bios_parser2.c 62.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2012-15 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

26 27
#include <linux/slab.h>

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "dm_services.h"

#include "ObjectID.h"
#include "atomfirmware.h"

#include "dc_bios_types.h"
#include "include/grph_object_ctrl_defs.h"
#include "include/bios_parser_interface.h"
#include "include/i2caux_interface.h"
#include "include/logger_interface.h"

#include "command_table2.h"

#include "bios_parser_helper.h"
#include "command_table_helper2.h"
#include "bios_parser2.h"
#include "bios_parser_types_internal2.h"
#include "bios_parser_interface.h"

47
#include "bios_parser_common.h"
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

/* Temporarily add in defines until ObjectID.h patch is updated in a few days */
#ifndef GENERIC_OBJECT_ID_BRACKET_LAYOUT
#define GENERIC_OBJECT_ID_BRACKET_LAYOUT          0x05
#endif /* GENERIC_OBJECT_ID_BRACKET_LAYOUT */

#ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1
#define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1	\
	(GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\
	GRAPH_OBJECT_ENUM_ID1 << ENUM_ID_SHIFT |\
	GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT)
#endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1 */

#ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2
#define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2	\
	(GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\
	GRAPH_OBJECT_ENUM_ID2 << ENUM_ID_SHIFT |\
	GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT)
#endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2 */

#define DC_LOGGER \
	bp->base.ctx->logger

71
#define LAST_RECORD_TYPE 0xff
72
#define SMU9_SYSPLL0_ID  0
73 74 75 76 77 78 79 80 81 82 83 84 85 86

struct i2c_id_config_access {
	uint8_t bfI2C_LineMux:4;
	uint8_t bfHW_EngineID:3;
	uint8_t bfHW_Capable:1;
	uint8_t ucAccess;
};

static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
	struct atom_i2c_record *record,
	struct graphics_object_i2c_info *info);

static enum bp_result bios_parser_get_firmware_info(
	struct dc_bios *dcb,
87
	struct dc_firmware_info *info);
88 89 90 91 92 93 94 95

static enum bp_result bios_parser_get_encoder_cap_info(
	struct dc_bios *dcb,
	struct graphics_object_id object_id,
	struct bp_encoder_cap_info *info);

static enum bp_result get_firmware_info_v3_1(
	struct bios_parser *bp,
96
	struct dc_firmware_info *info);
97

98 99 100 101
static enum bp_result get_firmware_info_v3_2(
	struct bios_parser *bp,
	struct dc_firmware_info *info);

102 103 104 105 106 107 108 109 110 111 112 113
static struct atom_hpd_int_record *get_hpd_record(struct bios_parser *bp,
		struct atom_display_object_path_v2 *object);

static struct atom_encoder_caps_record *get_encoder_cap_record(
	struct bios_parser *bp,
	struct atom_display_object_path_v2 *object);

#define BIOS_IMAGE_SIZE_OFFSET 2
#define BIOS_IMAGE_SIZE_UNIT 512

#define DATA_TABLES(table) (bp->master_data_tbl->listOfdatatables.table)

114
static void bios_parser2_destruct(struct bios_parser *bp)
115
{
116 117
	kfree(bp->base.bios_local_image);
	kfree(bp->base.integrated_info);
118 119 120 121 122 123 124 125 126 127 128
}

static void firmware_parser_destroy(struct dc_bios **dcb)
{
	struct bios_parser *bp = BP_FROM_DCB(*dcb);

	if (!bp) {
		BREAK_TO_DEBUGGER();
		return;
	}

129
	bios_parser2_destruct(bp);
130

131
	kfree(bp);
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	*dcb = NULL;
}

static void get_atom_data_table_revision(
	struct atom_common_table_header *atom_data_tbl,
	struct atom_data_revision *tbl_revision)
{
	if (!tbl_revision)
		return;

	/* initialize the revision to 0 which is invalid revision */
	tbl_revision->major = 0;
	tbl_revision->minor = 0;

	if (!atom_data_tbl)
		return;

	tbl_revision->major =
			(uint32_t) atom_data_tbl->format_revision & 0x3f;
	tbl_revision->minor =
			(uint32_t) atom_data_tbl->content_revision & 0x3f;
}

155 156 157
/* BIOS oject table displaypath is per connector.
 * There is extra path not for connector. BIOS fill its encoderid as 0
 */
158 159 160 161 162 163 164
static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	unsigned int count = 0;
	unsigned int i;

	for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
165
		if (bp->object_info_tbl.v1_4->display_path[i].encoderobjid != 0)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
			count++;
	}
	return count;
}

static struct graphics_object_id bios_parser_get_connector_id(
	struct dc_bios *dcb,
	uint8_t i)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct graphics_object_id object_id = dal_graphics_object_id_init(
		0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN);
	struct object_info_table *tbl = &bp->object_info_tbl;
	struct display_object_info_table_v1_4 *v1_4 = tbl->v1_4;

	if (v1_4->number_of_path > i) {
		/* If display_objid is generic object id,  the encoderObj
		 * /extencoderobjId should be 0
		 */
		if (v1_4->display_path[i].encoderobjid != 0 &&
				v1_4->display_path[i].display_objid != 0)
			object_id = object_id_from_bios_object_id(
					v1_4->display_path[i].display_objid);
	}

	return object_id;
}

static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb,
	struct graphics_object_id object_id, uint32_t index,
	struct graphics_object_id *src_object_id)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	unsigned int i;
	enum bp_result  bp_result = BP_RESULT_BADINPUT;
	struct graphics_object_id obj_id = {0};
	struct object_info_table *tbl = &bp->object_info_tbl;

	if (!src_object_id)
		return bp_result;

	switch (object_id.type) {
	/* Encoder's Source is GPU.  BIOS does not provide GPU, since all
	 * displaypaths point to same GPU (0x1100).  Hardcode GPU object type
	 */
	case OBJECT_TYPE_ENCODER:
		/* TODO: since num of src must be less than 2.
		 * If found in for loop, should break.
		 * DAL2 implementation may be changed too
		 */
		for (i = 0; i < tbl->v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
			tbl->v1_4->display_path[i].encoderobjid);
			if (object_id.type == obj_id.type &&
					object_id.id == obj_id.id &&
						object_id.enum_id ==
							obj_id.enum_id) {
				*src_object_id =
				object_id_from_bios_object_id(0x1100);
				/* break; */
			}
		}
		bp_result = BP_RESULT_OK;
		break;
	case OBJECT_TYPE_CONNECTOR:
		for (i = 0; i < tbl->v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
				tbl->v1_4->display_path[i].display_objid);

			if (object_id.type == obj_id.type &&
				object_id.id == obj_id.id &&
					object_id.enum_id == obj_id.enum_id) {
				*src_object_id =
				object_id_from_bios_object_id(
				tbl->v1_4->display_path[i].encoderobjid);
				/* break; */
			}
		}
		bp_result = BP_RESULT_OK;
		break;
	default:
		break;
	}

	return bp_result;
}

/* from graphics_object_id, find display path which includes the object_id */
static struct atom_display_object_path_v2 *get_bios_object(
255 256
		struct bios_parser *bp,
		struct graphics_object_id id)
257 258 259 260 261 262 263 264
{
	unsigned int i;
	struct graphics_object_id obj_id = {0};

	switch (id.type) {
	case OBJECT_TYPE_ENCODER:
		for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
265 266 267 268
					bp->object_info_tbl.v1_4->display_path[i].encoderobjid);
			if (id.type == obj_id.type && id.id == obj_id.id
					&& id.enum_id == obj_id.enum_id)
				return &bp->object_info_tbl.v1_4->display_path[i];
269
		}
J
Joe Perches 已提交
270
		fallthrough;
271 272 273 274
	case OBJECT_TYPE_CONNECTOR:
	case OBJECT_TYPE_GENERIC:
		/* Both Generic and Connector Object ID
		 * will be stored on display_objid
275
		 */
276 277
		for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
278 279 280 281
					bp->object_info_tbl.v1_4->display_path[i].display_objid);
			if (id.type == obj_id.type && id.id == obj_id.id
					&& id.enum_id == obj_id.enum_id)
				return &bp->object_info_tbl.v1_4->display_path[i];
282
		}
J
Joe Perches 已提交
283
		fallthrough;
284 285 286 287 288 289 290 291 292 293 294 295 296
	default:
		return NULL;
	}
}

static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb,
	struct graphics_object_id id,
	struct graphics_object_i2c_info *info)
{
	uint32_t offset;
	struct atom_display_object_path_v2 *object;
	struct atom_common_record_header *header;
	struct atom_i2c_record *record;
297
	struct atom_i2c_record dummy_record = {0};
298 299 300 301 302
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!info)
		return BP_RESULT_BADINPUT;

303 304 305 306 307 308 309 310 311
	if (id.type == OBJECT_TYPE_GENERIC) {
		dummy_record.i2c_id = id.id;

		if (get_gpio_i2c_info(bp, &dummy_record, info) == BP_RESULT_OK)
			return BP_RESULT_OK;
		else
			return BP_RESULT_NORECORD;
	}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	object = get_bios_object(bp, id);

	if (!object)
		return BP_RESULT_BADINPUT;

	offset = object->disp_recordoffset + bp->object_info_tbl_offset;

	for (;;) {
		header = GET_IMAGE(struct atom_common_record_header, offset);

		if (!header)
			return BP_RESULT_BADBIOSTABLE;

		if (header->record_type == LAST_RECORD_TYPE ||
			!header->record_size)
			break;

		if (header->record_type == ATOM_I2C_RECORD_TYPE
			&& sizeof(struct atom_i2c_record) <=
							header->record_size) {
			/* get the I2C info */
			record = (struct atom_i2c_record *) header;

			if (get_gpio_i2c_info(bp, record, info) ==
								BP_RESULT_OK)
				return BP_RESULT_OK;
		}

		offset += header->record_size;
	}

	return BP_RESULT_NORECORD;
}

static enum bp_result get_gpio_i2c_info(
	struct bios_parser *bp,
	struct atom_i2c_record *record,
	struct graphics_object_i2c_info *info)
{
	struct atom_gpio_pin_lut_v2_1 *header;
	uint32_t count = 0;
	unsigned int table_index = 0;
354
	bool find_valid = false;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	if (!info)
		return BP_RESULT_BADINPUT;

	/* get the GPIO_I2C info */
	if (!DATA_TABLES(gpio_pin_lut))
		return BP_RESULT_BADBIOSTABLE;

	header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
					DATA_TABLES(gpio_pin_lut));
	if (!header)
		return BP_RESULT_BADBIOSTABLE;

	if (sizeof(struct atom_common_table_header) +
			sizeof(struct atom_gpio_pin_assignment)	>
			le16_to_cpu(header->table_header.structuresize))
		return BP_RESULT_BADBIOSTABLE;

	/* TODO: is version change? */
	if (header->table_header.content_revision != 1)
		return BP_RESULT_UNSUPPORTED;

	/* get data count */
	count = (le16_to_cpu(header->table_header.structuresize)
			- sizeof(struct atom_common_table_header))
				/ sizeof(struct atom_gpio_pin_assignment);

382 383 384 385 386 387 388 389 390 391 392 393 394
	for (table_index = 0; table_index < count; table_index++) {
		if (((record->i2c_id & I2C_HW_CAP) == (
		header->gpio_pin[table_index].gpio_id &
						I2C_HW_CAP)) &&
		((record->i2c_id & I2C_HW_ENGINE_ID_MASK)  ==
		(header->gpio_pin[table_index].gpio_id &
					I2C_HW_ENGINE_ID_MASK)) &&
		((record->i2c_id & I2C_HW_LANE_MUX) ==
		(header->gpio_pin[table_index].gpio_id &
						I2C_HW_LANE_MUX))) {
			/* still valid */
			find_valid = true;
			break;
395 396 397
		}
	}

398 399 400 401 402 403
	/* If we don't find the entry that we are looking for then
	 *  we will return BP_Result_BadBiosTable.
	 */
	if (find_valid == false)
		return BP_RESULT_BADBIOSTABLE;

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	/* get the GPIO_I2C_INFO */
	info->i2c_hw_assist = (record->i2c_id & I2C_HW_CAP) ? true : false;
	info->i2c_line = record->i2c_id & I2C_HW_LANE_MUX;
	info->i2c_engine_id = (record->i2c_id & I2C_HW_ENGINE_ID_MASK) >> 4;
	info->i2c_slave_address = record->i2c_slave_addr;

	/* TODO: check how to get register offset for en, Y, etc. */
	info->gpio_info.clk_a_register_index =
			le16_to_cpu(
			header->gpio_pin[table_index].data_a_reg_index);
	info->gpio_info.clk_a_shift =
			header->gpio_pin[table_index].gpio_bitshift;

	return BP_RESULT_OK;
}

static enum bp_result bios_parser_get_hpd_info(
	struct dc_bios *dcb,
	struct graphics_object_id id,
	struct graphics_object_hpd_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_display_object_path_v2 *object;
	struct atom_hpd_int_record *record = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	object = get_bios_object(bp, id);

	if (!object)
		return BP_RESULT_BADINPUT;

	record = get_hpd_record(bp, object);

	if (record != NULL) {
		info->hpd_int_gpio_uid = record->pin_id;
		info->hpd_active = record->plugin_pin_state;
		return BP_RESULT_OK;
	}

	return BP_RESULT_NORECORD;
}

static struct atom_hpd_int_record *get_hpd_record(
	struct bios_parser *bp,
	struct atom_display_object_path_v2 *object)
{
	struct atom_common_record_header *header;
	uint32_t offset;

	if (!object) {
		BREAK_TO_DEBUGGER(); /* Invalid object */
		return NULL;
	}

	offset = le16_to_cpu(object->disp_recordoffset)
			+ bp->object_info_tbl_offset;

	for (;;) {
		header = GET_IMAGE(struct atom_common_record_header, offset);

		if (!header)
			return NULL;

		if (header->record_type == LAST_RECORD_TYPE ||
			!header->record_size)
			break;

		if (header->record_type == ATOM_HPD_INT_RECORD_TYPE
			&& sizeof(struct atom_hpd_int_record) <=
							header->record_size)
			return (struct atom_hpd_int_record *) header;

		offset += header->record_size;
	}

	return NULL;
}

/**
 * bios_parser_get_gpio_pin_info
 * Get GpioPin information of input gpio id
 *
 * @param gpio_id, GPIO ID
 * @param info, GpioPin information structure
 * @return Bios parser result code
 * @note
 *  to get the GPIO PIN INFO, we need:
 *  1. get the GPIO_ID from other object table, see GetHPDInfo()
 *  2. in DATA_TABLE.GPIO_Pin_LUT, search all records,
 *	to get the registerA  offset/mask
 */
static enum bp_result bios_parser_get_gpio_pin_info(
	struct dc_bios *dcb,
	uint32_t gpio_id,
	struct gpio_pin_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_gpio_pin_lut_v2_1 *header;
	uint32_t count = 0;
	uint32_t i = 0;

	if (!DATA_TABLES(gpio_pin_lut))
		return BP_RESULT_BADBIOSTABLE;

	header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
						DATA_TABLES(gpio_pin_lut));
	if (!header)
		return BP_RESULT_BADBIOSTABLE;

	if (sizeof(struct atom_common_table_header) +
516
			sizeof(struct atom_gpio_pin_assignment)
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
			> le16_to_cpu(header->table_header.structuresize))
		return BP_RESULT_BADBIOSTABLE;

	if (header->table_header.content_revision != 1)
		return BP_RESULT_UNSUPPORTED;

	/* Temporary hard code gpio pin info */
#if defined(FOR_SIMNOW_BOOT)
	{
		struct  atom_gpio_pin_assignment  gpio_pin[8] = {
				{0x5db5, 0, 0, 1, 0},
				{0x5db5, 8, 8, 2, 0},
				{0x5db5, 0x10, 0x10, 3, 0},
				{0x5db5, 0x18, 0x14, 4, 0},
				{0x5db5, 0x1A, 0x18, 5, 0},
				{0x5db5, 0x1C, 0x1C, 6, 0},
		};

		count = 6;
		memmove(header->gpio_pin, gpio_pin, sizeof(gpio_pin));
	}
#else
	count = (le16_to_cpu(header->table_header.structuresize)
			- sizeof(struct atom_common_table_header))
				/ sizeof(struct atom_gpio_pin_assignment);
#endif
	for (i = 0; i < count; ++i) {
		if (header->gpio_pin[i].gpio_id != gpio_id)
			continue;

		info->offset =
			(uint32_t) le16_to_cpu(
					header->gpio_pin[i].data_a_reg_index);
		info->offset_y = info->offset + 2;
		info->offset_en = info->offset + 1;
		info->offset_mask = info->offset - 1;

		info->mask = (uint32_t) (1 <<
			header->gpio_pin[i].gpio_bitshift);
		info->mask_y = info->mask + 2;
		info->mask_en = info->mask + 1;
		info->mask_mask = info->mask - 1;

		return BP_RESULT_OK;
	}

	return BP_RESULT_NORECORD;
}

static struct device_id device_type_from_device_id(uint16_t device_id)
{

	struct device_id result_device_id;

571 572
	result_device_id.raw_device_tag = device_id;

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	switch (device_id) {
	case ATOM_DISPLAY_LCD1_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_LCD;
		result_device_id.enum_id = 1;
		break;

	case ATOM_DISPLAY_DFP1_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 1;
		break;

	case ATOM_DISPLAY_DFP2_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 2;
		break;

	case ATOM_DISPLAY_DFP3_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 3;
		break;

	case ATOM_DISPLAY_DFP4_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 4;
		break;

	case ATOM_DISPLAY_DFP5_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 5;
		break;

	case ATOM_DISPLAY_DFP6_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 6;
		break;

	default:
		BREAK_TO_DEBUGGER(); /* Invalid device Id */
		result_device_id.device_type = DEVICE_TYPE_UNKNOWN;
		result_device_id.enum_id = 0;
	}
	return result_device_id;
}

static enum bp_result bios_parser_get_device_tag(
	struct dc_bios *dcb,
	struct graphics_object_id connector_object_id,
	uint32_t device_tag_index,
	struct connector_device_tag_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_display_object_path_v2 *object;

	if (!info)
		return BP_RESULT_BADINPUT;

	/* getBiosObject will return MXM object */
	object = get_bios_object(bp, connector_object_id);

	if (!object) {
		BREAK_TO_DEBUGGER(); /* Invalid object id */
		return BP_RESULT_BADINPUT;
	}

	info->acpi_device = 0; /* BIOS no longer provides this */
	info->dev_id = device_type_from_device_id(object->device_tag);

	return BP_RESULT_OK;
}

static enum bp_result get_ss_info_v4_1(
	struct bios_parser *bp,
	uint32_t id,
	uint32_t index,
	struct spread_spectrum_info *ss_info)
{
	enum bp_result result = BP_RESULT_OK;
	struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL;
651
	struct atom_smu_info_v3_3 *smu_info = NULL;
652 653 654 655 656 657 658 659 660 661 662 663

	if (!ss_info)
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(dce_info))
		return BP_RESULT_BADBIOSTABLE;

	disp_cntl_tbl =  GET_IMAGE(struct atom_display_controller_info_v4_1,
							DATA_TABLES(dce_info));
	if (!disp_cntl_tbl)
		return BP_RESULT_BADBIOSTABLE;

664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	ss_info->type.STEP_AND_DELAY_INFO = false;
	ss_info->spread_percentage_divider = 1000;
	/* BIOS no longer uses target clock.  Always enable for now */
	ss_info->target_clock_range = 0xffffffff;

	switch (id) {
	case AS_SIGNAL_TYPE_DVI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->dvi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->dvi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_HDMI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->hdmi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	/* TODO LVDS not support anymore? */
	case AS_SIGNAL_TYPE_DISPLAY_PORT:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->dp_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->dp_ss_rate_10hz * 10;
		if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_GPU_PLL:
697 698 699 700 701
		/* atom_firmware: DAL only get data from dce_info table.
		 * if data within smu_info is needed for DAL, VBIOS should
		 * copy it into dce_info
		 */
		result = BP_RESULT_UNSUPPORTED;
702
		break;
703 704 705 706 707 708 709 710 711 712 713 714 715
	case AS_SIGNAL_TYPE_XGMI:
		smu_info =  GET_IMAGE(struct atom_smu_info_v3_3,
				      DATA_TABLES(smu_info));
		if (!smu_info)
			return BP_RESULT_BADBIOSTABLE;

		ss_info->spread_spectrum_percentage =
				smu_info->waflclk_ss_percentage;
		ss_info->spread_spectrum_range =
				smu_info->gpuclk_ss_rate_10hz * 10;
		if (smu_info->waflclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
716 717 718 719 720 721 722
	default:
		result = BP_RESULT_UNSUPPORTED;
	}

	return result;
}

723 724 725 726 727 728 729 730
static enum bp_result get_ss_info_v4_2(
	struct bios_parser *bp,
	uint32_t id,
	uint32_t index,
	struct spread_spectrum_info *ss_info)
{
	enum bp_result result = BP_RESULT_OK;
	struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL;
731
	struct atom_smu_info_v3_1 *smu_info = NULL;
732 733 734 735 736 737 738

	if (!ss_info)
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(dce_info))
		return BP_RESULT_BADBIOSTABLE;

739 740 741
	if (!DATA_TABLES(smu_info))
		return BP_RESULT_BADBIOSTABLE;

742 743 744 745 746
	disp_cntl_tbl =  GET_IMAGE(struct atom_display_controller_info_v4_2,
							DATA_TABLES(dce_info));
	if (!disp_cntl_tbl)
		return BP_RESULT_BADBIOSTABLE;

747 748 749 750
	smu_info =  GET_IMAGE(struct atom_smu_info_v3_1, DATA_TABLES(smu_info));
	if (!smu_info)
		return BP_RESULT_BADBIOSTABLE;

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	ss_info->type.STEP_AND_DELAY_INFO = false;
	ss_info->spread_percentage_divider = 1000;
	/* BIOS no longer uses target clock.  Always enable for now */
	ss_info->target_clock_range = 0xffffffff;

	switch (id) {
	case AS_SIGNAL_TYPE_DVI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->dvi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->dvi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_HDMI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->hdmi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	/* TODO LVDS not support anymore? */
	case AS_SIGNAL_TYPE_DISPLAY_PORT:
		ss_info->spread_spectrum_percentage =
776
				smu_info->gpuclk_ss_percentage;
777
		ss_info->spread_spectrum_range =
778 779
				smu_info->gpuclk_ss_rate_10hz * 10;
		if (smu_info->gpuclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
780 781 782
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_GPU_PLL:
783 784 785 786 787
		/* atom_firmware: DAL only get data from dce_info table.
		 * if data within smu_info is needed for DAL, VBIOS should
		 * copy it into dce_info
		 */
		result = BP_RESULT_UNSUPPORTED;
788 789 790 791 792 793 794 795
		break;
	default:
		result = BP_RESULT_UNSUPPORTED;
	}

	return result;
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/**
 * bios_parser_get_spread_spectrum_info
 * Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or
 * ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info
 * ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info
 * ver 3.1,
 * there is only one entry for each signal /ss id.  However, there is
 * no planning of supporting multiple spread Sprectum entry for EverGreen
 * @param [in] this
 * @param [in] signal, ASSignalType to be converted to info index
 * @param [in] index, number of entries that match the converted info index
 * @param [out] ss_info, sprectrum information structure,
 * @return Bios parser result code
 */
static enum bp_result bios_parser_get_spread_spectrum_info(
	struct dc_bios *dcb,
	enum as_signal_type signal,
	uint32_t index,
	struct spread_spectrum_info *ss_info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	enum bp_result result = BP_RESULT_UNSUPPORTED;
	struct atom_common_table_header *header;
	struct atom_data_revision tbl_revision;

	if (!ss_info) /* check for bad input */
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(dce_info))
		return BP_RESULT_UNSUPPORTED;

	header = GET_IMAGE(struct atom_common_table_header,
						DATA_TABLES(dce_info));
	get_atom_data_table_revision(header, &tbl_revision);

	switch (tbl_revision.major) {
	case 4:
		switch (tbl_revision.minor) {
		case 1:
			return get_ss_info_v4_1(bp, signal, index, ss_info);
836
		case 2:
837
		case 3:
838
			return get_ss_info_v4_2(bp, signal, index, ss_info);
839 840 841 842 843 844 845 846 847 848 849 850
		default:
			break;
		}
		break;
	default:
		break;
	}
	/* there can not be more then one entry for SS Info table */
	return result;
}

static enum bp_result get_embedded_panel_info_v2_1(
851 852
		struct bios_parser *bp,
		struct embedded_panel_info *info)
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
{
	struct lcd_info_v2_1 *lvds;

	if (!info)
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(lcd_info))
		return BP_RESULT_UNSUPPORTED;

	lvds = GET_IMAGE(struct lcd_info_v2_1, DATA_TABLES(lcd_info));

	if (!lvds)
		return BP_RESULT_BADBIOSTABLE;

	/* TODO: previous vv1_3, should v2_1 */
	if (!((lvds->table_header.format_revision == 2)
			&& (lvds->table_header.content_revision >= 1)))
		return BP_RESULT_UNSUPPORTED;

	memset(info, 0, sizeof(struct embedded_panel_info));

	/* We need to convert from 10KHz units into KHz units */
875
	info->lcd_timing.pixel_clk = le16_to_cpu(lvds->lcd_timing.pixclk) * 10;
876
	/* usHActive does not include borders, according to VBIOS team */
877
	info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->lcd_timing.h_active);
878 879 880 881 882
	/* usHBlanking_Time includes borders, so we should really be
	 * subtractingborders duing this translation, but LVDS generally
	 * doesn't have borders, so we should be okay leaving this as is for
	 * now.  May need to revisit if we ever have LVDS with borders
	 */
883
	info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->lcd_timing.h_blanking_time);
884
	/* usVActive does not include borders, according to VBIOS team*/
885
	info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->lcd_timing.v_active);
886 887 888 889 890
	/* usVBlanking_Time includes borders, so we should really be
	 * subtracting borders duing this translation, but LVDS generally
	 * doesn't have borders, so we should be okay leaving this as is for
	 * now. May need to revisit if we ever have LVDS with borders
	 */
891 892 893 894 895
	info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->lcd_timing.v_blanking_time);
	info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->lcd_timing.h_sync_offset);
	info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->lcd_timing.h_sync_width);
	info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->lcd_timing.v_sync_offset);
	info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->lcd_timing.v_syncwidth);
896 897 898 899 900 901
	info->lcd_timing.horizontal_border = lvds->lcd_timing.h_border;
	info->lcd_timing.vertical_border = lvds->lcd_timing.v_border;

	/* not provided by VBIOS */
	info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = 0;

902 903 904 905
	info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
			& ATOM_HSYNC_POLARITY);
	info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
			& ATOM_VSYNC_POLARITY);
906 907 908 909

	/* not provided by VBIOS */
	info->lcd_timing.misc_info.VERTICAL_CUT_OFF = 0;

910 911 912 913 914 915 916
	info->lcd_timing.misc_info.H_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
			& ATOM_H_REPLICATIONBY2);
	info->lcd_timing.misc_info.V_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
			& ATOM_V_REPLICATIONBY2);
	info->lcd_timing.misc_info.COMPOSITE_SYNC = !!(lvds->lcd_timing.miscinfo
			& ATOM_COMPOSITESYNC);
	info->lcd_timing.misc_info.INTERLACE = !!(lvds->lcd_timing.miscinfo & ATOM_INTERLACE);
917 918 919 920 921 922

	/* not provided by VBIOS*/
	info->lcd_timing.misc_info.DOUBLE_CLOCK = 0;
	/* not provided by VBIOS*/
	info->ss_id = 0;

923
	info->realtek_eDPToLVDS = !!(lvds->dplvdsrxid == eDP_TO_LVDS_REALTEK_ID);
924 925 926 927 928

	return BP_RESULT_OK;
}

static enum bp_result bios_parser_get_embedded_panel_info(
929 930
		struct dc_bios *dcb,
		struct embedded_panel_info *info)
931
{
932 933
	struct bios_parser
	*bp = BP_FROM_DCB(dcb);
934 935 936 937 938 939
	struct atom_common_table_header *header;
	struct atom_data_revision tbl_revision;

	if (!DATA_TABLES(lcd_info))
		return BP_RESULT_FAILURE;

940
	header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(lcd_info));
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

	if (!header)
		return BP_RESULT_BADBIOSTABLE;

	get_atom_data_table_revision(header, &tbl_revision);

	switch (tbl_revision.major) {
	case 2:
		switch (tbl_revision.minor) {
		case 1:
			return get_embedded_panel_info_v2_1(bp, info);
		default:
			break;
		}
	default:
		break;
	}

	return BP_RESULT_FAILURE;
}

static uint32_t get_support_mask_for_device_id(struct device_id device_id)
{
	enum dal_device_type device_type = device_id.device_type;
	uint32_t enum_id = device_id.enum_id;

	switch (device_type) {
	case DEVICE_TYPE_LCD:
		switch (enum_id) {
		case 1:
			return ATOM_DISPLAY_LCD1_SUPPORT;
		default:
			break;
		}
		break;
	case DEVICE_TYPE_DFP:
		switch (enum_id) {
		case 1:
			return ATOM_DISPLAY_DFP1_SUPPORT;
		case 2:
			return ATOM_DISPLAY_DFP2_SUPPORT;
		case 3:
			return ATOM_DISPLAY_DFP3_SUPPORT;
		case 4:
			return ATOM_DISPLAY_DFP4_SUPPORT;
		case 5:
			return ATOM_DISPLAY_DFP5_SUPPORT;
		case 6:
			return ATOM_DISPLAY_DFP6_SUPPORT;
		default:
			break;
		}
		break;
	default:
		break;
996
	}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	/* Unidentified device ID, return empty support mask. */
	return 0;
}

static bool bios_parser_is_device_id_supported(
	struct dc_bios *dcb,
	struct device_id id)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	uint32_t mask = get_support_mask_for_device_id(id);

	return (le16_to_cpu(bp->object_info_tbl.v1_4->supporteddevices) &
								mask) != 0;
}

static uint32_t bios_parser_get_ss_entry_number(
	struct dc_bios *dcb,
	enum as_signal_type signal)
{
	/* TODO: DAL2 atomfirmware implementation does not need this.
	 * why DAL3 need this?
	 */
	return 1;
}

static enum bp_result bios_parser_transmitter_control(
	struct dc_bios *dcb,
	struct bp_transmitter_control *cntl)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.transmitter_control)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.transmitter_control(bp, cntl);
}

static enum bp_result bios_parser_encoder_control(
	struct dc_bios *dcb,
	struct bp_encoder_control *cntl)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.dig_encoder_control)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.dig_encoder_control(bp, cntl);
}

static enum bp_result bios_parser_set_pixel_clock(
	struct dc_bios *dcb,
	struct bp_pixel_clock_parameters *bp_params)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.set_pixel_clock)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.set_pixel_clock(bp, bp_params);
}

static enum bp_result bios_parser_set_dce_clock(
	struct dc_bios *dcb,
	struct bp_set_dce_clock_parameters *bp_params)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.set_dce_clock)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.set_dce_clock(bp, bp_params);
}

static enum bp_result bios_parser_program_crtc_timing(
	struct dc_bios *dcb,
	struct bp_hw_crtc_timing_parameters *bp_params)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.set_crtc_timing)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.set_crtc_timing(bp, bp_params);
}

static enum bp_result bios_parser_enable_crtc(
	struct dc_bios *dcb,
	enum controller_id id,
	bool enable)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.enable_crtc)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.enable_crtc(bp, id, enable);
}

static enum bp_result bios_parser_enable_disp_power_gating(
	struct dc_bios *dcb,
	enum controller_id controller_id,
	enum bp_pipe_control_action action)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.enable_disp_power_gating)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id,
		action);
}

static bool bios_parser_is_accelerated_mode(
	struct dc_bios *dcb)
{
	return bios_is_accelerated_mode(dcb);
}

/**
 * bios_parser_set_scratch_critical_state
 *
 * @brief
 *  update critical state bit in VBIOS scratch register
 *
 * @param
 *  bool - to set or reset state
 */
static void bios_parser_set_scratch_critical_state(
	struct dc_bios *dcb,
	bool state)
{
	bios_set_scratch_critical_state(dcb, state);
}

static enum bp_result bios_parser_get_firmware_info(
	struct dc_bios *dcb,
1135
	struct dc_firmware_info *info)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	enum bp_result result = BP_RESULT_BADBIOSTABLE;
	struct atom_common_table_header *header;

	struct atom_data_revision revision;

	if (info && DATA_TABLES(firmwareinfo)) {
		header = GET_IMAGE(struct atom_common_table_header,
				DATA_TABLES(firmwareinfo));
		get_atom_data_table_revision(header, &revision);
		switch (revision.major) {
		case 3:
			switch (revision.minor) {
			case 1:
				result = get_firmware_info_v3_1(bp, info);
				break;
1153 1154 1155
			case 2:
				result = get_firmware_info_v3_2(bp, info);
				break;
1156
			case 3:
1157 1158 1159
#ifdef CONFIG_DRM_AMD_DC_DCN3_0
			case 4:
#endif
1160 1161
				result = get_firmware_info_v3_2(bp, info);
				break;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			default:
				break;
			}
			break;
		default:
			break;
		}
	}

	return result;
}

static enum bp_result get_firmware_info_v3_1(
	struct bios_parser *bp,
1176
	struct dc_firmware_info *info)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	struct atom_firmware_info_v3_1 *firmware_info;
	struct atom_display_controller_info_v4_1 *dce_info = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	firmware_info = GET_IMAGE(struct atom_firmware_info_v3_1,
			DATA_TABLES(firmwareinfo));

	dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
			DATA_TABLES(dce_info));

	if (!firmware_info || !dce_info)
		return BP_RESULT_BADBIOSTABLE;

	memset(info, 0, sizeof(*info));

	/* Pixel clock pll information. */
	 /* We need to convert from 10KHz units into KHz units */
	info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
	info->default_engine_clk = firmware_info->bootup_sclk_in10khz * 10;

	 /* 27MHz for Vega10: */
	info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;

	/* Hardcode frequency if BIOS gives no DCE Ref Clk */
	if (info->pll_info.crystal_frequency == 0)
		info->pll_info.crystal_frequency = 27000;
1206
	/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
1207 1208 1209 1210 1211 1212 1213 1214
	info->dp_phy_ref_clk     = dce_info->dpphy_refclk_10khz * 10;
	info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;

	/* Get GPU PLL VCO Clock */

	if (bp->cmd_tbl.get_smu_clock_info != NULL) {
		/* VBIOS gives in 10KHz */
		info->smu_gpu_pll_output_freq =
1215
				bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
1216 1217
	}

1218 1219
	info->oem_i2c_present = false;

1220
	return BP_RESULT_OK;
1221 1222
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static enum bp_result get_firmware_info_v3_2(
	struct bios_parser *bp,
	struct dc_firmware_info *info)
{
	struct atom_firmware_info_v3_2 *firmware_info;
	struct atom_display_controller_info_v4_1 *dce_info = NULL;
	struct atom_common_table_header *header;
	struct atom_data_revision revision;
	struct atom_smu_info_v3_2 *smu_info_v3_2 = NULL;
	struct atom_smu_info_v3_3 *smu_info_v3_3 = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	firmware_info = GET_IMAGE(struct atom_firmware_info_v3_2,
			DATA_TABLES(firmwareinfo));

	dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
			DATA_TABLES(dce_info));

	if (!firmware_info || !dce_info)
		return BP_RESULT_BADBIOSTABLE;

	memset(info, 0, sizeof(*info));

	header = GET_IMAGE(struct atom_common_table_header,
					DATA_TABLES(smu_info));
	get_atom_data_table_revision(header, &revision);

	if (revision.minor == 2) {
		/* Vega12 */
		smu_info_v3_2 = GET_IMAGE(struct atom_smu_info_v3_2,
							DATA_TABLES(smu_info));

		if (!smu_info_v3_2)
			return BP_RESULT_BADBIOSTABLE;

		info->default_engine_clk = smu_info_v3_2->bootup_dcefclk_10khz * 10;
	} else if (revision.minor == 3) {
		/* Vega20 */
		smu_info_v3_3 = GET_IMAGE(struct atom_smu_info_v3_3,
							DATA_TABLES(smu_info));

		if (!smu_info_v3_3)
			return BP_RESULT_BADBIOSTABLE;

		info->default_engine_clk = smu_info_v3_3->bootup_dcefclk_10khz * 10;
	}

	 // We need to convert from 10KHz units into KHz units.
	info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;

	 /* 27MHz for Vega10 & Vega12; 100MHz for Vega20 */
	info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
	/* Hardcode frequency if BIOS gives no DCE Ref Clk */
	if (info->pll_info.crystal_frequency == 0) {
		if (revision.minor == 2)
			info->pll_info.crystal_frequency = 27000;
		else if (revision.minor == 3)
			info->pll_info.crystal_frequency = 100000;
	}
	/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
	info->dp_phy_ref_clk     = dce_info->dpphy_refclk_10khz * 10;
	info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;

	/* Get GPU PLL VCO Clock */
	if (bp->cmd_tbl.get_smu_clock_info != NULL) {
		if (revision.minor == 2)
			info->smu_gpu_pll_output_freq =
					bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
		else if (revision.minor == 3)
			info->smu_gpu_pll_output_freq =
					bp->cmd_tbl.get_smu_clock_info(bp, SMU11_SYSPLL3_0_ID) * 10;
	}

1298 1299 1300 1301 1302 1303 1304
	if (firmware_info->board_i2c_feature_id == 0x2) {
		info->oem_i2c_present = true;
		info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id;
	} else {
		info->oem_i2c_present = false;
	}

1305 1306 1307
	return BP_RESULT_OK;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static enum bp_result bios_parser_get_encoder_cap_info(
	struct dc_bios *dcb,
	struct graphics_object_id object_id,
	struct bp_encoder_cap_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_display_object_path_v2 *object;
	struct atom_encoder_caps_record *record = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	object = get_bios_object(bp, object_id);

	if (!object)
		return BP_RESULT_BADINPUT;

	record = get_encoder_cap_record(bp, object);
	if (!record)
		return BP_RESULT_NORECORD;

	info->DP_HBR2_CAP = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HBR2) ? 1 : 0;
	info->DP_HBR2_EN = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HBR2_EN) ? 1 : 0;
	info->DP_HBR3_EN = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HBR3_EN) ? 1 : 0;
	info->HDMI_6GB_EN = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HDMI6Gbps_EN) ? 1 : 0;
1337 1338
	info->DP_IS_USB_C = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_USB_C_TYPE) ? 1 : 0;
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	return BP_RESULT_OK;
}


static struct atom_encoder_caps_record *get_encoder_cap_record(
	struct bios_parser *bp,
	struct atom_display_object_path_v2 *object)
{
	struct atom_common_record_header *header;
	uint32_t offset;

	if (!object) {
		BREAK_TO_DEBUGGER(); /* Invalid object */
		return NULL;
	}

	offset = object->encoder_recordoffset + bp->object_info_tbl_offset;

	for (;;) {
		header = GET_IMAGE(struct atom_common_record_header, offset);

		if (!header)
			return NULL;

		offset += header->record_size;

		if (header->record_type == LAST_RECORD_TYPE ||
				!header->record_size)
			break;

		if (header->record_type != ATOM_ENCODER_CAP_RECORD_TYPE)
			continue;

		if (sizeof(struct atom_encoder_caps_record) <=
							header->record_size)
			return (struct atom_encoder_caps_record *)header;
	}

	return NULL;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static enum bp_result get_vram_info_v23(
	struct bios_parser *bp,
	struct dc_vram_info *info)
{
	struct atom_vram_info_header_v2_3 *info_v23;
	enum bp_result result = BP_RESULT_OK;

	info_v23 = GET_IMAGE(struct atom_vram_info_header_v2_3,
						DATA_TABLES(vram_info));

	if (info_v23 == NULL)
		return BP_RESULT_BADBIOSTABLE;

	info->num_chans = info_v23->vram_module[0].channel_num;
	info->dram_channel_width_bytes = (1 << info_v23->vram_module[0].channel_width) / 8;

	return result;
}

static enum bp_result get_vram_info_v24(
	struct bios_parser *bp,
	struct dc_vram_info *info)
{
	struct atom_vram_info_header_v2_4 *info_v24;
	enum bp_result result = BP_RESULT_OK;

	info_v24 = GET_IMAGE(struct atom_vram_info_header_v2_4,
						DATA_TABLES(vram_info));

	if (info_v24 == NULL)
		return BP_RESULT_BADBIOSTABLE;

	info->num_chans = info_v24->vram_module[0].channel_num;
	info->dram_channel_width_bytes = (1 << info_v24->vram_module[0].channel_width) / 8;

	return result;
}

static enum bp_result get_vram_info_v25(
	struct bios_parser *bp,
	struct dc_vram_info *info)
{
	struct atom_vram_info_header_v2_5 *info_v25;
	enum bp_result result = BP_RESULT_OK;

	info_v25 = GET_IMAGE(struct atom_vram_info_header_v2_5,
						DATA_TABLES(vram_info));

	if (info_v25 == NULL)
		return BP_RESULT_BADBIOSTABLE;

	info->num_chans = info_v25->vram_module[0].channel_num;
	info->dram_channel_width_bytes = (1 << info_v25->vram_module[0].channel_width) / 8;

	return result;
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/*
 * get_integrated_info_v11
 *
 * @brief
 * Get V8 integrated BIOS information
 *
 * @param
 * bios_parser *bp - [in]BIOS parser handler to get master data table
 * integrated_info *info - [out] store and output integrated info
 *
 * @return
 * enum bp_result - BP_RESULT_OK if information is available,
 *                  BP_RESULT_BADBIOSTABLE otherwise.
 */
static enum bp_result get_integrated_info_v11(
	struct bios_parser *bp,
	struct integrated_info *info)
{
	struct atom_integrated_system_info_v1_11 *info_v11;
	uint32_t i;

	info_v11 = GET_IMAGE(struct atom_integrated_system_info_v1_11,
					DATA_TABLES(integratedsysteminfo));

	if (info_v11 == NULL)
1463
		return BP_RESULT_BADBIOSTABLE;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	info->gpu_cap_info =
	le32_to_cpu(info_v11->gpucapinfo);
	/*
	* system_config: Bit[0] = 0 : PCIE power gating disabled
	*                       = 1 : PCIE power gating enabled
	*                Bit[1] = 0 : DDR-PLL shut down disabled
	*                       = 1 : DDR-PLL shut down enabled
	*                Bit[2] = 0 : DDR-PLL power down disabled
	*                       = 1 : DDR-PLL power down enabled
	*/
	info->system_config = le32_to_cpu(info_v11->system_config);
	info->cpu_cap_info = le32_to_cpu(info_v11->cpucapinfo);
	info->memory_type = info_v11->memorytype;
	info->ma_channel_number = info_v11->umachannelnumber;
	info->lvds_ss_percentage =
	le16_to_cpu(info_v11->lvds_ss_percentage);
1481 1482
	info->dp_ss_control =
	le16_to_cpu(info_v11->reserved1);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	info->lvds_sspread_rate_in_10hz =
	le16_to_cpu(info_v11->lvds_ss_rate_10hz);
	info->hdmi_ss_percentage =
	le16_to_cpu(info_v11->hdmi_ss_percentage);
	info->hdmi_sspread_rate_in_10hz =
	le16_to_cpu(info_v11->hdmi_ss_rate_10hz);
	info->dvi_ss_percentage =
	le16_to_cpu(info_v11->dvi_ss_percentage);
	info->dvi_sspread_rate_in_10_hz =
	le16_to_cpu(info_v11->dvi_ss_rate_10hz);
	info->lvds_misc = info_v11->lvds_misc;
	for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
		info->ext_disp_conn_info.gu_id[i] =
				info_v11->extdispconninfo.guid[i];
	}

	for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
		info->ext_disp_conn_info.path[i].device_connector_id =
		object_id_from_bios_object_id(
		le16_to_cpu(info_v11->extdispconninfo.path[i].connectorobjid));

		info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
		object_id_from_bios_object_id(
			le16_to_cpu(
			info_v11->extdispconninfo.path[i].ext_encoder_objid));

		info->ext_disp_conn_info.path[i].device_tag =
			le16_to_cpu(
				info_v11->extdispconninfo.path[i].device_tag);
		info->ext_disp_conn_info.path[i].device_acpi_enum =
		le16_to_cpu(
			info_v11->extdispconninfo.path[i].device_acpi_enum);
		info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
			info_v11->extdispconninfo.path[i].auxddclut_index;
		info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
			info_v11->extdispconninfo.path[i].hpdlut_index;
		info->ext_disp_conn_info.path[i].channel_mapping.raw =
			info_v11->extdispconninfo.path[i].channelmapping;
1521 1522
		info->ext_disp_conn_info.path[i].caps =
				le16_to_cpu(info_v11->extdispconninfo.path[i].caps);
1523 1524 1525 1526
	}
	info->ext_disp_conn_info.checksum =
	info_v11->extdispconninfo.checksum;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	info->dp0_ext_hdmi_slv_addr = info_v11->dp0_retimer_set.HdmiSlvAddr;
	info->dp0_ext_hdmi_reg_num = info_v11->dp0_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) {
		info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp0_ext_hdmi_6g_reg_num = info_v11->dp0_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) {
		info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}

	info->dp1_ext_hdmi_slv_addr = info_v11->dp1_retimer_set.HdmiSlvAddr;
	info->dp1_ext_hdmi_reg_num = info_v11->dp1_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) {
		info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp1_ext_hdmi_6g_reg_num = info_v11->dp1_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) {
		info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}

	info->dp2_ext_hdmi_slv_addr = info_v11->dp2_retimer_set.HdmiSlvAddr;
	info->dp2_ext_hdmi_reg_num = info_v11->dp2_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) {
		info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp2_ext_hdmi_6g_reg_num = info_v11->dp2_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) {
		info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}

	info->dp3_ext_hdmi_slv_addr = info_v11->dp3_retimer_set.HdmiSlvAddr;
	info->dp3_ext_hdmi_reg_num = info_v11->dp3_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) {
		info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp3_ext_hdmi_6g_reg_num = info_v11->dp3_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) {
		info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}


1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/** TODO - review **/
	#if 0
	info->boot_up_engine_clock = le32_to_cpu(info_v11->ulBootUpEngineClock)
									* 10;
	info->dentist_vco_freq = le32_to_cpu(info_v11->ulDentistVCOFreq) * 10;
	info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10;

	for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
		/* Convert [10KHz] into [KHz] */
		info->disp_clk_voltage[i].max_supported_clk =
		le32_to_cpu(info_v11->sDISPCLK_Voltage[i].
			ulMaximumSupportedCLK) * 10;
		info->disp_clk_voltage[i].voltage_index =
		le32_to_cpu(info_v11->sDISPCLK_Voltage[i].ulVoltageIndex);
	}

	info->boot_up_req_display_vector =
			le32_to_cpu(info_v11->ulBootUpReqDisplayVector);
	info->boot_up_nb_voltage =
			le16_to_cpu(info_v11->usBootUpNBVoltage);
	info->ext_disp_conn_info_offset =
			le16_to_cpu(info_v11->usExtDispConnInfoOffset);
	info->gmc_restore_reset_time =
			le32_to_cpu(info_v11->ulGMCRestoreResetTime);
	info->minimum_n_clk =
			le32_to_cpu(info_v11->ulNbpStateNClkFreq[0]);
	for (i = 1; i < 4; ++i)
		info->minimum_n_clk =
				info->minimum_n_clk <
				le32_to_cpu(info_v11->ulNbpStateNClkFreq[i]) ?
				info->minimum_n_clk : le32_to_cpu(
					info_v11->ulNbpStateNClkFreq[i]);

	info->idle_n_clk = le32_to_cpu(info_v11->ulIdleNClk);
	info->ddr_dll_power_up_time =
	    le32_to_cpu(info_v11->ulDDR_DLL_PowerUpTime);
	info->ddr_pll_power_up_time =
		le32_to_cpu(info_v11->ulDDR_PLL_PowerUpTime);
	info->pcie_clk_ss_type = le16_to_cpu(info_v11->usPCIEClkSSType);
	info->max_lvds_pclk_freq_in_single_link =
		le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
	info->max_lvds_pclk_freq_in_single_link =
		le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
	info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
		info_v11->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
	info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
		info_v11->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
	info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
		info_v11->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
	info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
		info_v11->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
	info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
		info_v11->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
	info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
		info_v11->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
	info->lvds_off_to_on_delay_in_4ms =
		info_v11->ucLVDSOffToOnDelay_in4Ms;
	info->lvds_bit_depth_control_val =
		le32_to_cpu(info_v11->ulLCDBitDepthControlVal);

	for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
		/* Convert [10KHz] into [KHz] */
		info->avail_s_clk[i].supported_s_clk =
			le32_to_cpu(info_v11->sAvail_SCLK[i].ulSupportedSCLK)
									* 10;
		info->avail_s_clk[i].voltage_index =
			le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageIndex);
		info->avail_s_clk[i].voltage_id =
			le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageID);
	}
	#endif /* TODO*/

	return BP_RESULT_OK;
}


/*
 * construct_integrated_info
 *
 * @brief
 * Get integrated BIOS information based on table revision
 *
 * @param
 * bios_parser *bp - [in]BIOS parser handler to get master data table
 * integrated_info *info - [out] store and output integrated info
 *
 * @return
 * enum bp_result - BP_RESULT_OK if information is available,
 *                  BP_RESULT_BADBIOSTABLE otherwise.
 */
static enum bp_result construct_integrated_info(
	struct bios_parser *bp,
	struct integrated_info *info)
{
	enum bp_result result = BP_RESULT_BADBIOSTABLE;

	struct atom_common_table_header *header;
	struct atom_data_revision revision;
	uint32_t i;
	uint32_t j;

	if (info && DATA_TABLES(integratedsysteminfo)) {
		header = GET_IMAGE(struct atom_common_table_header,
					DATA_TABLES(integratedsysteminfo));

		get_atom_data_table_revision(header, &revision);

		/* Don't need to check major revision as they are all 1 */
		switch (revision.minor) {
		case 11:
1702
		case 12:
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
			result = get_integrated_info_v11(bp, info);
			break;
		default:
			return result;
		}
	}

	if (result != BP_RESULT_OK)
		return result;

	/* Sort voltage table from low to high*/
	for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
		for (j = i; j > 0; --j) {
			if (info->disp_clk_voltage[j].max_supported_clk <
				info->disp_clk_voltage[j-1].max_supported_clk
				) {
				/* swap j and j - 1*/
1720 1721
				swap(info->disp_clk_voltage[j - 1],
				     info->disp_clk_voltage[j]);
1722 1723 1724 1725 1726 1727 1728
			}
		}
	}

	return result;
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static enum bp_result bios_parser_get_vram_info(
		struct dc_bios *dcb,
		struct dc_vram_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	enum bp_result result = BP_RESULT_BADBIOSTABLE;
	struct atom_common_table_header *header;
	struct atom_data_revision revision;

	if (info && DATA_TABLES(vram_info)) {
		header = GET_IMAGE(struct atom_common_table_header,
					DATA_TABLES(vram_info));

		get_atom_data_table_revision(header, &revision);

		switch (revision.major) {
		case 2:
			switch (revision.minor) {
			case 3:
				result = get_vram_info_v23(bp, info);
				break;
			case 4:
				result = get_vram_info_v24(bp, info);
				break;
			case 5:
				result = get_vram_info_v25(bp, info);
				break;
			default:
				break;
			}
			break;

		default:
			return result;
		}

	}
	return result;
}

1769 1770 1771 1772 1773 1774
static struct integrated_info *bios_parser_create_integrated_info(
	struct dc_bios *dcb)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct integrated_info *info = NULL;

1775
	info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL);
1776 1777 1778 1779 1780 1781 1782

	if (info == NULL) {
		ASSERT_CRITICAL(0);
		return NULL;
	}

	if (construct_integrated_info(bp, info) == BP_RESULT_OK)
1783
		return info;
1784

1785
	kfree(info);
1786 1787 1788 1789

	return NULL;
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static enum bp_result update_slot_layout_info(
	struct dc_bios *dcb,
	unsigned int i,
	struct slot_layout_info *slot_layout_info)
{
	unsigned int record_offset;
	unsigned int j;
	struct atom_display_object_path_v2 *object;
	struct atom_bracket_layout_record *record;
	struct atom_common_record_header *record_header;
	enum bp_result result;
	struct bios_parser *bp;
	struct object_info_table *tbl;
	struct display_object_info_table_v1_4 *v1_4;

	record = NULL;
	record_header = NULL;
	result = BP_RESULT_NORECORD;

	bp = BP_FROM_DCB(dcb);
	tbl = &bp->object_info_tbl;
	v1_4 = tbl->v1_4;

	object = &v1_4->display_path[i];
	record_offset = (unsigned int)
		(object->disp_recordoffset) +
		(unsigned int)(bp->object_info_tbl_offset);

	for (;;) {

		record_header = (struct atom_common_record_header *)
			GET_IMAGE(struct atom_common_record_header,
			record_offset);
		if (record_header == NULL) {
			result = BP_RESULT_BADBIOSTABLE;
			break;
		}

		/* the end of the list */
		if (record_header->record_type == 0xff ||
			record_header->record_size == 0)	{
			break;
		}

		if (record_header->record_type ==
			ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
			sizeof(struct atom_bracket_layout_record)
			<= record_header->record_size) {
			record = (struct atom_bracket_layout_record *)
				(record_header);
			result = BP_RESULT_OK;
			break;
		}

		record_offset += record_header->record_size;
	}

	/* return if the record not found */
	if (result != BP_RESULT_OK)
		return result;

	/* get slot sizes */
	slot_layout_info->length = record->bracketlen;
	slot_layout_info->width = record->bracketwidth;

	/* get info for each connector in the slot */
	slot_layout_info->num_of_connectors = record->conn_num;
	for (j = 0; j < slot_layout_info->num_of_connectors; ++j) {
		slot_layout_info->connectors[j].connector_type =
			(enum connector_layout_type)
			(record->conn_info[j].connector_type);
		switch (record->conn_info[j].connector_type) {
		case CONNECTOR_TYPE_DVI_D:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_DVI_D;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_DVI;
			break;

		case CONNECTOR_TYPE_HDMI:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_HDMI;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_HDMI;
			break;

		case CONNECTOR_TYPE_DISPLAY_PORT:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_DP;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_DP;
			break;

		case CONNECTOR_TYPE_MINI_DISPLAY_PORT:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_MINI_DP;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_MINI_DP;
			break;

		default:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_UNKNOWN;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_UNKNOWN;
		}

		slot_layout_info->connectors[j].position =
			record->conn_info[j].position;
		slot_layout_info->connectors[j].connector_id =
			object_id_from_bios_object_id(
				record->conn_info[j].connectorobjid);
	}
	return result;
}


static enum bp_result get_bracket_layout_record(
	struct dc_bios *dcb,
	unsigned int bracket_layout_id,
	struct slot_layout_info *slot_layout_info)
{
	unsigned int i;
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	enum bp_result result;
	struct object_info_table *tbl;
	struct display_object_info_table_v1_4 *v1_4;

	if (slot_layout_info == NULL) {
		DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n");
		return BP_RESULT_BADINPUT;
	}
	tbl = &bp->object_info_tbl;
	v1_4 = tbl->v1_4;

	result = BP_RESULT_NORECORD;
	for (i = 0; i < v1_4->number_of_path; ++i)	{

		if (bracket_layout_id ==
			v1_4->display_path[i].display_objid) {
			result = update_slot_layout_info(dcb, i,
				slot_layout_info);
			break;
		}
	}
	return result;
}

static enum bp_result bios_get_board_layout_info(
	struct dc_bios *dcb,
	struct board_layout_info *board_layout_info)
{
	unsigned int i;
	enum bp_result record_result;

	const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = {
		GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1,
		GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2,
		0, 0
	};

	if (board_layout_info == NULL) {
		DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n");
		return BP_RESULT_BADINPUT;
	}

	board_layout_info->num_of_slots = 0;

	for (i = 0; i < MAX_BOARD_SLOTS; ++i) {
		record_result = get_bracket_layout_record(dcb,
			slot_index_to_vbios_id[i],
			&board_layout_info->slots[i]);

		if (record_result == BP_RESULT_NORECORD && i > 0)
			break; /* no more slots present in bios */
		else if (record_result != BP_RESULT_OK)
			return record_result;  /* fail */

		++board_layout_info->num_of_slots;
	}

	/* all data is valid */
	board_layout_info->is_number_of_slots_valid = 1;
	board_layout_info->is_slots_size_valid = 1;
	board_layout_info->is_connector_offsets_valid = 1;
	board_layout_info->is_connector_lengths_valid = 1;

	return BP_RESULT_OK;
}

1980

1981 1982 1983 1984
static uint16_t bios_parser_pack_data_tables(
	struct dc_bios *dcb,
	void *dst)
{
1985
#ifdef PACK_BIOS_DATA
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_rom_header_v2_2 *rom_header = NULL;
	struct atom_rom_header_v2_2 *packed_rom_header = NULL;
	struct atom_common_table_header *data_tbl_header = NULL;
	struct atom_master_list_of_data_tables_v2_1 *data_tbl_list = NULL;
	struct atom_master_data_table_v2_1 *packed_master_data_tbl = NULL;
	struct atom_data_revision tbl_rev = {0};
	uint16_t *rom_header_offset = NULL;
	const uint8_t *bios = bp->base.bios;
	uint8_t *bios_dst = (uint8_t *)dst;
	uint16_t packed_rom_header_offset;
	uint16_t packed_masterdatatable_offset;
	uint16_t packed_data_tbl_offset;
	uint16_t data_tbl_offset;
	unsigned int i;

	rom_header_offset =
		GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER);

	if (!rom_header_offset)
		return 0;

	rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset);

	if (!rom_header)
		return 0;

	get_atom_data_table_revision(&rom_header->table_header, &tbl_rev);
	if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2))
		return 0;

	get_atom_data_table_revision(&bp->master_data_tbl->table_header, &tbl_rev);
	if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 1))
		return 0;

	packed_rom_header_offset =
		OFFSET_TO_ATOM_ROM_HEADER_POINTER + sizeof(*rom_header_offset);

	packed_masterdatatable_offset =
		packed_rom_header_offset + rom_header->table_header.structuresize;

	packed_data_tbl_offset =
		packed_masterdatatable_offset +
		bp->master_data_tbl->table_header.structuresize;

	packed_rom_header =
		(struct atom_rom_header_v2_2 *)(bios_dst + packed_rom_header_offset);

	packed_master_data_tbl =
		(struct atom_master_data_table_v2_1 *)(bios_dst +
		packed_masterdatatable_offset);

	memcpy(bios_dst, bios, OFFSET_TO_ATOM_ROM_HEADER_POINTER);

	*((uint16_t *)(bios_dst + OFFSET_TO_ATOM_ROM_HEADER_POINTER)) =
		packed_rom_header_offset;

	memcpy(bios_dst + packed_rom_header_offset, rom_header,
		rom_header->table_header.structuresize);

	packed_rom_header->masterdatatable_offset = packed_masterdatatable_offset;

	memcpy(&packed_master_data_tbl->table_header,
		&bp->master_data_tbl->table_header,
		sizeof(bp->master_data_tbl->table_header));

	data_tbl_list = &bp->master_data_tbl->listOfdatatables;

	/* Each data table offset in data table list is 2 bytes,
	 * we can use that to iterate through listOfdatatables
	 * without knowing the name of each member.
	 */
	for (i = 0; i < sizeof(*data_tbl_list)/sizeof(uint16_t); i++) {
		data_tbl_offset = *((uint16_t *)data_tbl_list + i);

		if (data_tbl_offset) {
			data_tbl_header =
				(struct atom_common_table_header *)(bios + data_tbl_offset);

			memcpy(bios_dst + packed_data_tbl_offset, data_tbl_header,
				data_tbl_header->structuresize);

			*((uint16_t *)&packed_master_data_tbl->listOfdatatables + i) =
				packed_data_tbl_offset;

			packed_data_tbl_offset += data_tbl_header->structuresize;
		} else {
			*((uint16_t *)&packed_master_data_tbl->listOfdatatables + i) = 0;
		}
	}
	return packed_data_tbl_offset;
2077 2078 2079
#endif
	// TODO: There is data bytes alignment issue, disable it for now.
	return 0;
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
static const struct dc_vbios_funcs vbios_funcs = {
	.get_connectors_number = bios_parser_get_connectors_number,

	.get_connector_id = bios_parser_get_connector_id,

	.get_src_obj = bios_parser_get_src_obj,

	.get_i2c_info = bios_parser_get_i2c_info,

	.get_hpd_info = bios_parser_get_hpd_info,

	.get_device_tag = bios_parser_get_device_tag,

	.get_spread_spectrum_info = bios_parser_get_spread_spectrum_info,

	.get_ss_entry_number = bios_parser_get_ss_entry_number,

	.get_embedded_panel_info = bios_parser_get_embedded_panel_info,

	.get_gpio_pin_info = bios_parser_get_gpio_pin_info,

	.get_encoder_cap_info = bios_parser_get_encoder_cap_info,

	.is_device_id_supported = bios_parser_is_device_id_supported,

	.is_accelerated_mode = bios_parser_is_accelerated_mode,

	.set_scratch_critical_state = bios_parser_set_scratch_critical_state,


/*	 COMMANDS */
	.encoder_control = bios_parser_encoder_control,

	.transmitter_control = bios_parser_transmitter_control,

	.enable_crtc = bios_parser_enable_crtc,

	.set_pixel_clock = bios_parser_set_pixel_clock,

	.set_dce_clock = bios_parser_set_dce_clock,

	.program_crtc_timing = bios_parser_program_crtc_timing,

	.enable_disp_power_gating = bios_parser_enable_disp_power_gating,

	.bios_parser_destroy = firmware_parser_destroy,

2129
	.get_board_layout_info = bios_get_board_layout_info,
2130
	.pack_data_tables = bios_parser_pack_data_tables,
2131 2132
};

2133
static bool bios_parser2_construct(
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	struct bios_parser *bp,
	struct bp_init_data *init,
	enum dce_version dce_version)
{
	uint16_t *rom_header_offset = NULL;
	struct atom_rom_header_v2_2 *rom_header = NULL;
	struct display_object_info_table_v1_4 *object_info_tbl;
	struct atom_data_revision tbl_rev = {0};

	if (!init)
		return false;

	if (!init->bios)
		return false;

	bp->base.funcs = &vbios_funcs;
	bp->base.bios = init->bios;
	bp->base.bios_size = bp->base.bios[OFFSET_TO_ATOM_ROM_IMAGE_SIZE] * BIOS_IMAGE_SIZE_UNIT;

	bp->base.ctx = init->ctx;

	bp->base.bios_local_image = NULL;

	rom_header_offset =
			GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER);

	if (!rom_header_offset)
		return false;

	rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset);

	if (!rom_header)
		return false;

	get_atom_data_table_revision(&rom_header->table_header, &tbl_rev);
	if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2))
		return false;

	bp->master_data_tbl =
		GET_IMAGE(struct atom_master_data_table_v2_1,
				rom_header->masterdatatable_offset);

	if (!bp->master_data_tbl)
		return false;

	bp->object_info_tbl_offset = DATA_TABLES(displayobjectinfo);

	if (!bp->object_info_tbl_offset)
		return false;

	object_info_tbl =
			GET_IMAGE(struct display_object_info_table_v1_4,
						bp->object_info_tbl_offset);

	if (!object_info_tbl)
		return false;

	get_atom_data_table_revision(&object_info_tbl->table_header,
		&bp->object_info_tbl.revision);

	if (bp->object_info_tbl.revision.major == 1
		&& bp->object_info_tbl.revision.minor >= 4) {
		struct display_object_info_table_v1_4 *tbl_v1_4;

		tbl_v1_4 = GET_IMAGE(struct display_object_info_table_v1_4,
			bp->object_info_tbl_offset);
		if (!tbl_v1_4)
			return false;

		bp->object_info_tbl.v1_4 = tbl_v1_4;
	} else
		return false;

	dal_firmware_parser_init_cmd_tbl(bp);
	dal_bios_parser_init_cmd_tbl_helper2(&bp->cmd_helper, dce_version);

	bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base);
2211
	bp->base.fw_info_valid = bios_parser_get_firmware_info(&bp->base, &bp->base.fw_info) == BP_RESULT_OK;
2212
	bios_parser_get_vram_info(&bp->base, &bp->base.vram_info);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

	return true;
}

struct dc_bios *firmware_parser_create(
	struct bp_init_data *init,
	enum dce_version dce_version)
{
	struct bios_parser *bp = NULL;

2223
	bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL);
2224 2225 2226
	if (!bp)
		return NULL;

2227
	if (bios_parser2_construct(bp, init, dce_version))
2228 2229
		return &bp->base;

2230
	kfree(bp);
2231 2232 2233 2234
	return NULL;
}