spi-sh-msiof.c 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * SuperH MSIOF SPI Master Interface
 *
 * Copyright (c) 2009 Magnus Damm
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

12 13 14
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
15
#include <linux/delay.h>
16 17 18
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/init.h>
19
#include <linux/interrupt.h>
20 21
#include <linux/io.h>
#include <linux/kernel.h>
22
#include <linux/module.h>
23 24 25
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>

26
#include <linux/spi/sh_msiof.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>

#include <asm/unaligned.h>

struct sh_msiof_spi_priv {
	struct spi_bitbang bitbang; /* must be first for spi_bitbang.c */
	void __iomem *mapbase;
	struct clk *clk;
	struct platform_device *pdev;
	struct sh_msiof_spi_info *info;
	struct completion done;
	unsigned long flags;
	int tx_fifo_size;
	int rx_fifo_size;
};

#define TMDR1	0x00
#define TMDR2	0x04
#define TMDR3	0x08
#define RMDR1	0x10
#define RMDR2	0x14
#define RMDR3	0x18
#define TSCR	0x20
#define RSCR	0x22
#define CTR	0x28
#define FCTR	0x30
#define STR	0x40
#define IER	0x44
#define TDR1	0x48
#define TDR2	0x4c
#define TFDR	0x50
#define RDR1	0x58
#define RDR2	0x5c
#define RFDR	0x60

#define CTR_TSCKE (1 << 15)
#define CTR_TFSE  (1 << 14)
#define CTR_TXE   (1 << 9)
#define CTR_RXE   (1 << 8)

#define STR_TEOF  (1 << 23)
#define STR_REOF  (1 << 7)

71
static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
72 73 74 75 76 77 78 79 80 81 82
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		return ioread16(p->mapbase + reg_offs);
	default:
		return ioread32(p->mapbase + reg_offs);
	}
}

static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
83
			   u32 value)
84 85 86 87 88 89 90 91 92 93 94 95 96
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		iowrite16(value, p->mapbase + reg_offs);
		break;
	default:
		iowrite32(value, p->mapbase + reg_offs);
		break;
	}
}

static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
97
				    u32 clr, u32 set)
98
{
99 100
	u32 mask = clr | set;
	u32 data;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	int k;

	data = sh_msiof_read(p, CTR);
	data &= ~clr;
	data |= set;
	sh_msiof_write(p, CTR, data);

	for (k = 100; k > 0; k--) {
		if ((sh_msiof_read(p, CTR) & mask) == set)
			break;

		udelay(10);
	}

	return k > 0 ? 0 : -ETIMEDOUT;
}

static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
	struct sh_msiof_spi_priv *p = data;

	/* just disable the interrupt and wake up */
	sh_msiof_write(p, IER, 0);
	complete(&p->done);

	return IRQ_HANDLED;
}

static struct {
	unsigned short div;
	unsigned short scr;
} const sh_msiof_spi_clk_table[] = {
	{ 1, 0x0007 },
	{ 2, 0x0000 },
	{ 4, 0x0001 },
	{ 8, 0x0002 },
	{ 16, 0x0003 },
	{ 32, 0x0004 },
	{ 64, 0x1f00 },
	{ 128, 0x1f01 },
	{ 256, 0x1f02 },
	{ 512, 0x1f03 },
	{ 1024, 0x1f04 },
};

static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
				      unsigned long parent_rate,
				      unsigned long spi_hz)
{
	unsigned long div = 1024;
	size_t k;

	if (!WARN_ON(!spi_hz || !parent_rate))
		div = parent_rate / spi_hz;

	/* TODO: make more fine grained */

	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
		if (sh_msiof_spi_clk_table[k].div >= div)
			break;
	}

	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);

	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
	sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
}

static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
170 171
				      u32 cpol, u32 cpha,
				      u32 tx_hi_z, u32 lsb_first)
172
{
173
	u32 tmp;
174 175 176
	int edge;

	/*
177 178 179 180 181
	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
	 *    0    0         10     10    1    1
	 *    0    1         10     10    0    0
	 *    1    0         11     11    0    0
	 *    1    1         11     11    1    1
182 183 184 185 186 187 188 189 190
	 */
	sh_msiof_write(p, FCTR, 0);
	sh_msiof_write(p, TMDR1, 0xe2000005 | (lsb_first << 24));
	sh_msiof_write(p, RMDR1, 0x22000005 | (lsb_first << 24));

	tmp = 0xa0000000;
	tmp |= cpol << 30; /* TSCKIZ */
	tmp |= cpol << 28; /* RSCKIZ */

191
	edge = cpol ^ !cpha;
192 193

	tmp |= edge << 27; /* TEDG */
194
	tmp |= edge << 26; /* REDG */
195 196 197 198 199 200
	tmp |= (tx_hi_z ? 2 : 0) << 22; /* TXDIZ */
	sh_msiof_write(p, CTR, tmp);
}

static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, void *rx_buf,
201
				       u32 bits, u32 words)
202
{
203
	u32 dr2 = ((bits - 1) << 24) | ((words - 1) << 16);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

	if (tx_buf)
		sh_msiof_write(p, TMDR2, dr2);
	else
		sh_msiof_write(p, TMDR2, dr2 | 1);

	if (rx_buf)
		sh_msiof_write(p, RMDR2, dr2);

	sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
}

static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
}

static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
				      const void *tx_buf, int words, int fs)
{
224
	const u8 *buf_8 = tx_buf;
225 226 227 228 229 230 231 232 233
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_8[k] << fs);
}

static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
234
	const u16 *buf_16 = tx_buf;
235 236 237 238 239 240 241 242 243
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_16[k] << fs);
}

static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
244
	const u16 *buf_16 = tx_buf;
245 246 247 248 249 250 251 252 253
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
}

static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
254
	const u32 *buf_32 = tx_buf;
255 256 257 258 259 260 261 262 263
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_32[k] << fs);
}

static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
264
	const u32 *buf_32 = tx_buf;
265 266 267 268 269 270
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
}

static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
					 const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}

291 292 293
static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
				     void *rx_buf, int words, int fs)
{
294
	u8 *buf_8 = rx_buf;
295 296 297 298 299 300 301 302 303
	int k;

	for (k = 0; k < words; k++)
		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
304
	u16 *buf_16 = rx_buf;
305 306 307 308 309 310 311 312 313
	int k;

	for (k = 0; k < words; k++)
		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
314
	u16 *buf_16 = rx_buf;
315 316 317 318 319 320 321 322 323
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
}

static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
324
	u32 *buf_32 = rx_buf;
325 326 327 328 329 330 331 332 333
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
334
	u32 *buf_32 = rx_buf;
335 336 337 338 339 340
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
}

static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
}

361 362 363 364 365
static int sh_msiof_spi_bits(struct spi_device *spi, struct spi_transfer *t)
{
	int bits;

	bits = t ? t->bits_per_word : 0;
366 367
	if (!bits)
		bits = spi->bits_per_word;
368 369 370 371 372 373 374 375 376
	return bits;
}

static unsigned long sh_msiof_spi_hz(struct spi_device *spi,
				     struct spi_transfer *t)
{
	unsigned long hz;

	hz = t ? t->speed_hz : 0;
377 378
	if (!hz)
		hz = spi->max_speed_hz;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	return hz;
}

static int sh_msiof_spi_setup_transfer(struct spi_device *spi,
				       struct spi_transfer *t)
{
	int bits;

	/* noting to check hz values against since parent clock is disabled */

	bits = sh_msiof_spi_bits(spi, t);
	if (bits < 8)
		return -EINVAL;
	if (bits > 32)
		return -EINVAL;

	return spi_bitbang_setup_transfer(spi, t);
}

static void sh_msiof_spi_chipselect(struct spi_device *spi, int is_on)
{
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
	int value;

	/* chip select is active low unless SPI_CS_HIGH is set */
	if (spi->mode & SPI_CS_HIGH)
		value = (is_on == BITBANG_CS_ACTIVE) ? 1 : 0;
	else
		value = (is_on == BITBANG_CS_ACTIVE) ? 0 : 1;

	if (is_on == BITBANG_CS_ACTIVE) {
		if (!test_and_set_bit(0, &p->flags)) {
			pm_runtime_get_sync(&p->pdev->dev);
			clk_enable(p->clk);
		}

		/* Configure pins before asserting CS */
		sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
					  !!(spi->mode & SPI_CPHA),
					  !!(spi->mode & SPI_3WIRE),
					  !!(spi->mode & SPI_LSB_FIRST));
	}

	/* use spi->controller data for CS (same strategy as spi_gpio) */
	gpio_set_value((unsigned)spi->controller_data, value);

	if (is_on == BITBANG_CS_INACTIVE) {
		if (test_and_clear_bit(0, &p->flags)) {
			clk_disable(p->clk);
			pm_runtime_put(&p->pdev->dev);
		}
	}
}

static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
						  const void *, int, int),
				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
						  void *, int, int),
				  const void *tx_buf, void *rx_buf,
				  int words, int bits)
{
	int fifo_shift;
	int ret;

	/* limit maximum word transfer to rx/tx fifo size */
	if (tx_buf)
		words = min_t(int, words, p->tx_fifo_size);
	if (rx_buf)
		words = min_t(int, words, p->rx_fifo_size);

	/* the fifo contents need shifting */
	fifo_shift = 32 - bits;

	/* setup msiof transfer mode registers */
	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);

	/* write tx fifo */
	if (tx_buf)
		tx_fifo(p, tx_buf, words, fifo_shift);

	/* setup clock and rx/tx signals */
	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
	if (rx_buf)
		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);

	/* start by setting frame bit */
	INIT_COMPLETION(p->done);
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
		goto err;
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
	wait_for_completion(&p->done);

	/* read rx fifo */
	if (rx_buf)
		rx_fifo(p, rx_buf, words, fifo_shift);

	/* clear status bits */
	sh_msiof_reset_str(p);

	/* shut down frame, tx/tx and clock signals */
	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
	if (rx_buf)
		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
		goto err;
	}

	return words;

 err:
	sh_msiof_write(p, IER, 0);
	return ret;
}

static int sh_msiof_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
{
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
	int bits;
	int bytes_per_word;
	int bytes_done;
	int words;
	int n;
512
	bool swab;
513 514 515

	bits = sh_msiof_spi_bits(spi, t);

516 517 518 519 520 521 522
	if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
		bits = 32;
		swab = true;
	} else {
		swab = false;
	}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	/* setup bytes per word and fifo read/write functions */
	if (bits <= 8) {
		bytes_per_word = 1;
		tx_fifo = sh_msiof_spi_write_fifo_8;
		rx_fifo = sh_msiof_spi_read_fifo_8;
	} else if (bits <= 16) {
		bytes_per_word = 2;
		if ((unsigned long)t->tx_buf & 0x01)
			tx_fifo = sh_msiof_spi_write_fifo_16u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_16;

		if ((unsigned long)t->rx_buf & 0x01)
			rx_fifo = sh_msiof_spi_read_fifo_16u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_16;
539 540 541 542 543 544 545 546 547 548 549
	} else if (swab) {
		bytes_per_word = 4;
		if ((unsigned long)t->tx_buf & 0x03)
			tx_fifo = sh_msiof_spi_write_fifo_s32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_s32;

		if ((unsigned long)t->rx_buf & 0x03)
			rx_fifo = sh_msiof_spi_read_fifo_s32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_s32;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	} else {
		bytes_per_word = 4;
		if ((unsigned long)t->tx_buf & 0x03)
			tx_fifo = sh_msiof_spi_write_fifo_32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_32;

		if ((unsigned long)t->rx_buf & 0x03)
			rx_fifo = sh_msiof_spi_read_fifo_32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_32;
	}

	/* setup clocks (clock already enabled in chipselect()) */
	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk),
				  sh_msiof_spi_hz(spi, t));

	/* transfer in fifo sized chunks */
	words = t->len / bytes_per_word;
	bytes_done = 0;

	while (bytes_done < t->len) {
572 573
		void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
		const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
574
		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
575 576
					   tx_buf,
					   rx_buf,
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
					   words, bits);
		if (n < 0)
			break;

		bytes_done += n * bytes_per_word;
		words -= n;
	}

	return bytes_done;
}

static u32 sh_msiof_spi_txrx_word(struct spi_device *spi, unsigned nsecs,
				  u32 word, u8 bits)
{
	BUG(); /* unused but needed by bitbang code */
	return 0;
}

static int sh_msiof_spi_probe(struct platform_device *pdev)
{
	struct resource	*r;
	struct spi_master *master;
	struct sh_msiof_spi_priv *p;
	int i;
	int ret;

	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
	if (master == NULL) {
		dev_err(&pdev->dev, "failed to allocate spi master\n");
		ret = -ENOMEM;
		goto err0;
	}

	p = spi_master_get_devdata(master);

	platform_set_drvdata(pdev, p);
	p->info = pdev->dev.platform_data;
	init_completion(&p->done);

616
	p->clk = clk_get(&pdev->dev, NULL);
617
	if (IS_ERR(p->clk)) {
618
		dev_err(&pdev->dev, "cannot get clock\n");
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		ret = PTR_ERR(p->clk);
		goto err1;
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i = platform_get_irq(pdev, 0);
	if (!r || i < 0) {
		dev_err(&pdev->dev, "cannot get platform resources\n");
		ret = -ENOENT;
		goto err2;
	}
	p->mapbase = ioremap_nocache(r->start, resource_size(r));
	if (!p->mapbase) {
		dev_err(&pdev->dev, "unable to ioremap\n");
		ret = -ENXIO;
		goto err2;
	}

Y
Yong Zhang 已提交
637
	ret = request_irq(i, sh_msiof_spi_irq, 0,
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
			  dev_name(&pdev->dev), p);
	if (ret) {
		dev_err(&pdev->dev, "unable to request irq\n");
		goto err3;
	}

	p->pdev = pdev;
	pm_runtime_enable(&pdev->dev);

	/* The standard version of MSIOF use 64 word FIFOs */
	p->tx_fifo_size = 64;
	p->rx_fifo_size = 64;

	/* Platform data may override FIFO sizes */
	if (p->info->tx_fifo_override)
		p->tx_fifo_size = p->info->tx_fifo_override;
	if (p->info->rx_fifo_override)
		p->rx_fifo_size = p->info->rx_fifo_override;

	/* init master and bitbang code */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
	master->flags = 0;
	master->bus_num = pdev->id;
	master->num_chipselect = p->info->num_chipselect;
	master->setup = spi_bitbang_setup;
	master->cleanup = spi_bitbang_cleanup;

	p->bitbang.master = master;
	p->bitbang.chipselect = sh_msiof_spi_chipselect;
	p->bitbang.setup_transfer = sh_msiof_spi_setup_transfer;
	p->bitbang.txrx_bufs = sh_msiof_spi_txrx;
	p->bitbang.txrx_word[SPI_MODE_0] = sh_msiof_spi_txrx_word;
	p->bitbang.txrx_word[SPI_MODE_1] = sh_msiof_spi_txrx_word;
	p->bitbang.txrx_word[SPI_MODE_2] = sh_msiof_spi_txrx_word;
	p->bitbang.txrx_word[SPI_MODE_3] = sh_msiof_spi_txrx_word;

	ret = spi_bitbang_start(&p->bitbang);
	if (ret == 0)
		return 0;

	pm_runtime_disable(&pdev->dev);
 err3:
	iounmap(p->mapbase);
 err2:
	clk_put(p->clk);
 err1:
	spi_master_put(master);
 err0:
	return ret;
}

static int sh_msiof_spi_remove(struct platform_device *pdev)
{
	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
	int ret;

	ret = spi_bitbang_stop(&p->bitbang);
	if (!ret) {
		pm_runtime_disable(&pdev->dev);
698
		free_irq(platform_get_irq(pdev, 0), p);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		iounmap(p->mapbase);
		clk_put(p->clk);
		spi_master_put(p->bitbang.master);
	}
	return ret;
}

static int sh_msiof_spi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops sh_msiof_spi_dev_pm_ops = {
	.runtime_suspend = sh_msiof_spi_runtime_nop,
	.runtime_resume = sh_msiof_spi_runtime_nop,
};

static struct platform_driver sh_msiof_spi_drv = {
	.probe		= sh_msiof_spi_probe,
	.remove		= sh_msiof_spi_remove,
	.driver		= {
		.name		= "spi_sh_msiof",
		.owner		= THIS_MODULE,
		.pm		= &sh_msiof_spi_dev_pm_ops,
	},
};
732
module_platform_driver(sh_msiof_spi_drv);
733 734 735 736 737

MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");