxl_nm_bitmap)
			skx_printk(KERN_NOTICE, "Not enough ADXL components for 2-level memory.\n");
		else
			edac_dbg(2, "adxl_nm_bitmap: 0x%lx\n", adxl_nm_bitmap);
	}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	adxl_component_names = names;
	while (*names++)
		adxl_component_count++;

	adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
			      GFP_KERNEL);
	if (!adxl_values) {
		adxl_component_count = 0;
		return -ENOMEM;
	}

	adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
	if (!adxl_msg) {
		adxl_component_count = 0;
		kfree(adxl_values);
		return -ENOMEM;
	}

	return 0;
err:
	skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
		   component_names[i]);
	for (j = 0; names[j]; j++)
		skx_printk(KERN_CONT, "%s ", names[j]);
	skx_printk(KERN_CONT, "\n");

	return -ENODEV;
}

void __exit skx_adxl_put(void)
{
	kfree(adxl_values);
	kfree(adxl_msg);
}

118
static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_mem)
119
{
120
	struct skx_dev *d;
121 122 123 124 125 126 127 128 129 130 131 132 133 134
	int i, len = 0;

	if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
				      res->addr < BIT_ULL(32))) {
		edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
		return false;
	}

	if (adxl_decode(res->addr, adxl_values)) {
		edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
		return false;
	}

	res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
135 136 137 138 139 140 141 142 143 144 145 146
	if (error_in_1st_level_mem) {
		res->imc     = (adxl_nm_bitmap & BIT_NM_MEMCTRL) ?
			       (int)adxl_values[component_indices[INDEX_NM_MEMCTRL]] : -1;
		res->channel = (adxl_nm_bitmap & BIT_NM_CHANNEL) ?
			       (int)adxl_values[component_indices[INDEX_NM_CHANNEL]] : -1;
		res->dimm    = (adxl_nm_bitmap & BIT_NM_DIMM) ?
			       (int)adxl_values[component_indices[INDEX_NM_DIMM]] : -1;
	} else {
		res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
		res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
		res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
	}
147

148
	if (res->imc > NUM_IMC - 1 || res->imc < 0) {
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		skx_printk(KERN_ERR, "Bad imc %d\n", res->imc);
		return false;
	}

	list_for_each_entry(d, &dev_edac_list, list) {
		if (d->imc[0].src_id == res->socket) {
			res->dev = d;
			break;
		}
	}

	if (!res->dev) {
		skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
			   res->socket, res->imc);
		return false;
	}

166 167 168 169 170 171 172 173 174 175
	for (i = 0; i < adxl_component_count; i++) {
		if (adxl_values[i] == ~0x0ull)
			continue;

		len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
				adxl_component_names[i], adxl_values[i]);
		if (MSG_SIZE - len <= 0)
			break;
	}

176 177
	res->decoded_by_adxl = true;

178 179 180
	return true;
}

181 182 183 184 185
void skx_set_mem_cfg(bool mem_cfg_2lm)
{
	skx_mem_cfg_2lm = mem_cfg_2lm;
}

186
void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
187
{
188
	driver_decode = decode;
189
	skx_show_retry_rd_err_log = show_retry_log;
190 191
}

192
int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
193 194 195
{
	u32 reg;

196
	if (pci_read_config_dword(d->util_all, off, &reg)) {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		skx_printk(KERN_ERR, "Failed to read src id\n");
		return -ENODEV;
	}

	*id = GET_BITFIELD(reg, 12, 14);
	return 0;
}

int skx_get_node_id(struct skx_dev *d, u8 *id)
{
	u32 reg;

	if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
		skx_printk(KERN_ERR, "Failed to read node id\n");
		return -ENODEV;
	}

	*id = GET_BITFIELD(reg, 0, 2);
	return 0;
}

static int get_width(u32 mtr)
{
	switch (GET_BITFIELD(mtr, 8, 9)) {
	case 0:
		return DEV_X4;
	case 1:
		return DEV_X8;
	case 2:
		return DEV_X16;
	}
	return DEV_UNKNOWN;
}

/*
232
 * We use the per-socket device @cfg->did to count how many sockets are present,
233 234 235
 * and to detemine which PCI buses are associated with each socket. Allocate
 * and build the full list of all the skx_dev structures that we need here.
 */
236
int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list)
237 238 239 240 241 242 243 244
{
	struct pci_dev *pdev, *prev;
	struct skx_dev *d;
	u32 reg;
	int ndev = 0;

	prev = NULL;
	for (;;) {
245
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev);
246 247 248 249 250 251 252 253 254
		if (!pdev)
			break;
		ndev++;
		d = kzalloc(sizeof(*d), GFP_KERNEL);
		if (!d) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}

255
		if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, &reg)) {
256 257 258 259 260 261 262 263
			kfree(d);
			pci_dev_put(pdev);
			skx_printk(KERN_ERR, "Failed to read bus idx\n");
			return -ENODEV;
		}

		d->bus[0] = GET_BITFIELD(reg, 0, 7);
		d->bus[1] = GET_BITFIELD(reg, 8, 15);
264
		if (cfg->type == SKX) {
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
			d->seg = pci_domain_nr(pdev->bus);
			d->bus[2] = GET_BITFIELD(reg, 16, 23);
			d->bus[3] = GET_BITFIELD(reg, 24, 31);
		} else {
			d->seg = GET_BITFIELD(reg, 16, 23);
		}

		edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
		list_add_tail(&d->list, &dev_edac_list);
		prev = pdev;
	}

	if (list)
		*list = &dev_edac_list;
	return ndev;
}

int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
{
	struct pci_dev *pdev;
	u32 reg;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
	if (!pdev) {
290
		edac_dbg(2, "Can't get tolm/tohm\n");
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
		return -ENODEV;
	}

	if (pci_read_config_dword(pdev, off[0], &reg)) {
		skx_printk(KERN_ERR, "Failed to read tolm\n");
		goto fail;
	}
	skx_tolm = reg;

	if (pci_read_config_dword(pdev, off[1], &reg)) {
		skx_printk(KERN_ERR, "Failed to read lower tohm\n");
		goto fail;
	}
	skx_tohm = reg;

	if (pci_read_config_dword(pdev, off[2], &reg)) {
		skx_printk(KERN_ERR, "Failed to read upper tohm\n");
		goto fail;
	}
	skx_tohm |= (u64)reg << 32;

	pci_dev_put(pdev);
	*tolm = skx_tolm;
	*tohm = skx_tohm;
	edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
	return 0;
fail:
	pci_dev_put(pdev);
	return -ENODEV;
}

static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
			     int minval, int maxval, const char *name)
{
	u32 val = GET_BITFIELD(reg, lobit, hibit);

	if (val < minval || val > maxval) {
		edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
		return -EINVAL;
	}
	return val + add;
}

#define numrank(reg)	skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
#define numrow(reg)	skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
#define numcol(reg)	skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")

338
int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm,
339 340
		      struct skx_imc *imc, int chan, int dimmno,
		      struct res_config *cfg)
341
{
342 343
	int  banks, ranks, rows, cols, npages;
	enum mem_type mtype;
344 345 346 347
	u64 size;

	ranks = numrank(mtr);
	rows = numrow(mtr);
348
	cols = imc->hbm_mc ? 6 : numcol(mtr);
349

350 351 352 353
	if (imc->hbm_mc) {
		banks = 32;
		mtype = MEM_HBM2;
	} else if (cfg->support_ddr5 && (amap & 0x8)) {
354 355 356 357 358 359 360
		banks = 32;
		mtype = MEM_DDR5;
	} else {
		banks = 16;
		mtype = MEM_DDR4;
	}

361 362 363 364 365 366 367 368 369 370
	/*
	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
	 */
	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
	npages = MiB_TO_PAGES(size);

	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
		 imc->mc, chan, dimmno, size, npages,
		 banks, 1 << ranks, rows, cols);

371 372
	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0);
	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9);
373 374 375 376 377 378 379
	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
	imc->chan[chan].dimms[dimmno].rowbits = rows;
	imc->chan[chan].dimms[dimmno].colbits = cols;

	dimm->nr_pages = npages;
	dimm->grain = 32;
	dimm->dtype = get_width(mtr);
380
	dimm->mtype = mtype;
381
	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
382 383 384 385 386 387 388

	if (imc->hbm_mc)
		snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_HBMC#%u_Chan#%u",
			 imc->src_id, imc->lmc, chan);
	else
		snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
			 imc->src_id, imc->lmc, chan, dimmno);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	return 1;
}

int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
			int chan, int dimmno, const char *mod_str)
{
	int smbios_handle;
	u32 dev_handle;
	u16 flags;
	u64 size = 0;

	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
						   imc->src_id, 0);

	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
	if (smbios_handle == -EOPNOTSUPP) {
		pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
		goto unknown_size;
	}

	if (smbios_handle < 0) {
		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
		goto unknown_size;
	}

	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
		skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
		goto unknown_size;
	}

	size = dmi_memdev_size(smbios_handle);
	if (size == ~0ull)
		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
			   dev_handle, smbios_handle);

unknown_size:
	dimm->nr_pages = size >> PAGE_SHIFT;
	dimm->grain = 32;
	dimm->dtype = DEV_UNKNOWN;
	dimm->mtype = MEM_NVDIMM;
	dimm->edac_mode = EDAC_SECDED; /* likely better than this */

	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);

	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
		 imc->src_id, imc->lmc, chan, dimmno);

	return (size == 0 || size == ~0ull) ? 0 : 1;
}

int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
		     const char *ctl_name, const char *mod_str,
443 444
		     get_dimm_config_f get_dimm_config,
		     struct res_config *cfg)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer layers[2];
	struct skx_pvt *pvt;
	int rc;

	/* Allocate a new MC control structure */
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = NUM_DIMMS;
	layers[1].is_virt_csrow = true;
	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
			    sizeof(struct skx_pvt));

	if (unlikely(!mci))
		return -ENOMEM;

	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);

	/* Associate skx_dev and mci for future usage */
	imc->mci = mci;
	pvt = mci->pvt_info;
	pvt->imc = imc;

	mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
				  imc->node_id, imc->lmc);
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail0;
	}

	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
479 480
	if (cfg->support_ddr5)
		mci->mtype_cap |= MEM_FLAG_DDR5;
481 482 483 484 485 486
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = mod_str;
	mci->dev_name = pci_name(pdev);
	mci->ctl_page_to_phys = NULL;

487
	rc = get_dimm_config(mci, cfg);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	if (rc < 0)
		goto fail;

	/* Record ptr to the generic device */
	mci->pdev = &pdev->dev;

	/* Add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		rc = -EINVAL;
		goto fail;
	}

	return 0;

fail:
	kfree(mci->ctl_name);
fail0:
	edac_mc_free(mci);
	imc->mci = NULL;
	return rc;
}

static void skx_unregister_mci(struct skx_imc *imc)
{
	struct mem_ctl_info *mci = imc->mci;

	if (!mci)
		return;

	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->pdev);

	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
}

static void skx_mce_output_error(struct mem_ctl_info *mci,
				 const struct mce *m,
				 struct decoded_addr *res)
{
	enum hw_event_mc_err_type tp_event;
533
	char *optype;
534 535 536
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
537
	bool scrub_err = false;
538
	bool recoverable;
539
	int len;
540 541 542 543 544 545 546 547 548 549 550
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);

	recoverable = GET_BITFIELD(m->status, 56, 56);

	if (uncorrected_error) {
		core_err_cnt = 1;
		if (ripv) {
			tp_event = HW_EVENT_ERR_UNCORRECTED;
551 552
		} else {
			tp_event = HW_EVENT_ERR_FATAL;
553 554 555 556 557 558
		}
	} else {
		tp_event = HW_EVENT_ERR_CORRECTED;
	}

	/*
559 560 561
	 * According to Intel Architecture spec vol 3B,
	 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
	 * memory errors should fit one of these masks:
562
	 *	000f 0000 1mmm cccc (binary)
563
	 *	000f 0010 1mmm cccc (binary)	[RAM used as cache]
564 565 566 567 568 569 570
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
571
	if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
			optype = "generic undef request error";
			break;
		case 1:
			optype = "memory read error";
			break;
		case 2:
			optype = "memory write error";
			break;
		case 3:
			optype = "addr/cmd error";
			break;
		case 4:
			optype = "memory scrubbing error";
589
			scrub_err = true;
590 591 592 593 594 595
			break;
		default:
			optype = "reserved";
			break;
		}
	}
596
	if (res->decoded_by_adxl) {
597
		len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
598 599 600 601
			 overflow ? " OVERFLOW" : "",
			 (uncorrected_error && recoverable) ? " recoverable" : "",
			 mscod, errcode, adxl_msg);
	} else {
602
		len = snprintf(skx_msg, MSG_SIZE,
603
			 "%s%s err_code:0x%04x:0x%04x ProcessorSocketId:0x%x MemoryControllerId:0x%x PhysicalRankId:0x%x Row:0x%x Column:0x%x Bank:0x%x BankGroup:0x%x",
604 605 606 607
			 overflow ? " OVERFLOW" : "",
			 (uncorrected_error && recoverable) ? " recoverable" : "",
			 mscod, errcode,
			 res->socket, res->imc, res->rank,
608
			 res->row, res->column, res->bank_address, res->bank_group);
609 610
	}

611
	if (skx_show_retry_rd_err_log)
612
		skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len, scrub_err);
613

614 615 616 617 618 619 620 621 622
	edac_dbg(0, "%s\n", skx_msg);

	/* Call the helper to output message */
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     res->channel, res->dimm, -1,
			     optype, skx_msg);
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static bool skx_error_in_1st_level_mem(const struct mce *m)
{
	u32 errcode;

	if (!skx_mem_cfg_2lm)
		return false;

	errcode = GET_BITFIELD(m->status, 0, 15);

	if ((errcode & 0xef80) != 0x280)
		return false;

	return true;
}

638 639 640 641 642 643 644 645
int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
			void *data)
{
	struct mce *mce = (struct mce *)data;
	struct decoded_addr res;
	struct mem_ctl_info *mci;
	char *type;

646 647 648
	if (mce->kflags & MCE_HANDLED_CEC)
		return NOTIFY_DONE;

649 650 651 652 653
	/* ignore unless this is memory related with an address */
	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
		return NOTIFY_DONE;

	memset(&res, 0, sizeof(res));
654
	res.mce  = mce;
655 656
	res.addr = mce->addr;

657 658 659 660
	/* Try driver decoder first */
	if (!(driver_decode && driver_decode(&res))) {
		/* Then try firmware decoder (ACPI DSM methods) */
		if (!(adxl_component_count && skx_adxl_decode(&res, skx_error_in_1st_level_mem(mce))))
661 662 663
			return NOTIFY_DONE;
	}

664 665
	mci = res.dev->imc[res.imc].mci;

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	if (!mci)
		return NOTIFY_DONE;

	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");

	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
			   "Bank %d: 0x%llx\n", mce->extcpu, type,
			   mce->mcgstatus, mce->bank, mce->status);
	skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
	skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
	skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);

	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
			   "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
			   mce->time, mce->socketid, mce->apicid);

	skx_mce_output_error(mci, mce, &res);

689
	mce->kflags |= MCE_HANDLED_EDAC;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	return NOTIFY_DONE;
}

void skx_remove(void)
{
	int i, j;
	struct skx_dev *d, *tmp;

	edac_dbg(0, "\n");

	list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
		list_del(&d->list);
		for (i = 0; i < NUM_IMC; i++) {
			if (d->imc[i].mci)
				skx_unregister_mci(&d->imc[i]);

			if (d->imc[i].mdev)
				pci_dev_put(d->imc[i].mdev);

			if (d->imc[i].mbase)
				iounmap(d->imc[i].mbase);

			for (j = 0; j < NUM_CHANNELS; j++) {
				if (d->imc[i].chan[j].cdev)
					pci_dev_put(d->imc[i].chan[j].cdev);
			}
		}
		if (d->util_all)
			pci_dev_put(d->util_all);
719 720
		if (d->pcu_cr3)
			pci_dev_put(d->pcu_cr3);
721 722 723 724 725 726 727 728
		if (d->sad_all)
			pci_dev_put(d->sad_all);
		if (d->uracu)
			pci_dev_put(d->uracu);

		kfree(d);
	}
}