buffered-io.c 43.4 KB
Newer Older
1 2 3
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2010 Red Hat, Inc.
4
 * Copyright (C) 2016-2019 Christoph Hellwig.
5 6 7 8 9 10 11 12 13 14
 */
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/iomap.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/buffer_head.h>
#include <linux/dax.h>
#include <linux/writeback.h>
15
#include <linux/list_sort.h>
16 17 18 19
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/sched/signal.h>
#include <linux/migrate.h>
20
#include "trace.h"
21 22 23

#include "../internal.h"

24 25 26 27 28 29 30
/*
 * Structure allocated for each page when block size < PAGE_SIZE to track
 * sub-page uptodate status and I/O completions.
 */
struct iomap_page {
	atomic_t		read_count;
	atomic_t		write_count;
31
	spinlock_t		uptodate_lock;
32 33 34 35 36 37 38 39 40 41
	DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
};

static inline struct iomap_page *to_iomap_page(struct page *page)
{
	if (page_has_private(page))
		return (struct iomap_page *)page_private(page);
	return NULL;
}

42 43
static struct bio_set iomap_ioend_bioset;

44 45 46 47 48 49 50 51 52 53 54
static struct iomap_page *
iomap_page_create(struct inode *inode, struct page *page)
{
	struct iomap_page *iop = to_iomap_page(page);

	if (iop || i_blocksize(inode) == PAGE_SIZE)
		return iop;

	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
	atomic_set(&iop->read_count, 0);
	atomic_set(&iop->write_count, 0);
55
	spin_lock_init(&iop->uptodate_lock);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);

	/*
	 * migrate_page_move_mapping() assumes that pages with private data have
	 * their count elevated by 1.
	 */
	get_page(page);
	set_page_private(page, (unsigned long)iop);
	SetPagePrivate(page);
	return iop;
}

static void
iomap_page_release(struct page *page)
{
	struct iomap_page *iop = to_iomap_page(page);

	if (!iop)
		return;
	WARN_ON_ONCE(atomic_read(&iop->read_count));
	WARN_ON_ONCE(atomic_read(&iop->write_count));
	ClearPagePrivate(page);
	set_page_private(page, 0);
	put_page(page);
	kfree(iop);
}

/*
 * Calculate the range inside the page that we actually need to read.
 */
static void
iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
{
	loff_t orig_pos = *pos;
	loff_t isize = i_size_read(inode);
	unsigned block_bits = inode->i_blkbits;
	unsigned block_size = (1 << block_bits);
	unsigned poff = offset_in_page(*pos);
	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
	unsigned first = poff >> block_bits;
	unsigned last = (poff + plen - 1) >> block_bits;

	/*
	 * If the block size is smaller than the page size we need to check the
	 * per-block uptodate status and adjust the offset and length if needed
	 * to avoid reading in already uptodate ranges.
	 */
	if (iop) {
		unsigned int i;

		/* move forward for each leading block marked uptodate */
		for (i = first; i <= last; i++) {
			if (!test_bit(i, iop->uptodate))
				break;
			*pos += block_size;
			poff += block_size;
			plen -= block_size;
			first++;
		}

		/* truncate len if we find any trailing uptodate block(s) */
		for ( ; i <= last; i++) {
			if (test_bit(i, iop->uptodate)) {
				plen -= (last - i + 1) * block_size;
				last = i - 1;
				break;
			}
		}
	}

	/*
	 * If the extent spans the block that contains the i_size we need to
	 * handle both halves separately so that we properly zero data in the
	 * page cache for blocks that are entirely outside of i_size.
	 */
	if (orig_pos <= isize && orig_pos + length > isize) {
		unsigned end = offset_in_page(isize - 1) >> block_bits;

		if (first <= end && last > end)
			plen -= (last - end) * block_size;
	}

	*offp = poff;
	*lenp = plen;
}

static void
144
iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
145 146 147 148 149 150
{
	struct iomap_page *iop = to_iomap_page(page);
	struct inode *inode = page->mapping->host;
	unsigned first = off >> inode->i_blkbits;
	unsigned last = (off + len - 1) >> inode->i_blkbits;
	bool uptodate = true;
151 152
	unsigned long flags;
	unsigned int i;
153

154 155 156 157 158 159
	spin_lock_irqsave(&iop->uptodate_lock, flags);
	for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
		if (i >= first && i <= last)
			set_bit(i, iop->uptodate);
		else if (!test_bit(i, iop->uptodate))
			uptodate = false;
160 161
	}

162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (uptodate)
		SetPageUptodate(page);
	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
}

static void
iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
{
	if (PageError(page))
		return;

	if (page_has_private(page))
		iomap_iop_set_range_uptodate(page, off, len);
	else
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		SetPageUptodate(page);
}

static void
iomap_read_finish(struct iomap_page *iop, struct page *page)
{
	if (!iop || atomic_dec_and_test(&iop->read_count))
		unlock_page(page);
}

static void
iomap_read_page_end_io(struct bio_vec *bvec, int error)
{
	struct page *page = bvec->bv_page;
	struct iomap_page *iop = to_iomap_page(page);

	if (unlikely(error)) {
		ClearPageUptodate(page);
		SetPageError(page);
	} else {
		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
	}

	iomap_read_finish(iop, page);
}

static void
iomap_read_end_io(struct bio *bio)
{
	int error = blk_status_to_errno(bio->bi_status);
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	bio_for_each_segment_all(bvec, bio, iter_all)
		iomap_read_page_end_io(bvec, error);
	bio_put(bio);
}

struct iomap_readpage_ctx {
	struct page		*cur_page;
	bool			cur_page_in_bio;
	bool			is_readahead;
	struct bio		*bio;
	struct list_head	*pages;
};

static void
iomap_read_inline_data(struct inode *inode, struct page *page,
		struct iomap *iomap)
{
	size_t size = i_size_read(inode);
	void *addr;

	if (PageUptodate(page))
		return;

	BUG_ON(page->index);
	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));

	addr = kmap_atomic(page);
	memcpy(addr, iomap->inline_data, size);
	memset(addr + size, 0, PAGE_SIZE - size);
	kunmap_atomic(addr);
	SetPageUptodate(page);
}

242 243 244 245 246 247 248 249
static inline bool iomap_block_needs_zeroing(struct inode *inode,
		struct iomap *iomap, loff_t pos)
{
	return iomap->type != IOMAP_MAPPED ||
		(iomap->flags & IOMAP_F_NEW) ||
		pos >= i_size_read(inode);
}

250 251
static loff_t
iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
252
		struct iomap *iomap, struct iomap *srcmap)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
	struct iomap_readpage_ctx *ctx = data;
	struct page *page = ctx->cur_page;
	struct iomap_page *iop = iomap_page_create(inode, page);
	bool same_page = false, is_contig = false;
	loff_t orig_pos = pos;
	unsigned poff, plen;
	sector_t sector;

	if (iomap->type == IOMAP_INLINE) {
		WARN_ON_ONCE(pos);
		iomap_read_inline_data(inode, page, iomap);
		return PAGE_SIZE;
	}

	/* zero post-eof blocks as the page may be mapped */
	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
	if (plen == 0)
		goto done;

273
	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		zero_user(page, poff, plen);
		iomap_set_range_uptodate(page, poff, plen);
		goto done;
	}

	ctx->cur_page_in_bio = true;

	/*
	 * Try to merge into a previous segment if we can.
	 */
	sector = iomap_sector(iomap, pos);
	if (ctx->bio && bio_end_sector(ctx->bio) == sector)
		is_contig = true;

	if (is_contig &&
	    __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
		if (!same_page && iop)
			atomic_inc(&iop->read_count);
		goto done;
	}

	/*
	 * If we start a new segment we need to increase the read count, and we
	 * need to do so before submitting any previous full bio to make sure
	 * that we don't prematurely unlock the page.
	 */
	if (iop)
		atomic_inc(&iop->read_count);

	if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
305
		gfp_t orig_gfp = gfp;
306 307 308 309 310 311 312 313
		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;

		if (ctx->bio)
			submit_bio(ctx->bio);

		if (ctx->is_readahead) /* same as readahead_gfp_mask */
			gfp |= __GFP_NORETRY | __GFP_NOWARN;
		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
314 315 316 317 318 319 320
		/*
		 * If the bio_alloc fails, try it again for a single page to
		 * avoid having to deal with partial page reads.  This emulates
		 * what do_mpage_readpage does.
		 */
		if (!ctx->bio)
			ctx->bio = bio_alloc(orig_gfp, 1);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		ctx->bio->bi_opf = REQ_OP_READ;
		if (ctx->is_readahead)
			ctx->bio->bi_opf |= REQ_RAHEAD;
		ctx->bio->bi_iter.bi_sector = sector;
		bio_set_dev(ctx->bio, iomap->bdev);
		ctx->bio->bi_end_io = iomap_read_end_io;
	}

	bio_add_page(ctx->bio, page, plen, poff);
done:
	/*
	 * Move the caller beyond our range so that it keeps making progress.
	 * For that we have to include any leading non-uptodate ranges, but
	 * we can skip trailing ones as they will be handled in the next
	 * iteration.
	 */
	return pos - orig_pos + plen;
}

int
iomap_readpage(struct page *page, const struct iomap_ops *ops)
{
	struct iomap_readpage_ctx ctx = { .cur_page = page };
	struct inode *inode = page->mapping->host;
	unsigned poff;
	loff_t ret;

348 349
	trace_iomap_readpage(page->mapping->host, 1);

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
		ret = iomap_apply(inode, page_offset(page) + poff,
				PAGE_SIZE - poff, 0, ops, &ctx,
				iomap_readpage_actor);
		if (ret <= 0) {
			WARN_ON_ONCE(ret == 0);
			SetPageError(page);
			break;
		}
	}

	if (ctx.bio) {
		submit_bio(ctx.bio);
		WARN_ON_ONCE(!ctx.cur_page_in_bio);
	} else {
		WARN_ON_ONCE(ctx.cur_page_in_bio);
		unlock_page(page);
	}

	/*
	 * Just like mpage_readpages and block_read_full_page we always
	 * return 0 and just mark the page as PageError on errors.  This
	 * should be cleaned up all through the stack eventually.
	 */
	return 0;
}
EXPORT_SYMBOL_GPL(iomap_readpage);

static struct page *
iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
		loff_t length, loff_t *done)
{
	while (!list_empty(pages)) {
		struct page *page = lru_to_page(pages);

		if (page_offset(page) >= (u64)pos + length)
			break;

		list_del(&page->lru);
		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
				GFP_NOFS))
			return page;

		/*
		 * If we already have a page in the page cache at index we are
		 * done.  Upper layers don't care if it is uptodate after the
		 * readpages call itself as every page gets checked again once
		 * actually needed.
		 */
		*done += PAGE_SIZE;
		put_page(page);
	}

	return NULL;
}

static loff_t
iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
408
		void *data, struct iomap *iomap, struct iomap *srcmap)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
{
	struct iomap_readpage_ctx *ctx = data;
	loff_t done, ret;

	for (done = 0; done < length; done += ret) {
		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
			if (!ctx->cur_page_in_bio)
				unlock_page(ctx->cur_page);
			put_page(ctx->cur_page);
			ctx->cur_page = NULL;
		}
		if (!ctx->cur_page) {
			ctx->cur_page = iomap_next_page(inode, ctx->pages,
					pos, length, &done);
			if (!ctx->cur_page)
				break;
			ctx->cur_page_in_bio = false;
		}
		ret = iomap_readpage_actor(inode, pos + done, length - done,
428
				ctx, iomap, srcmap);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	}

	return done;
}

int
iomap_readpages(struct address_space *mapping, struct list_head *pages,
		unsigned nr_pages, const struct iomap_ops *ops)
{
	struct iomap_readpage_ctx ctx = {
		.pages		= pages,
		.is_readahead	= true,
	};
	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
	loff_t length = last - pos + PAGE_SIZE, ret = 0;

446 447
	trace_iomap_readpages(mapping->host, nr_pages);

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	while (length > 0) {
		ret = iomap_apply(mapping->host, pos, length, 0, ops,
				&ctx, iomap_readpages_actor);
		if (ret <= 0) {
			WARN_ON_ONCE(ret == 0);
			goto done;
		}
		pos += ret;
		length -= ret;
	}
	ret = 0;
done:
	if (ctx.bio)
		submit_bio(ctx.bio);
	if (ctx.cur_page) {
		if (!ctx.cur_page_in_bio)
			unlock_page(ctx.cur_page);
		put_page(ctx.cur_page);
	}

	/*
	 * Check that we didn't lose a page due to the arcance calling
	 * conventions..
	 */
	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
	return ret;
}
EXPORT_SYMBOL_GPL(iomap_readpages);

/*
 * iomap_is_partially_uptodate checks whether blocks within a page are
 * uptodate or not.
 *
 * Returns true if all blocks which correspond to a file portion
 * we want to read within the page are uptodate.
 */
int
iomap_is_partially_uptodate(struct page *page, unsigned long from,
		unsigned long count)
{
	struct iomap_page *iop = to_iomap_page(page);
	struct inode *inode = page->mapping->host;
	unsigned len, first, last;
	unsigned i;

	/* Limit range to one page */
	len = min_t(unsigned, PAGE_SIZE - from, count);

	/* First and last blocks in range within page */
	first = from >> inode->i_blkbits;
	last = (from + len - 1) >> inode->i_blkbits;

	if (iop) {
		for (i = first; i <= last; i++)
			if (!test_bit(i, iop->uptodate))
				return 0;
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);

int
iomap_releasepage(struct page *page, gfp_t gfp_mask)
{
514 515
	trace_iomap_releasepage(page->mapping->host, page_offset(page),
			PAGE_SIZE);
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	/*
	 * mm accommodates an old ext3 case where clean pages might not have had
	 * the dirty bit cleared. Thus, it can send actual dirty pages to
	 * ->releasepage() via shrink_active_list(), skip those here.
	 */
	if (PageDirty(page) || PageWriteback(page))
		return 0;
	iomap_page_release(page);
	return 1;
}
EXPORT_SYMBOL_GPL(iomap_releasepage);

void
iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
{
532
	trace_iomap_invalidatepage(page->mapping->host, offset, len);
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	/*
	 * If we are invalidating the entire page, clear the dirty state from it
	 * and release it to avoid unnecessary buildup of the LRU.
	 */
	if (offset == 0 && len == PAGE_SIZE) {
		WARN_ON_ONCE(PageWriteback(page));
		cancel_dirty_page(page);
		iomap_page_release(page);
	}
}
EXPORT_SYMBOL_GPL(iomap_invalidatepage);

#ifdef CONFIG_MIGRATION
int
iomap_migrate_page(struct address_space *mapping, struct page *newpage,
		struct page *page, enum migrate_mode mode)
{
	int ret;

553
	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	if (ret != MIGRATEPAGE_SUCCESS)
		return ret;

	if (page_has_private(page)) {
		ClearPagePrivate(page);
		get_page(newpage);
		set_page_private(newpage, page_private(page));
		set_page_private(page, 0);
		put_page(page);
		SetPagePrivate(newpage);
	}

	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
	return MIGRATEPAGE_SUCCESS;
}
EXPORT_SYMBOL_GPL(iomap_migrate_page);
#endif /* CONFIG_MIGRATION */

575 576 577 578
enum {
	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
};

579 580 581 582 583 584 585 586 587 588 589 590 591 592
static void
iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
{
	loff_t i_size = i_size_read(inode);

	/*
	 * Only truncate newly allocated pages beyoned EOF, even if the
	 * write started inside the existing inode size.
	 */
	if (pos + len > i_size)
		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
}

static int
593 594
iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
		unsigned plen, struct iomap *iomap)
595 596 597 598 599 600 601 602 603 604 605 606 607
{
	struct bio_vec bvec;
	struct bio bio;

	bio_init(&bio, &bvec, 1);
	bio.bi_opf = REQ_OP_READ;
	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
	bio_set_dev(&bio, iomap->bdev);
	__bio_add_page(&bio, page, plen, poff);
	return submit_bio_wait(&bio);
}

static int
608
__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
609
		struct page *page, struct iomap *srcmap)
610 611 612 613 614 615
{
	struct iomap_page *iop = iomap_page_create(inode, page);
	loff_t block_size = i_blocksize(inode);
	loff_t block_start = pos & ~(block_size - 1);
	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
616
	int status;
617 618 619 620 621 622 623 624 625 626

	if (PageUptodate(page))
		return 0;

	do {
		iomap_adjust_read_range(inode, iop, &block_start,
				block_end - block_start, &poff, &plen);
		if (plen == 0)
			break;

627 628
		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
		    (from <= poff || from >= poff + plen) &&
629 630 631
		    (to <= poff || to >= poff + plen))
			continue;

632
		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
633 634
			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
				return -EIO;
635 636 637
			zero_user_segments(page, poff, from, to, poff + plen);
			iomap_set_range_uptodate(page, poff, plen);
			continue;
638 639
		}

640
		status = iomap_read_page_sync(block_start, page, poff, plen,
641
				srcmap);
642 643
		if (status)
			return status;
644 645
	} while ((block_start += plen) < block_end);

646
	return 0;
647 648 649 650
}

static int
iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
651
		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
652 653 654 655 656 657
{
	const struct iomap_page_ops *page_ops = iomap->page_ops;
	struct page *page;
	int status = 0;

	BUG_ON(pos + len > iomap->offset + iomap->length);
658 659
	if (srcmap != iomap)
		BUG_ON(pos + len > srcmap->offset + srcmap->length);
660 661 662 663 664 665 666 667 668 669

	if (fatal_signal_pending(current))
		return -EINTR;

	if (page_ops && page_ops->page_prepare) {
		status = page_ops->page_prepare(inode, pos, len, iomap);
		if (status)
			return status;
	}

670 671
	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
			AOP_FLAG_NOFS);
672 673 674 675 676
	if (!page) {
		status = -ENOMEM;
		goto out_no_page;
	}

677 678
	if (srcmap->type == IOMAP_INLINE)
		iomap_read_inline_data(inode, page, srcmap);
679
	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
680
		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
681
	else
682
		status = __iomap_write_begin(inode, pos, len, flags, page,
683
				srcmap);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	if (unlikely(status))
		goto out_unlock;

	*pagep = page;
	return 0;

out_unlock:
	unlock_page(page);
	put_page(page);
	iomap_write_failed(inode, pos, len);

out_no_page:
	if (page_ops && page_ops->page_done)
		page_ops->page_done(inode, pos, 0, NULL, iomap);
	return status;
}

int
iomap_set_page_dirty(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int newly_dirty;

	if (unlikely(!mapping))
		return !TestSetPageDirty(page);

	/*
	 * Lock out page->mem_cgroup migration to keep PageDirty
	 * synchronized with per-memcg dirty page counters.
	 */
	lock_page_memcg(page);
	newly_dirty = !TestSetPageDirty(page);
	if (newly_dirty)
		__set_page_dirty(page, mapping, 0);
	unlock_page_memcg(page);

	if (newly_dirty)
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
	return newly_dirty;
}
EXPORT_SYMBOL_GPL(iomap_set_page_dirty);

static int
__iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
729
		unsigned copied, struct page *page)
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
{
	flush_dcache_page(page);

	/*
	 * The blocks that were entirely written will now be uptodate, so we
	 * don't have to worry about a readpage reading them and overwriting a
	 * partial write.  However if we have encountered a short write and only
	 * partially written into a block, it will not be marked uptodate, so a
	 * readpage might come in and destroy our partial write.
	 *
	 * Do the simplest thing, and just treat any short write to a non
	 * uptodate page as a zero-length write, and force the caller to redo
	 * the whole thing.
	 */
	if (unlikely(copied < len && !PageUptodate(page)))
		return 0;
	iomap_set_range_uptodate(page, offset_in_page(pos), len);
	iomap_set_page_dirty(page);
	return copied;
}

static int
iomap_write_end_inline(struct inode *inode, struct page *page,
		struct iomap *iomap, loff_t pos, unsigned copied)
{
	void *addr;

	WARN_ON_ONCE(!PageUptodate(page));
	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));

	addr = kmap_atomic(page);
	memcpy(iomap->inline_data + pos, addr + pos, copied);
	kunmap_atomic(addr);

	mark_inode_dirty(inode);
	return copied;
}

static int
769 770
iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
		struct page *page, struct iomap *iomap, struct iomap *srcmap)
771 772 773 774 775
{
	const struct iomap_page_ops *page_ops = iomap->page_ops;
	loff_t old_size = inode->i_size;
	int ret;

776
	if (srcmap->type == IOMAP_INLINE) {
777
		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
778
	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
779 780 781
		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
				page, NULL);
	} else {
782
		ret = __iomap_write_end(inode, pos, len, copied, page);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	}

	/*
	 * Update the in-memory inode size after copying the data into the page
	 * cache.  It's up to the file system to write the updated size to disk,
	 * preferably after I/O completion so that no stale data is exposed.
	 */
	if (pos + ret > old_size) {
		i_size_write(inode, pos + ret);
		iomap->flags |= IOMAP_F_SIZE_CHANGED;
	}
	unlock_page(page);

	if (old_size < pos)
		pagecache_isize_extended(inode, old_size, pos);
	if (page_ops && page_ops->page_done)
		page_ops->page_done(inode, pos, ret, page, iomap);
	put_page(page);

	if (ret < len)
		iomap_write_failed(inode, pos, len);
	return ret;
}

static loff_t
iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
809
		struct iomap *iomap, struct iomap *srcmap)
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
{
	struct iov_iter *i = data;
	long status = 0;
	ssize_t written = 0;

	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */

		offset = offset_in_page(pos);
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
						iov_iter_count(i));
again:
		if (bytes > length)
			bytes = length;

		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

843 844
		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
				srcmap);
845 846 847 848 849 850 851 852 853 854
		if (unlikely(status))
			break;

		if (mapping_writably_mapped(inode->i_mapping))
			flush_dcache_page(page);

		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);

		flush_dcache_page(page);

855 856
		status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
				srcmap);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

		iov_iter_advance(i, copied);
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;
		length -= copied;

		balance_dirty_pages_ratelimited(inode->i_mapping);
	} while (iov_iter_count(i) && length);

	return written ? written : status;
}

ssize_t
iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
		const struct iomap_ops *ops)
{
	struct inode *inode = iocb->ki_filp->f_mapping->host;
	loff_t pos = iocb->ki_pos, ret = 0, written = 0;

	while (iov_iter_count(iter)) {
		ret = iomap_apply(inode, pos, iov_iter_count(iter),
				IOMAP_WRITE, ops, iter, iomap_write_actor);
		if (ret <= 0)
			break;
		pos += ret;
		written += ret;
	}

	return written ? written : ret;
}
EXPORT_SYMBOL_GPL(iomap_file_buffered_write);

static loff_t
908
iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
909
		struct iomap *iomap, struct iomap *srcmap)
910 911
{
	long status = 0;
912
	loff_t written = 0;
913

914 915 916 917
	/* don't bother with blocks that are not shared to start with */
	if (!(iomap->flags & IOMAP_F_SHARED))
		return length;
	/* don't bother with holes or unwritten extents */
918
	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
919 920
		return length;

921
	do {
922 923 924
		unsigned long offset = offset_in_page(pos);
		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
		struct page *page;
925

926
		status = iomap_write_begin(inode, pos, bytes,
927
				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
928 929 930
		if (unlikely(status))
			return status;

931 932
		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
				srcmap);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
		if (unlikely(status <= 0)) {
			if (WARN_ON_ONCE(status == 0))
				return -EIO;
			return status;
		}

		cond_resched();

		pos += status;
		written += status;
		length -= status;

		balance_dirty_pages_ratelimited(inode->i_mapping);
	} while (length);

	return written;
}

int
952
iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
953 954 955 956 957 958
		const struct iomap_ops *ops)
{
	loff_t ret;

	while (len) {
		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
959
				iomap_unshare_actor);
960 961 962 963 964 965 966 967
		if (ret <= 0)
			return ret;
		pos += ret;
		len -= ret;
	}

	return 0;
}
968
EXPORT_SYMBOL_GPL(iomap_file_unshare);
969 970

static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
971
		unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
972 973 974 975
{
	struct page *page;
	int status;

976
	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
977 978 979 980 981 982
	if (status)
		return status;

	zero_user(page, offset, bytes);
	mark_page_accessed(page);

983
	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
984 985 986 987
}

static loff_t
iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
988
		void *data, struct iomap *iomap, struct iomap *srcmap)
989 990 991 992 993 994
{
	bool *did_zero = data;
	loff_t written = 0;
	int status;

	/* already zeroed?  we're done. */
995
	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
996 997 998 999 1000 1001 1002 1003 1004
		return count;

	do {
		unsigned offset, bytes;

		offset = offset_in_page(pos);
		bytes = min_t(loff_t, PAGE_SIZE - offset, count);

		if (IS_DAX(inode))
1005
			status = dax_iomap_zero(pos, offset, bytes, iomap);
1006
		else
1007 1008
			status = iomap_zero(inode, pos, offset, bytes, iomap,
					srcmap);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		if (status < 0)
			return status;

		pos += bytes;
		count -= bytes;
		written += bytes;
		if (did_zero)
			*did_zero = true;
	} while (count > 0);

	return written;
}

int
iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
		const struct iomap_ops *ops)
{
	loff_t ret;

	while (len > 0) {
		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
				ops, did_zero, iomap_zero_range_actor);
		if (ret <= 0)
			return ret;

		pos += ret;
		len -= ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(iomap_zero_range);

int
iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
		const struct iomap_ops *ops)
{
	unsigned int blocksize = i_blocksize(inode);
	unsigned int off = pos & (blocksize - 1);

	/* Block boundary? Nothing to do */
	if (!off)
		return 0;
	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
}
EXPORT_SYMBOL_GPL(iomap_truncate_page);

static loff_t
iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1058
		void *data, struct iomap *iomap, struct iomap *srcmap)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	struct page *page = data;
	int ret;

	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
		if (ret)
			return ret;
		block_commit_write(page, 0, length);
	} else {
		WARN_ON_ONCE(!PageUptodate(page));
		iomap_page_create(inode, page);
		set_page_dirty(page);
	}

	return length;
}

vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
{
	struct page *page = vmf->page;
	struct inode *inode = file_inode(vmf->vma->vm_file);
	unsigned long length;
1082
	loff_t offset;
1083 1084 1085
	ssize_t ret;

	lock_page(page);
1086 1087
	ret = page_mkwrite_check_truncate(page, inode);
	if (ret < 0)
1088
		goto out_unlock;
1089
	length = ret;
1090

1091
	offset = page_offset(page);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	while (length > 0) {
		ret = iomap_apply(inode, offset, length,
				IOMAP_WRITE | IOMAP_FAULT, ops, page,
				iomap_page_mkwrite_actor);
		if (unlikely(ret <= 0))
			goto out_unlock;
		offset += ret;
		length -= ret;
	}

	wait_for_stable_page(page);
	return VM_FAULT_LOCKED;
out_unlock:
	unlock_page(page);
	return block_page_mkwrite_return(ret);
}
EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1109 1110

static void
1111
iomap_finish_page_writeback(struct inode *inode, struct page *page,
1112 1113
		int error)
{
1114
	struct iomap_page *iop = to_iomap_page(page);
1115 1116

	if (error) {
1117
		SetPageError(page);
1118 1119 1120 1121 1122 1123 1124
		mapping_set_error(inode->i_mapping, -EIO);
	}

	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);

	if (!iop || atomic_dec_and_test(&iop->write_count))
1125
		end_page_writeback(page);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

/*
 * We're now finished for good with this ioend structure.  Update the page
 * state, release holds on bios, and finally free up memory.  Do not use the
 * ioend after this.
 */
static void
iomap_finish_ioend(struct iomap_ioend *ioend, int error)
{
	struct inode *inode = ioend->io_inode;
	struct bio *bio = &ioend->io_inline_bio;
	struct bio *last = ioend->io_bio, *next;
	u64 start = bio->bi_iter.bi_sector;
1140
	loff_t offset = ioend->io_offset;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	bool quiet = bio_flagged(bio, BIO_QUIET);

	for (bio = &ioend->io_inline_bio; bio; bio = next) {
		struct bio_vec *bv;
		struct bvec_iter_all iter_all;

		/*
		 * For the last bio, bi_private points to the ioend, so we
		 * need to explicitly end the iteration here.
		 */
		if (bio == last)
			next = NULL;
		else
			next = bio->bi_private;

		/* walk each page on bio, ending page IO on them */
		bio_for_each_segment_all(bv, bio, iter_all)
1158
			iomap_finish_page_writeback(inode, bv->bv_page, error);
1159 1160
		bio_put(bio);
	}
1161
	/* The ioend has been freed by bio_put() */
1162 1163 1164

	if (unlikely(error && !quiet)) {
		printk_ratelimited(KERN_ERR
1165
"%s: writeback error on inode %lu, offset %lld, sector %llu",
1166
			inode->i_sb->s_id, inode->i_ino, offset, start);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	}
}

void
iomap_finish_ioends(struct iomap_ioend *ioend, int error)
{
	struct list_head tmp;

	list_replace_init(&ioend->io_list, &tmp);
	iomap_finish_ioend(ioend, error);

	while (!list_empty(&tmp)) {
		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
		list_del_init(&ioend->io_list);
		iomap_finish_ioend(ioend, error);
	}
}
EXPORT_SYMBOL_GPL(iomap_finish_ioends);

/*
 * We can merge two adjacent ioends if they have the same set of work to do.
 */
static bool
iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
{
	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
		return false;
	if ((ioend->io_flags & IOMAP_F_SHARED) ^
	    (next->io_flags & IOMAP_F_SHARED))
		return false;
	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
	    (next->io_type == IOMAP_UNWRITTEN))
		return false;
	if (ioend->io_offset + ioend->io_size != next->io_offset)
		return false;
	return true;
}

void
iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
		void (*merge_private)(struct iomap_ioend *ioend,
				struct iomap_ioend *next))
{
	struct iomap_ioend *next;

	INIT_LIST_HEAD(&ioend->io_list);

	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
			io_list))) {
		if (!iomap_ioend_can_merge(ioend, next))
			break;
		list_move_tail(&next->io_list, &ioend->io_list);
		ioend->io_size += next->io_size;
		if (next->io_private && merge_private)
			merge_private(ioend, next);
	}
}
EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);

static int
iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
{
1229 1230
	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1231 1232 1233

	if (ia->io_offset < ib->io_offset)
		return -1;
1234
	if (ia->io_offset > ib->io_offset)
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		return 1;
	return 0;
}

void
iomap_sort_ioends(struct list_head *ioend_list)
{
	list_sort(NULL, ioend_list, iomap_ioend_compare);
}
EXPORT_SYMBOL_GPL(iomap_sort_ioends);

static void iomap_writepage_end_bio(struct bio *bio)
{
	struct iomap_ioend *ioend = bio->bi_private;

	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
}

/*
 * Submit the final bio for an ioend.
 *
 * If @error is non-zero, it means that we have a situation where some part of
 * the submission process has failed after we have marked paged for writeback
 * and unlocked them.  In this situation, we need to fail the bio instead of
 * submitting it.  This typically only happens on a filesystem shutdown.
 */
static int
iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
		int error)
{
	ioend->io_bio->bi_private = ioend;
	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;

	if (wpc->ops->prepare_ioend)
		error = wpc->ops->prepare_ioend(ioend, error);
	if (error) {
		/*
		 * If we are failing the IO now, just mark the ioend with an
		 * error and finish it.  This will run IO completion immediately
		 * as there is only one reference to the ioend at this point in
		 * time.
		 */
		ioend->io_bio->bi_status = errno_to_blk_status(error);
		bio_endio(ioend->io_bio);
		return error;
	}

	submit_bio(ioend->io_bio);
	return 0;
}

static struct iomap_ioend *
iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
		loff_t offset, sector_t sector, struct writeback_control *wbc)
{
	struct iomap_ioend *ioend;
	struct bio *bio;

	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
	bio_set_dev(bio, wpc->iomap.bdev);
	bio->bi_iter.bi_sector = sector;
	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
	bio->bi_write_hint = inode->i_write_hint;
	wbc_init_bio(wbc, bio);

	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
	INIT_LIST_HEAD(&ioend->io_list);
	ioend->io_type = wpc->iomap.type;
	ioend->io_flags = wpc->iomap.flags;
	ioend->io_inode = inode;
	ioend->io_size = 0;
	ioend->io_offset = offset;
	ioend->io_private = NULL;
	ioend->io_bio = bio;
	return ioend;
}

/*
 * Allocate a new bio, and chain the old bio to the new one.
 *
 * Note that we have to do perform the chaining in this unintuitive order
 * so that the bi_private linkage is set up in the right direction for the
 * traversal in iomap_finish_ioend().
 */
static struct bio *
iomap_chain_bio(struct bio *prev)
{
	struct bio *new;

	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
	bio_copy_dev(new, prev);/* also copies over blkcg information */
	new->bi_iter.bi_sector = bio_end_sector(prev);
	new->bi_opf = prev->bi_opf;
	new->bi_write_hint = prev->bi_write_hint;

	bio_chain(prev, new);
	bio_get(prev);		/* for iomap_finish_ioend */
	submit_bio(prev);
	return new;
}

static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
		sector_t sector)
{
	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
		return false;
	if (wpc->iomap.type != wpc->ioend->io_type)
		return false;
	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
		return false;
	if (sector != bio_end_sector(wpc->ioend->io_bio))
		return false;
	return true;
}

/*
 * Test to see if we have an existing ioend structure that we could append to
 * first, otherwise finish off the current ioend and start another.
 */
static void
iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
		struct writeback_control *wbc, struct list_head *iolist)
{
	sector_t sector = iomap_sector(&wpc->iomap, offset);
	unsigned len = i_blocksize(inode);
	unsigned poff = offset & (PAGE_SIZE - 1);
	bool merged, same_page = false;

	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
		if (wpc->ioend)
			list_add(&wpc->ioend->io_list, iolist);
		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
	}

	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
			&same_page);
	if (iop && !same_page)
		atomic_inc(&iop->write_count);

	if (!merged) {
		if (bio_full(wpc->ioend->io_bio, len)) {
			wpc->ioend->io_bio =
				iomap_chain_bio(wpc->ioend->io_bio);
		}
		bio_add_page(wpc->ioend->io_bio, page, len, poff);
	}

	wpc->ioend->io_size += len;
	wbc_account_cgroup_owner(wbc, page, len);
}

/*
 * We implement an immediate ioend submission policy here to avoid needing to
 * chain multiple ioends and hence nest mempool allocations which can violate
 * forward progress guarantees we need to provide. The current ioend we are
 * adding blocks to is cached on the writepage context, and if the new block
 * does not append to the cached ioend it will create a new ioend and cache that
 * instead.
 *
 * If a new ioend is created and cached, the old ioend is returned and queued
 * locally for submission once the entire page is processed or an error has been
 * detected.  While ioends are submitted immediately after they are completed,
 * batching optimisations are provided by higher level block plugging.
 *
 * At the end of a writeback pass, there will be a cached ioend remaining on the
 * writepage context that the caller will need to submit.
 */
static int
iomap_writepage_map(struct iomap_writepage_ctx *wpc,
		struct writeback_control *wbc, struct inode *inode,
		struct page *page, u64 end_offset)
{
	struct iomap_page *iop = to_iomap_page(page);
	struct iomap_ioend *ioend, *next;
	unsigned len = i_blocksize(inode);
	u64 file_offset; /* file offset of page */
	int error = 0, count = 0, i;
	LIST_HEAD(submit_list);

	WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
	WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);

	/*
	 * Walk through the page to find areas to write back. If we run off the
	 * end of the current map or find the current map invalid, grab a new
	 * one.
	 */
	for (i = 0, file_offset = page_offset(page);
	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
	     i++, file_offset += len) {
		if (iop && !test_bit(i, iop->uptodate))
			continue;

		error = wpc->ops->map_blocks(wpc, inode, file_offset);
		if (error)
			break;
1434 1435
		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
			continue;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		if (wpc->iomap.type == IOMAP_HOLE)
			continue;
		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
				 &submit_list);
		count++;
	}

	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
	WARN_ON_ONCE(!PageLocked(page));
	WARN_ON_ONCE(PageWriteback(page));

	/*
	 * We cannot cancel the ioend directly here on error.  We may have
	 * already set other pages under writeback and hence we have to run I/O
	 * completion to mark the error state of the pages under writeback
	 * appropriately.
	 */
	if (unlikely(error)) {
		if (!count) {
			/*
			 * If the current page hasn't been added to ioend, it
			 * won't be affected by I/O completions and we must
			 * discard and unlock it right here.
			 */
			if (wpc->ops->discard_page)
				wpc->ops->discard_page(page);
			ClearPageUptodate(page);
			unlock_page(page);
			goto done;
		}

		/*
		 * If the page was not fully cleaned, we need to ensure that the
		 * higher layers come back to it correctly.  That means we need
		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
		 * so another attempt to write this page in this writeback sweep
		 * will be made.
		 */
		set_page_writeback_keepwrite(page);
	} else {
		clear_page_dirty_for_io(page);
		set_page_writeback(page);
	}

	unlock_page(page);

	/*
	 * Preserve the original error if there was one, otherwise catch
	 * submission errors here and propagate into subsequent ioend
	 * submissions.
	 */
	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
		int error2;

		list_del_init(&ioend->io_list);
		error2 = iomap_submit_ioend(wpc, ioend, error);
		if (error2 && !error)
			error = error2;
	}

	/*
	 * We can end up here with no error and nothing to write only if we race
	 * with a partial page truncate on a sub-page block sized filesystem.
	 */
	if (!count)
		end_page_writeback(page);
done:
	mapping_set_error(page->mapping, error);
	return error;
}

/*
 * Write out a dirty page.
 *
 * For delalloc space on the page we need to allocate space and flush it.
 * For unwritten space on the page we need to start the conversion to
 * regular allocated space.
 */
static int
iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
{
	struct iomap_writepage_ctx *wpc = data;
	struct inode *inode = page->mapping->host;
	pgoff_t end_index;
	u64 end_offset;
	loff_t offset;

1524
	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	/*
	 * Refuse to write the page out if we are called from reclaim context.
	 *
	 * This avoids stack overflows when called from deeply used stacks in
	 * random callers for direct reclaim or memcg reclaim.  We explicitly
	 * allow reclaim from kswapd as the stack usage there is relatively low.
	 *
	 * This should never happen except in the case of a VM regression so
	 * warn about it.
	 */
	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
			PF_MEMALLOC))
		goto redirty;

	/*
	 * Given that we do not allow direct reclaim to call us, we should
	 * never be called in a recursive filesystem reclaim context.
	 */
	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
		goto redirty;

	/*
	 * Is this page beyond the end of the file?
	 *
	 * The page index is less than the end_index, adjust the end_offset
	 * to the highest offset that this page should represent.
	 * -----------------------------------------------------
	 * |			file mapping	       | <EOF> |
	 * -----------------------------------------------------
	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
	 * ^--------------------------------^----------|--------
	 * |     desired writeback range    |      see else    |
	 * ---------------------------------^------------------|
	 */
	offset = i_size_read(inode);
	end_index = offset >> PAGE_SHIFT;
	if (page->index < end_index)
		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
	else {
		/*
		 * Check whether the page to write out is beyond or straddles
		 * i_size or not.
		 * -------------------------------------------------------
		 * |		file mapping		        | <EOF>  |
		 * -------------------------------------------------------
		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
		 * ^--------------------------------^-----------|---------
		 * |				    |      Straddles     |
		 * ---------------------------------^-----------|--------|
		 */
		unsigned offset_into_page = offset & (PAGE_SIZE - 1);

		/*
		 * Skip the page if it is fully outside i_size, e.g. due to a
		 * truncate operation that is in progress. We must redirty the
		 * page so that reclaim stops reclaiming it. Otherwise
		 * iomap_vm_releasepage() is called on it and gets confused.
		 *
		 * Note that the end_index is unsigned long, it would overflow
		 * if the given offset is greater than 16TB on 32-bit system
		 * and if we do check the page is fully outside i_size or not
		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
		 * will be evaluated to 0.  Hence this page will be redirtied
		 * and be written out repeatedly which would result in an
		 * infinite loop, the user program that perform this operation
		 * will hang.  Instead, we can verify this situation by checking
		 * if the page to write is totally beyond the i_size or if it's
		 * offset is just equal to the EOF.
		 */
		if (page->index > end_index ||
		    (page->index == end_index && offset_into_page == 0))
			goto redirty;

		/*
		 * The page straddles i_size.  It must be zeroed out on each
		 * and every writepage invocation because it may be mmapped.
		 * "A file is mapped in multiples of the page size.  For a file
		 * that is not a multiple of the page size, the remaining
		 * memory is zeroed when mapped, and writes to that region are
		 * not written out to the file."
		 */
		zero_user_segment(page, offset_into_page, PAGE_SIZE);

		/* Adjust the end_offset to the end of file */
		end_offset = offset;
	}

	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);

redirty:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

int
iomap_writepage(struct page *page, struct writeback_control *wbc,
		struct iomap_writepage_ctx *wpc,
		const struct iomap_writeback_ops *ops)
{
	int ret;

	wpc->ops = ops;
	ret = iomap_do_writepage(page, wbc, wpc);
	if (!wpc->ioend)
		return ret;
	return iomap_submit_ioend(wpc, wpc->ioend, ret);
}
EXPORT_SYMBOL_GPL(iomap_writepage);

int
iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
		struct iomap_writepage_ctx *wpc,
		const struct iomap_writeback_ops *ops)
{
	int			ret;

	wpc->ops = ops;
	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
	if (!wpc->ioend)
		return ret;
	return iomap_submit_ioend(wpc, wpc->ioend, ret);
}
EXPORT_SYMBOL_GPL(iomap_writepages);

static int __init iomap_init(void)
{
	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
			   offsetof(struct iomap_ioend, io_inline_bio),
			   BIOSET_NEED_BVECS);
}
fs_initcall(iomap_init);